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P , the probability sum of all consistent sub-alignments encoded in the overlap
subhypergraph h is:

p(A|h, P ) =
∑

a∈A

p(a|h, P )

=
∑

a∈AI

p(a|IPH)×
∑

a∈AO

p(a|OPH) (2)

Here IPH and OPH denote the inside and outside partial hypergraphs respec-
tively, and AI and AO denote the sub-alignments generated from them individ-
ually. Let OS denotes the set of overlap subhypergraphs for the phrase pair,
then

p(A|H,P ) =
∏

hi∈OS

p(A|hi, P )×

∏

hi∈H−OS

p(A|hi) (3)

Here the set of non-overlap subhypergraphs (H−OS) are irrelevant to the phrase
pair, and we have p(A|h, P ) = p(A|h) for each h ∈ H −OS. Then the fractional
count of the phrase pair is:

count(P |H) =
p(A|H,P )

p(A|H)

=

∏

hi∈OS p(A|hi, P )
∏

hi∈OS p(A|hi)
(4)

We can easily extend this process to variable rules that contain non-terminals.
For example, we have two sets of overlap subhypergraphs for a variable rule that
contains one non-terminal (i.e., the phrase pair and the sub-phrase pair). Note
that the subhypergraphs intersection set overlaps both the phrase and the sub-
phrase. Therefore, we divide the hyperedges in the intersection set into four
categories: (1) inside the sub-phrase pair, (2) outside the sub-phrase pair but
inside the phrase pair, (3) outside the phrase pair, and (4) crossed hyperedges.
Then we replace the two factors in Eq. 2 with the first three categories above.
We use Eq. 2 for the other overlap subhypergraphs for the phrase and sub-phrase
pairs respectively.

The advantage of inside-outside algorithm is we can employ shared structures
for efficient dynamic programming. For example, when enumerating consistent
alignments for a rule containing one non-terminal in Bull’s algorithm, we should
repeatedly check the consistency between the alignments and the phrases (sub-
phrases). With inside-outside algorithm, we only need to concern the varied part
of the structure (i.e. the intersection between the phrase and the sub-phrase), and
re-used the previous calculated probabilities of the shared structures (i.e. the in-
side probability of the sub-phrase and the outside probability of the phrase). This
greatly speeds up calculating probabilities of rules that contains non-terminals
(§ 4.2).
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Intuitively, our approach faces two challenges:

1. How to calculate the probability sum of all
alignments encoded in a hypergraph (§3.2.1)?

2. How to efficiently calculate the probability
sum of all consistent alignments for each
phrase pair (§3.2.2)?

3.2.1 Enumerating All Alignments
In theory, a hypergraph can encode all possible
alignments if there are enough hyperedges. How-
ever, since a hypergraph is constructed from an n-
best list, it can only represent partial space of all
alignments (p(A|H) < 1) because of the limiting
size of hyperedges learned from the list. There-
fore, we need to enumerate all possible align-
ments in a hypergraph to obtain the probability
sum p(A|H).
Specifically, generating an alignment from a hy-

pergraph can be modelled as finding a complete
hyperedge matching, which is a set of hyperedges
without common vertices that matches all vertices.
The probability of the alignment is the product of
hyperedge weights. Thus, enumerating all possi-
ble alignments in a hypergraph is reformulated as
finding all complete hypergraph matchings, which
is an NP-complete problem (Valiant, 1979).
Similar to the bigraph, a hypergraph is also usu-

ally not connected. Tomake the enumeration prac-
tically tractable, we propose a divide-and-conquer
strategy by decomposing a hypergraphH into a set
of independent subhypergraphs {h1, h2, . . . , hn}.
Intuitively, the probability of an alignment is the
product of hyperedge weights. According to the
divide-and-conquer strategy, the probability sum
of all alignments A encoded in a hypergraph H is:

p(A|H) =
∏

hi∈H

p(Ai|hi)

Here p(Ai|hi) is the probability sum of all sub-
alignments Ai encoded in the subhypergraph hi.

3.2.2 Enumerating Consistent Alignments
Since a hypergraph encodes many alignments, it is
unrealistic to enumerate all consistent alignments
explicitly for each phrase pair.
Recall that a hypergraph can be decomposed

to a list of independent subhypergraphs, and an
alignment is a combination of the sub-alignments
from the decompositions. We observe that a
phrase pair is absolutely consistent with the sub-
alignments from some subhypergraphs, while pos-
sibly consistent with the others. As an example,
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Figure 3: A hypergraph with a candidate phrase
in the grey shadow (a), and its independent subhy-
pergraphs {h1, h2, h3}.

