A Simple, *Fast* Strategy for Weighted Alignment Hypergraph

Zhaopeng Tu^{1,2} Jun Xie² Yajuan Lv² Qun Liu^{2,3}

I. University of California, Davis, USA
2. Institute of Computing Technology, CAS, China
3. Dublin City University, Ireland

Outlines

- Weighted Alignment Hypergraph (WAH)
- Rule Extraction on WAH
- Experiments
- Conclusion

Outlines

- Weighted Alignment Hypergraph (WAH)
- Rule Extraction on WAH
- Experiments
- Conclusion

- A **graph-based** compact representation of multiple alignments
 - Alignment as minimal connected sub-graph (MCS)

Usually not connected

- A **graph-based** compact representation of multiple alignments
 - Alignment as minimal connected sub-graph (MCS)

Usually not connected

- A **graph-based** compact representation of multiple alignments
 - Multiple alignments help

- A **graph-based** compact representation of multiple alignments
 - Multiple alignments help

在 桌子 上—> is on the desk

- A **graph-based** compact representation of multiple alignments
 - Multiple alignments help

- A **graph-based** compact representation of multiple alignments
 - Multiple alignments help

- A **graph-based** compact representation of multiple alignments
 - Multiple alignments help

- A **graph-based** compact representation of multiple alignments
 - Multiple alignments help

- A **graph-based** compact representation of multiple alignments
 - Multiple alignments help

- A **graph-based** compact representation of multiple alignments
 - Multiple alignments help

- A **graph-based** compact representation of multiple alignments
 - Multiple alignments help

Outlines

- Weighted Alignment Hypergraph (WAH)
- Rule Extraction on WAH
- Experiments
- Conclusion

- Challenge
 - compute the count of the phrases \boldsymbol{p} in a hypergraph \mathbf{H}

 $count(p|H) = \frac{p(all \ alignments \ with \ which \ p \ is \ consistent)}{p(all \ alignments \ encoded \ in \ H)}$

- Challenge
 - compute the count of the phrases \boldsymbol{p} in a hypergraph \mathbf{H}

 $count(p|H) = \frac{p(all \ alignments \ with \ which \ p \ is \ consistent)}{p(all \ alignments \ encoded \ in \ H)}$

To enumerate all alignments in H is *NP-complete*

- Solution 1: Bull's alogrithm
 - Key observation: only consider overlapped subhypergraph (independence)

- Solution 1: Bull's alogrithm
 - Key observation: only consider overlapped subhypergraph (independence)

- Solution 1: Bull's alogrithm
 - Key observation: only consider overlapped subhypergraph (independence)

- Solution 1: Bull's alogrithm
 - Key observation: only consider overlapped subhypergraph (independence)

- Solution 1: Bull's alogrithm
 - Key observation: only consider overlapped subhypergraph (independence)

- Solution 2: inside-outside algorithm
 - In-depth independence

- Solution 2: inside-outside algorithm
 - In-depth independence (

在

- Solution 2: inside-outside algorithm
 - In-depth independence (

在

e₄

Solution 2: inside-outside algorithm

$$p(A|H) = \prod_{h_i \in H} p(A_i|h_i)$$

$$p(A|H,P) = \prod_{h_i \in OS} p(A_i|h_i,P) \prod_{h_j \in NS} p(A_j|h_j)$$

$$c(P|H) = \frac{p(A|H, P)}{p(A|H)} = \frac{\prod_{h_i \in OS} p(A|h_i, P)}{\prod_{h_i \in OS} p(A|h_i)}$$

Outlines

- Weighted Alignment Hypergraph (WAH)
- Rule Extraction on WAH
- Experiments
- Conclusion

Setup

- HPB
- FBIS corpus
- Same settings as (*Liu, Tu, and Lin. ACL 2013*)
 - Build hypergraphs from 100-best lists
 - A subhypergraph has at most 10 hyperedges

Translation Results

Outperforms both 1-best and 10-best alignments

Multiple alignments helps!

Bull's vs Inside-outside

Outlines

- Weighted Alignment Hypergraph (WAH)
- Rule Extraction on WAH
- Experiments
- Conclusion

Conclusion

- A graph-based weighted alignment hyper graph
 - Easier to exploit independence
 - Inside-outside algorithm is twice faster than Bull's algorithm

Thanks!

Q&A