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What is Information Retrieval (IR)? 

• Salton’s definition (Salton 68): “information retrieval is 

a field concerned with the structure, analysis, organization, storage, 

searching, and retrieval of information” 

– Information: mostly text, but can be anything (e.g., 

multimedia) 

– Retrieval:  

• Narrow sense: search/querying 

• Broad sense: information access; information analysis 

• In more general terms 
– Help people manage and make use of all kinds of information 

Users are always an important factor!  



NLP as Foundation of IR 
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IR researchers have been concerned 

about NLP since day one… 
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Luhn’s idea (1958): automatic indexing 

based on statistical analysis of text  
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“It is here proposed that the frequency of word 
occurrence in an article furnishes a useful 
measurement of word significance. It is further 
proposed that the relative position within a sentence 
of words having given values of significance furnish a 
useful measurement for determining the significance 
of sentences. The significance factor of a sentence 
will therefore be based on a combination of these 
two measurements. ” (Luhn 58)   

LUHN, H.P., 'A statistical approach to mechanised encoding and searching of library 
information', IBM Journal of Research and Development, 1, 309-317 (1957).  
LUHN, H.P., 'The automatic creation of literature abstracts', IBM Journal of Research 
and Development, 2, 159-165 (1958). 

Hans Peter Luhn 

(IBM) 

http://www.businessintelligence.info/imagenes-bi/hp-luhn.jpg


The notion of “resolving power of a word”  

 



Automatic abstracting algorithm [Luhn 58] 

“In many instances condensations of 
documents are made emphasizing the 
relationship of the information in the 
document to a special interest or field of 
investigation. In such cases sentences could be 
weighted by assigning a premium value to a 
predetermined class of words.” 

The idea can be adapted for  

query-specific summarization  



Cleverdon’s Cranfield Project (1957-1966) 

Cyril Cleverdon 

(Cranfield Inst. of Tech, UK) 

Established rigorous evaluation methodology 

Introduced precision & recall  

Compared different linguistic units for indexing 

http://en.wikipedia.org/wiki/File:CyrilCleverdon.jpg
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Indexing and Abstracting by Association 
Doyle, Lauren B, American Documentation (pre-1986); Oct 1962; 

Co-occurrence-based 
association measure 



And many attempts have been made 

on improving IR with NLP techniques 

since then…  
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However, today’s search engines 

don’t use much NLP! 



Sometimes, they appear to “understand” natural 

language 
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Query:  “NLP & CC 2012”  



However,… 
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Query:  “NLP & CC 2012 schedule”  



How does a typical search engine work?  

Bag of Terms Representation  
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Term1  0.10 
Term2  0.05 
… 
TermN 0.01  

Term1  0.10 
Term2  0.05 
… 
TermN 0.01  

Query  Document  

Scoring  
Function 

Score(Doc, Query) = 0.75 (optimizing relevance) 
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A Typical Ranking Function  

 Document d 

A text mining paper 

Data mining 

Doc Language Model p(w|d) 
  

… 
text  4/100=0.04 
mining 3/100=0.03 
Assoc.  1/100=0.01 
clustering 1/100=0.01 
… 

… 

 Query q 

data ½=0.5 
mining ½=0.5 

Query Language Model p(w|q) 
  

Similarity function 
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data ½=0.4 
mining ½=0.4 
clustering =0.1 
…  

p(w|q’) 

query expansion 

text 0.04 
mining 0.045 
clustering  0.11 
probabilistic 0.1 
…  

p(w|d’) doc expansion 



Feedback in IR 

Judgments: 

d1 + 

d2 - 

d3 + 

… 

dk  - 

... 

Query Retrieval 

Engine 

Results: 

d1 3.5 

d2 2.4 

… 

dk  0.5 

... 

User 

Document 

collection 

Judgments: 

d1 + 

d2 + 

d3 + 

… 

dk  - 

... 

 top 10 

Pseudo feedback 

Assume top 10 docs 
are relevant 

Relevance feedback 
(Implicit feedback) 

User judges documents 
   (User clickthroughs)  

New 

q 

Feedback 
Learn from  

Examples 



Search Engines Generally Do Little NLP 

• Bag of words representation remains the pillar 

of modern IR 

• Simple lexical processing: stop words removal, 

stemming, word segmentation 

• Limited uses of phrases   
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Basic Technique = Keyword Matching 
      +  statistical weighting of terms 
      +  leveraging clickthroughs (feedback)  
      +  …  
              NLP  =  Lexical Analysis (?) 