consider the phrase pair in the grey shadow in Fig-
ure 3(a), it is consistent with all sub-alignments
from both h1 and h2 because they are outside and
inside the phrase pair respectively, while not con-
sistent with the sub-alignment that contains hyper-
edge e2 from h3 because it contains an alignment
link that crosses the phrase pair.
Therefore, to calculate the probability sum of all

consistent alignments, we only need to consider
the overlap subhypergraphs, which have at least
one hyperedge that crosses the phrase pair. Given
a overlap subhypergraph, the probability sum of
consistent sub-alignments is calculated by sub-
tracting the probability sum of the sub-alignments
that contain crossed hyperedges, from the proba-
bility sum of all sub-alignments encoded in a hy-
pergraph.
Given a phrase pair P , let OS and NS de-

notes the sets of overlap and non-overlap subhy-
pergraphs respectively (NS = H −OS). Then

p(A|H,P ) =
∏

hi∈OS

p(Ai|hi, P )
∏

hj∈NS

p(Aj|hj)

Here the phrase pair is absolutely consistent with
the sub-alignments from non-overlap subhyper-
graphs (NS), and we have p(A|h, P ) = p(A|h).
Then the fractional count of a phrase pair is:

c(P |H) =
p(A|H,P )

p(A|H)
=

∏
hi∈OS p(A|hi, P )
∏

hi∈OS p(A|hi)

After we get the fractional counts of transla-
tion rules, we can estimate their relative frequen-
cies (Och and Ney, 2004). We follow (Liu et al.,
2009; Tu et al., 2011) to learn lexical tables from
n-best lists and then calculate the lexical weights.
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Therefore, to calculate the probability sum of all

consistent alignments, we only need to consider
the overlap subhypergraphs, which have at least
one hyperedge that crosses the phrase pair. Given
a overlap subhypergraph, the probability sum of
consistent sub-alignments is calculated by sub-
tracting the probability sum of the sub-alignments
that contain crossed hyperedges, from the proba-
bility sum of all sub-alignments encoded in a hy-
pergraph.
Given a phrase pair P , let OS and NS de-

notes the sets of overlap and non-overlap subhy-
pergraphs respectively (NS = H −OS). Then

p(A|H,P ) =
∏

hi∈OS

p(Ai|hi, P )
∏

hj∈NS

p(Aj|hj)

Here the phrase pair is absolutely consistent with
the sub-alignments from non-overlap subhyper-
graphs (NS), and we have p(A|h, P ) = p(A|h).
Then the fractional count of a phrase pair is:

c(P |H) =
p(A|H,P )

p(A|H)
=

∏
hi∈OS p(A|hi, P )
∏

hi∈OS p(A|hi)

After we get the fractional counts of transla-
tion rules, we can estimate their relative frequen-
cies (Och and Ney, 2004). We follow (Liu et al.,
2009; Tu et al., 2011) to learn lexical tables from
n-best lists and then calculate the lexical weights.
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Setup
• HPB 

• FBIS corpus 

• Same settings as (Liu, Tu, and Lin. ACL 2013) 

• Build hypergraphs from 100-best lists 

• A subhypergraph has at most 10 hyperedges



Translation Results
• Outperforms both 1-best and 10-best alignments

Multiple alignments helps!
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4 Experiments

4.1 Setup

We carry out our experiments using a reimplementation of the hierarchical
phrase-based system [2]. Each translation rule is limited to have at most two
non-terminals. Our training data is FBIS corpus from LDC dataset that con-
tains 239K sentence pairs.1 We first follow Venugopal et al. [11] to produce n-best
lists via GIZA++. We produce 20-best lists in two translation directions, and use
“grow-diag-final-and” strategy [3] to generate the final 100-best lists by selecting
the top 100 alignments. Finally we construct weighted alignment hypergraphs
from these 100-best lists. For computational tractability, we follow Liu et al. [4]
to only allow a subhypergraph has at most 10 hyperedges.

4.2 Results
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Fig. 4. The comparison results of two approaches.

Figure 4 shows the comparison results between the conventional Bull’s al-
gorithm (Bull) and our optimized approach (Optimization). We find that the
optimization spends half of the time compared with Bull’s algorithm, indicating
that our approach speeds up the rule extraction.

For both approaches, phrase extraction (rules without non-terminals) con-
sumes a high portion of time. This is in accord with intuition, because we extract
all possible candidate phrases from the hypergraphs. To maintain a reasonable
rule table size, we only remain more promising candidates that have a frac-
tional count higher than a threshold, which are used to generate rules with non-
terminals. It should be emphasized that our approach consumes more time on

1 The FBIS corpus shares similar subhypergraph distribution with a larger corpus that
contains 1.5 million sentence pairs. We believe that our results also suits large-scale
corpora.

twice faster
Inside-Outside
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Conclusion
• A graph-based weighted alignment hyper graph 

• Easier to exploit independence  

• Inside-outside algorithm is twice faster than 
Bull’s algorithm



Thanks! 
!

Q&A


