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Abstract. The authors explore the fast query techniques for n-gram
language model (LM) in statistical machine translation (SMT), and then
propose a compact WFSA (weighted finite-state automaton) based LM
motivated by the contextual features in process of model queries. It is
demonstrated that the query based on WFSA can effectively avoid the
redundant queries and accelerate the query speed. Furthermore, it is
revealed that investigating a simple caching techni que can further speed
up the query. The experiment results show that this method can finally
speed up the LM query by 75% in relative. With the LM order increasing,
the performance benefits by WFSA will be much more significant.
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1 Introduction

N -gram languagemodel is one of the important components in modern statistical
machine translation systems. It helps to generate the reasonable translations
which are corresponding to grammar and common usage of natural language.
Using higher order LM models and more training data can significantly improve
the translation performances [1]. However, decoding a single sentence can trigger
hundreds of thousands of queries to the LM. Therefore, the LM must be fast for
the actual SMT systems. Previous proposed techniques [2,3,4] employed the LM
with trade-offs among time, space and accuracy. In this paper, we try to deal
with this case by a compact WFSA based LM.

The weighted finite-state automaton has been introduced successfully in many
natural language processing applications, as many of them have been possible to
break down, both conceptually and literally, into cascades of simpler probabilistic
finite-state transition [5]. We consider the LM query process as a sequence of
state transitions in WFSA, which draws a uniform framework [6] for LM without
almost any redundant operations and speeds up the queries substantially. Our
WFSA based LM is organized with a trie structure which makes the LM stored
in a compact way. We also introduce a simple LM cache by hash table to further

� This work was supported by 863 program in China (No. 2011AA01A207).

M. Zhou et al. (Eds.): NLPCC 2012, CCIS 333, pp. 154–163, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Compact WFSA Based LM in SMT 155

speed up the queries. The results show that our method can finally improve the
query speed by about 75%.

2 Related Work

The current research efforts to speed up the query typically follow the context
features of query process in n-gram LM [7,8,9]. Pauls [7] presented several lan-
guage model implementations that were highly compact and fast to query. They
introduced a language model that took a word-and-context encoding for the suf-
fix of the original query to accelerate the scrolling queries. They also exploited
the scrolling nature of queries in the n-grams encoded tries with last-rest in-
stead of the reverse direction, although they found the speed improvement from
switching to a first-rest encoding was modest. This has also been exploited by
Li [8], who proposed equivalent language model states to explore the back-off
property of n-gram language model. Heafield [9] presented a KenLM that im-
plemented two data structures, the PROBING data structure and TRIE data
structure, for efficient language model queries.

Mathias [10] and Kolak [11] captured the nature language model with a WFSA
in speech translation. They used the concept of WFSA to represent the knowl-
edge in a uniform, and broke the complex problems into a cascade of simple
WFSA. Nasr [12] introduced the WFSA to construct a new kind of LM by sev-
eral local models and a general model using a greedy finite state partial parser.
Chiang [6] investigated Bayesian inference for WFSA and demonstrated the
genericity of this framework which improved performance over EM. Most of cur-
rent studies reduced the WFSA by a standard operation as minimization. Our
WFSA based LM is designed with trie structure, which has already stored the
LM in a compact way.

The rest of this paper is organized as follows: Sect. 3 introduces the motivation
for our approach with the basic concept of LM and WFSA; Sect. 4 describes the
system implementation, including the data structure of WFSA based LM and
query method. Sect. 5 reports and analyzes the experimental results; and the
conclusions are given in Sect. 6.

3 Motivation

3.1 N-gram Language Model

Generally, statistical language model are used to assign probabilities to string
of words or tokens. Let wL

1 denote a string of L tokens over a fixed vocabulary.
The n-gram language model assigns a probability to wL

1 according to

P (wL
1 ) =

L∏

i=1

P (wi|wi−1
1 ) ≈

L∏

i=1

P̂ (wi|wi−1
i−n+1) (1)

where the approximation reflects a Markov assumption that only the most recent
n− 1 tokens will be considered when predicting the next word.
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The smoothing techniques [13,14] are usually introduced with back-off to avoid
the sparse data problem in modeling the LM. The context-dependent back-off is
used as follows

P (wi|wi−1
i−n+1) =

{
π(wi

i−n+1) wi
i−n+1 ∈ LM

λ(wi−1
i−n+1) · P (wi

i−n+2) others
(2)

where π(·) are pre-computed and stored probabilities, and λ(·) are back-off
weights of the history. The LM file contains the parameter π(·) for each listed
n-gram, and the parameters π(·) and λ(·) for each listed m-gram, 1 ≤ m < n;
for unlisted m-grams, λ(·) = 1.0 by definition.