IR researchers don’t talk much about NLP 

today either  
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Assumed Conclusion: NLP isn’t useful for IR…  



Questions 

• If logically NLP is the foundation of IR, why 

hasn’t NLP made a significant impact on IR?  

• Is there any way to improve IR significantly with 

NLP techniques?  

• What does the future of NLP for IR look like?  
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Rest of the Talk 

• Attempts on applying NLP to IR 

• Why hasn’t it be successful?  

• The future of NLP for IR 
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NLP for IR 1:  

Beyond bag-of-words Representation 

• Motivation: single words have many problems 
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Different words, same meaning:   car vs. vehicle 
 
Same words, different meaning:  Venetian Blinds vs. blind venetians 
 
 
Different perspectives on single concept:  
          “The accident” vs. “the unfortunate incident” 
 
Different meanings for the same words in different domains: 
          “sharp” can mean “pain intensity” or “the quality of a cutting tool” 
 
[Smeaton’s ESSIR’95 tutorial]  
 



Many different phrases explored 

• Statistical phrases [Fagan 88] 
– Phrases are frequent n-grams 

• Linguistic phrases [Fagan 88, Zhai & Evans 96] 
– Phrases are obtained from parsing 

• Lexical atoms [Zhai et al. 95; Zhai 97]  
– “Sticky phrases”/non-compositional phrases (e.g., “hot dog”, 

“blue chip”) 

• Head-modifier pairs [Strzalkowski & Vauthey 95, 
Zhai 97] 
  “fast algorithm for parsing context-free languages” 

{“fast algorithm”, “parsing algorithm”, “parsing language”, 
“context-free language”} 

… 

21 



Phrase Indexing: Results 

• Mostly mixed results 

– Some reported insignificant improvement over single 

word baseline 

– Others reported degradation of retrieval accuracy 

• While on average, using phrases may help, it 

doesn’t help all queries 

• Even when adding phrases helps, adding “too 

many” phrases can hurt the performance 

• Mixing phrases with single words is generally 

necessary to improve robustness 

 

22 



Sample Phrase Indexing Results [Zhai 97] 
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Too many phrases hurt performance! 



NLP for IR 2: Sense Disambiguation 

• Motivation 

– Terms are often ambiguous, causing mismatches 

– What about using term disambiguation? 

• Many studies 

– Krovetz and Croft  1992 

– Voorhees 1993 

– Sanderson 1994 

– Schultz and Pedersen 1995 

– Stokoe et al. 2003 

– … 

 

 
24 



Disambiguation Results: Non-Promising  

• Manual sense disambiguation [Korvetz & Croft 92] 

– Very little improvement (<=2% improvement)  

– Possibly degrade performance 

– Explanation: coordination of terms; skewed distribution of 

senses 

• Automatic sense disambiguation based on 

WordNet [Voorhees 93] 

– No improvement 

• “pseudo sense” experiments [Sanderson 94] 
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IR performance is very sensitive to erroneous  disambiguation …  
Only when it gets to 90% accuracy it is as good as no disambiguation…  
Beyond that, it yields improvement, but only when the query is short 



Disambiguation Results: More Promising  

• Corpus-based senses [Schultz & Pedersen 92] 

– Senses are acquired by clustering word context  

– Multiple senses are assigned to combat uncertainty  

• Semcor 1.6 + careful weighting [Stokoe et al. 03]  
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NLP for IR 3: Deeper Semantic Representation: 

FERRET [Mauldin 91]  

– using knowledge representation to represent text 

– works for a very small data set in astronomy domain 

– but, doesn’t scale up, possibly not outperforming stronger 

baseline  
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Rest of the Talk 

• Attempts on applying NLP to IR 

• Why hasn’t it be successful?  

• The future of NLP for IR 
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Explanation 1: The Power of Bag of Words 

Representation 

• Retrieval problem is mostly a simple language 

processing task 

• “Matching” is sufficiently useful for finding 

relevant documents 

• Ideal query hypothesis: given any subset of 

documents that we assume a user is interested 

in, there exists a query that would produce near-

ideal ranking  

• Finding an ideal query doesn’t necessarily need 

deep NLP  
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Keyword matching may answer questions! 
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Explanation 2: NLP wasn’t used to  

solve a big pain 
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Different words, same meaning:   car vs. vehicle 
 
Same words, different meaning:  Venetian Blinds vs. blind venetians 
 
 
Different perspectives on single concept:  
          “The accident” vs. “the unfortunate incident” 
 
Different meanings for the same words in different domains: 
          “sharp” can mean “pain intensity” or “the quality of a cutting tool” 
 

feedback & expansion   
can take care of this 

How likely does this  happen?  
Some times domain restriction 
solves the problem naturally. Other 
words in the query help providing 
disambiguation.  



Explanation 3: Lack of consideration  

of robustness  

• Standard IR models are optimized for bag of 

terms representation 

• When incorporating phrases, we no longer have 

optimal term weighting  

– e.g., how to optimize phrase weighting when single words 

are also used for indexing?  

• Need to tolerate NLP errors  
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Explanation 4: Workaround possible 

33 

Queries 

Frequency of queries 

Bypass difficult NLP problems 

Difficult tail queries require more NLP!  



Example of NLP for tail queries:  

sense clarification [Kotov & Zhai 11] 

• Uses global analysis for sense identification: 
does not rely on retrieval results (can be used for difficult 

queries) 

identifies collection-specific senses and avoids the 

coverage problem 

identifies both majority and minority senses 

domain independent 

• Presents concise representations of senses to the 
users: 

eliminates the cognitive burden of scanning the results   

• Allows the users to make the final disambiguation 
choice: 

leverages user intelligence to make the best choice 
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Query ambiguity 

baseball 

college 
team 

bird 

sports 

intent: roman catholic cardinals 
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bird 



Query ambiguity 

top documents irrelevant; relevance feedback wont’ help 

Did you mean cardinals as a bird, team or clerical?  

target sense is minority sense; even diversity doesn’t help  

Can search systems improve the results for difficult queries by naturally 
leveraging user interaction to resolve lexical ambiguity? 



Sense feedback improves retrieval accuracy 

on difficult topics 

• Sense feedback outperforms PRF in terms of MAP and 
particularly in terms of Pr@10 (boldface = statistically 

significant (p<.05) w.r.t. KL; underline = w.r.t. to KL-PF) 
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KL KL-PF SF 

AP88-89 
MAP 0.0346 0.0744 0.0876 

P@10 0.0824 0.1412 0.2031 

ROBUST04 
MAP 0.04 0.067 0.073 

P@10 0.1527 0.1554 0.2608 

AQUAINT 
MAP 0.0473 0.0371 0.0888 

P@10 0.1188 0.0813 0.2375 



Rest of the Talk 

• Attempts on applying NLP to IR 

• Why hasn’t it be successful?  

• The future of NLP for IR 
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Future of NLP for IR: Challenges 

• Grand Challenge: How can we leverage 

imperfect NLP to create definite value for IR?  

• Possible Strategies 

– Create add-on value: supplement rather than replace 

existing IR techniques 

– Integrate NLP into a retrieval model (minimize 

“disruption”)  

– Multi-resolution representation  

– Include users into the loop  
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NLP for IR Opportunity 1: 

long-tail queries 

• NLP for query understanding in context 

– Query segmentation 

– Query parsing 

– Query interpretation 

– Do all these in the context of search session and user 

interaction history 

• NLP for document browsing  

– When querying fails, browsing helps  

– How to create a multiresolution topic map?  

• NLP for interactive search 

– How to generate clarification questions?  
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NLP for IR Opportunity 2:  

Beyond Topical Relevance 

• Traditional IR work has focused on exclusively 

topical relevance 

• Real users care about other dimensions of 

relevance as well 

– Sentiment/Opinion retrieval: find positive opinions about 

X 

– Readability: find documents with readability level of 

elementary school students 

– Trustworthiness  

– Genre 

– …  
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NLP for IR Opportunity 3+: 

Beyond Search  

Search 1  

Search 2 

… 

Decision Making 
Learning  
… 

Task Completion  Information Synthesis  
          & Analysis  

Search   
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Multiple Searches 

Information Synthesis 

Information Interpretation 

Potentially iterate… 



Towards an intelligent knowledge service system  
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Information/Knowledge Units 

Knowledge Service 

Document Passage Entity         Relation … 

Selection 

Ranking 

Integration 

Summarization 

 Interpretation 

Decision support 

Document 
Retrieval  

Passage  
Retrieval  

Document 
 Linking 

Passage 
 Linking 

Entity 
Resolution 

Relation 
Resolution 

Entity 
Retrieval  

Relation 
Retrieval  

Text summarization Entity-relation summarization 

Inferences                        Question Answering  

Need more NLP for all these! 

Current Search engines 



Summary 

• NLP is the foundation of IR, but keyword 

matching is quite powerful 

• NLP for IR hasn’t been so successful because 

of the focus on document retrieval (narrow 

sense of IR) 

• Many more opportunities in applying NLP to IR 

in the future 

– Need to supplement, rather than replace existing IR 

techniques 

– Aim at more intelligent,interactive knowledge service 

system 
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Thank You! 

Questions/Comments? 
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