3.2 Query Problems in N-gram LM

The state-of-art language model toolkit SRILM [15] uses trie to organize the
n-grams. Querying in trie can be usually composed by two types: forward query
and back-off query. However, both of the two query types will be a waste of time
as: 1) if the forward query reaches the leaf node of trie, it has to do the forward
query from the beginning of trie when the next word comes in. 2) if the n-gram
is not involved in the LM, it has to do the back-off query still from the beginning
of trie. Thus many nodes in trie are traversed with out any use.

Fig. 1. The comparison of 4-gram LM query methods for “I want to eat apples” and
“I want to drink”

A sample of traditional LM query is shown on the left side in Fig.1. The
arrows in trie represent the query tracks. Although we only need the probability
of want to eat apples when calculating the 4-gram LM of “I want to eat apples”,
the nodes such as “want”, “want to” and “want to eat” are traversed completely
useless. Moreover, because of the fragment “I want to drink does not involved
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in LM, it has to query the sub fragment “want to drink” according to (2). Thus
the nodes “want” and “want to” still traversed uselessly.

We do not consider the query in LM as a random procedure but a continuous
process. Still take the case in Fig.1 as an example. If we use a roll-back pointer
to guide the query directly to an equivalent state [8], the next query can simply
proceed by only one search. This gives us the instinct to use a WFSA to solve
this problem. Figure 1 at the right side shows the query method in a WFSA
based LM. We can see the WFSA will also speed up the back-off queries by the
introduction of roll-back pointer. Thus both of the two query problems in LM
can be successfully resolved with the concept of WFSA.

4 N -gram Language Model Based on WFSA

4.1 WFSA

A WFSA is conceived as an abstract automaton with a finite number of states.
The state it is in at any given time is called the current state. It can change from
one state to another when initiated by a triggering event or condition which is
called the transition, and carry out weights for each transition.

Normally, a typical WFSA can be assigned by a 5-turple M = (Q,Σ, I, F, δ),
where Q is a set of states, I ⊆ Q is a set of initial states, F ⊆ Q is a set of
final states, Σ is the alphabet which represents the input and output labels, and
δ ⊆ Q× (Σ ∪ ε) is the transition relation. A transition is labeled with ε if it can
be traversed without input symbol. The label wi in a input string L is accepted
by the automation M is defined to be

L(M) ≡ {wi ∈ Σ, q ∈ Q|δ(q, wi) ∩ F 	= ∅} (3)

The state is traversed according to the input labels until it reaches one of the
final states. For each transition step, there will be an output which represents
the weighted element.

4.2 WFSA Based LM Structure

We use trie as the basic structure of our compact WFSA language model. The
nodes in trie are the set of finite state Q, and the root of trie is the initial state I.
Each node of trie except the root is the set of final state F . The input label Σ is
the alphabet of input sentences, and the weights are the probabilities for n-gram
and back-off. The transition relation δ is composed by forward transition Tf and
roll-back transition Tb. The forward transition traverses along the path of trie
which is corresponding to forward query and the roll-back transition traverses
with the roll-back pointer which points to the equivalent position in trie. It
should be noted that the roll-back transition triggers spontaneously without any
input when it reaches to the leaves of trie or carries out back-off queries, which
represents the ε transition in WFSA.
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Fig. 2. The structure of a 4-gram WFSA based LM

Figure 2 shows an example of 4-gram LM based on the compact WFSA. Nodes
in the trie are based on the sorted arrays [16] with probability, back-off, and an
index (the solid line in Fig.2) into higher order of n-gram LM. Different with
the previous work, the nodes of our WFSA based LM store a roll-back pointer
(the dash line in Fig.2) for the m-order (3 ≤ m ≤ n). It is just because of these
roll-back pointers that make our LM act as WFSA, which will be illustrated
later in the next section. The 2-order omits roll-back pointer to 1-order as it can
be easily queried by the vocabulary identifier. The nodes of w5 at the 3-order
and w6 at the 4-order are pointing to the corresponding equivalents which is not
shown in Fig.2. Notice the roll-back pointer in w6 at the 4-order can safely point
to the one at the 2-order, for the back-off probability is restricted to 1.0 if the
direct back-off is not involved as described in Sect 2.1.

4.3 Query with WFSA Based LM

For a given input of word sequence wL
1 , the query process of LM can be seen as

a series of state transitions based on WFSA. Take the 4-gram language model
in Fig.2 as an example. The transition of query state is triggered by each input
word wi(1 ≤ i ≤ 6) in w6

1, and each state is corresponding to the node in trie.
The state transition process is shown in Fig.3. The state sji is represented by
the node in LM, and i and j are the beginning and ending identifier of query
fragments respectively.

It can be found that each transition triggered with the input of word (or null).
The forward transition Tf is triggered for each of the input words. If the state
is not involved in LM, the query process will continue traversing to the current
state and trigger a roll-back transition Tb, until it successfully makes a forward
transition. The roll-back transition Tb is just corresponding to the ε transition
in WFSA.

The example of LM query process in Fig.3 is processed as follows: After ini-
tializing the query process, the current query state firstly traverses to the initial
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Fig. 3. N-gram LM query based on WFSA

state s00. Then the state traverses forward to s11, for the fragment w1 exists in
the language model. The same situation happens when w2 and w3 input, and
the current state has reached s31. Then the state transfers to s41 and rolls back
to s42 spontaneously according to the roll-back pointer as it has reached the leaf
node of trie. When word w5 inputs, the state continues rolling back to s43, as
the state s52 does not exist, until it traverses forward to the state s53. At last, the
current state gets to the final state s63 and quits the query process after the last
word w6 inputs.

The pseudo code of query WFSA based LM is shown as follows:

Algorithm. Query WFSA based LM

Input: word string wL
1

Output: LMscore of wL
1

for i = 1 to L do
while(1)

if wi
i−n+1 ∈ LM

LMscore ∗ = π(wi
i−n+1) and break

else
LMscore ∗ = λ(wi

i−n+1)
end while

end for
return LMscore

4.4 Hash Cache

To make further speed up of queries, we add a simple hash cache to our WFSA
based LM to cache the repetitive queries when decoding a sentence in SMT
system. Our cache uses an array of key-value pairs with the size fixed to 2b for
some integer b(we used 24). We choose the current state and input word as the
key of our hash table. We use a b-bit hash function to compute the address in
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an array where we will place an output state and the carried out probability for
each state transition.

For each query of the cache, we check the address of a key given by the b-bits
hash. If the key located in the cache array matches the query key, then we get
the output state and probability which are stored in cache. Otherwise, we fetch
the probability from LM with WFSA and place the new key and value in the
cache. The cache will be cleared for each of the translated sentences.

Both of the forward and back-off query speed can be improved by the cache
as there are many repetitive LM queries in SMT. Moreover, when calculating
the probability for an n-gram which is not involved in the LM, the back-off must
perform multiple queries to fetch the necessary back-off information, although
the WFSA based LM query has already improved the query speed substantially.
Our cache retains the fully results of these calculations and thus saves additional
computations in back-off queries.

5 Experiments and Results

5.1 Setup

We used the state-of-art hierarchical phrase-based translation system [17] as our
baseline, and test the LM query efficiency on two Chinese-to-English translation
tasks: IWSLT-07 (dialogue domain) and NIST-06 (news domain). The test sets
of the two domains are IWSLT-07 test sets and NIST-06 test sets, which contain
489 sentences and 1664 sentences separately. We obtained the translation models
(TM) following the same constraints as in Chiang [18]. We trained the 4-gram
and 5-gram language models using SRILM and then converted them to our
WFSA structure before decoding. The training corpora of the experiments are
listed in Table 1.

Table 1. Training corpus for LM and TM

Tasks Model Parallel sentences Chinese words English words

IWSLT-07
TM1 0.38M 3.0M 3.1M

LM2 1.3M —– 15.2M

NIST-06
TM3 3.4M 64M 70M

LM4 143.M —– 377M

1 The parallel corpus of BTEC (Basic Traveling Expression Corpus) and CJK (China-
Japan-Korea corpus).

2 The English corpus of BTEC+CJK+CWMT2008.
3 LDC2002E18, LDC2002T01, LDC2003E07, LDC2003T17, LDC2004T07,
LDC2004T08, LDC2005T06, LDC2005T10, LDC2005T34, LDC2006T04,
LDC2007T09.

4 LDC2007T07.
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5.2 Results

Storage Space Experiments. We tested our implementation of WFSA based
LM (WFSA) on the two tasks. Notice that there are no additional nodes in trie
structure. For each node, there are only 5 additional bytes comparing with the
SRILM. The bytes are composed by a 4 bytes integer and a 1 bytes character,
which represent the roll-back pointer. Thus, the size of WFSA based LM is
corresponding to the node number of trie, which makes it compact. The results
are shown in Table 2.

Table 2. The comparison of LM size between SRILM and WFSA

Tasks N-grams SRILM(Mb) WFSA(Mb) Δ(%)

IWSLT-07
4 65.7 89.1 35.6

5 89.8 119.5 33.1

NIST-06
4 860.3 1190.4 38.4

5 998.5 1339.7 34.2

In Table 2, the storage sizes of WFSA based LM increase about 35% than
the SRILM in the two domains. It is because of the extra bytes that keep the
roll-back pointer in the trie node. However, the increment is acceptable as it is
linearly dependent with the nodes of trie.

Query Speed Experiments. We used the 4-gram and 5-gram LM in IWSLT-
07 and NIST-06 to test the query efficiency. We measured the time5 required to
perform each query in actual translation using the SRILM as our baseline. Then
we measured the time of using WFSA based LM (WFSA) and introduced our
cache to WFSA (WFSA+cache) to speed up the query. Times were averaged
over 3 runs on the same machine. The results are shown in Table 3.

As expected, the use of WFSA speeds up the LM query substantially. The
query speed in both domains has been improved by 57.1% and 59.5% in 4-gram
LM, and 67.4% and 68.4% in 5-gram LM separately. The improvement of query
speed in 5-gram LM is much better than 4-gram by about 10%. It suggests
that our implementation of WFSA is suitable for higher n-grams. Although the
WFSA has already improved the speed, it can be found our WFSA+cache
queries more effectively. The query speed can be further improved by the intro-
duction of cache in all of the translation tasks. The final implementation of our
WFSA+cache can speed up the query by about 75%.

5 All experiments were performed on a DELL server, with an Intel Xeon 5130 CPU
running at 2.00 GHz and 8M of cache. The operation system is Ubuntu 7.10.
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Table 3. The comparison of query time with different methods

N-grams Methods IWSLT-07(s) NIST-06(s)

SRILM 163 15433

4 WFSA 70 6251

WFSA+cache 42 3907

SRILM 261 25172

5 WFSA 85 7944

WFSA+cache 59 6128

Analysis. Wemeasured the probability of repetitive queries and back-off queries
in 4-gram LM that occurred during decoding, which had a close relationship with
our WFSA based LM. The results on the two tasks are shown in Table 4.

Table 4. The probability of back-off and repetitive query in 4-gram LM

Tasks Back-off Repetitive

IWSLT-07 60.5% 95.5%

NIST-06 60.3% 96.4%

It can be seen that back-off queries are widely existed in statistical machine
translation and as many as about 60% in 4-gram queries are proceeding for back-
off query. Notice that the probabilities of back-off queries are similar in both
tasks, which are corresponding to the increment of query efficiency. It suggests
that our model can effectively accelerate the back-off queries.

Although decoding a single sentence can trigger a huge number of LM queries,
it can be found most of these queries are repetitive. Therefore, keeping the results
of LM queries in a cache can be effective at reducing overall queries. This has been
confirmed by our experimental results in the query speed experiments above.

6 Conclusions

We have presented a new method for faster LM implementation based on com-
pact WFSA. We consider the LM query process as a series of state transitions
with WFSA according to the context character of LM. This method improves
the query speed effectively with a compact LM in size for SMT system. We have
also described a simple caching technique which leads to performance improve-
ments in over all decoding time. Our WFSA based language model can not only
be used in the faster query of LM in SMT, but also be suitable in other nature
language processing, such as speech recognition and information retrieval, etc.
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