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Motivation 1

Al as Replacement for Numerical Simulation

Manufacturability analysis of car engine (General Motors Corp., USA)

Displacement analysis

a) Finite Element Methods:
40 servers for 1 week

b) ANN (10,000 input neurons):
3 minutes

Average training error: 0.37%
Average test error: 0.46%




Motivation 1

Al as Replacement for Numerical Simulation

Manufacturability analysis of car engine (General Motors Corp., USA)

However, for stress analysis

Shallow ANN failed to produce
better results even with very
large neural network:

Average training error: 5.96%
Average test error: 16.13%
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Motivation 2

NLP in Healthcare, Bioinformatics, Medical Informatics

Current NLP systems does not meet the demands of our NLP in
Healthcare applications

Applying semantic analysis to Adverse Drug Reaction (ADR) from
package insert, pharmacological actions, contraindications.

Automatic real-time ADR signal detection.
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Motivation 3

Probabilistic Graphical Model
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Entity correspondence

We are using Bayesian Description
Logic (BelNet) for ontology learning
(TBox learning) and Markov Logic for
entity correspondence or linking.

Parameter estimation is not scalable

The reasonable number of nodes is
less than 10,000 for parameter

estimation.

The performance of structure
learning is bad

The are too many local optima.
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1. Introduction

How to Do Deep Learning

How to effectively train a deep model (Deep Neural Network)?

Layer-wise “pre-training” before classical back propagation.

This is the path followed by the optimizer to reach the global minimum[0.22777 -1.6257]

Pre-training puts the model in a
near optimal position before the
gradient based searching starts

10+

Initial Condition

Restricted Boltzmann Machines,
Autoencoder, etc.

~ Global Minimum
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1. Introduction

How to Do Deep Learning

Denoising autoencoders have already been shown very useful at
constructing deep architectures.

A denoising autoencoder consists of two parts:

a) Encoder processes noised data and produces real-valued vector as an
"encode" (features) of the data.

b) Decoder processes the "encode" and tries to reconstruct the clean
data.

The optimization target of training denoising autoencoders is minimizing
reconstruction error.
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1. Introduction

How to Do Deep Learning

Deep architecture can be built by stacking Denoising Autoencoders:

U
hz@OOQOOO) Xelelelelelel®)
W, 3 WIA
nQOOO00000 nOOO0000) ©OOOOO0) ki
W] Wl' Wy W;
x ©O0000 ©0000D x©OO0OD x ©O000

November 18, 2013 School of Computer Science & Engineering, Southeast University




1. Introduction

Related Works

Language Model

Yoshua Bengio [University de Montreal] et al. Probabilitic neural language
model.

Tomas Mikolov [Google] et al. Recurrent neural network.

Parsing, Relation Classification, Sentiment Analysis, Paraphrase Detection

Richard Socher et al. [Stanford]

Chucking, Named Entity Recognition, POS Tagging
Ronan Collobert et al. [IDIAP Research Institute]
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1. Introduction

Deep Learning in English NLP

Deep learning has led to many recent breakthroughs in English natural
language processing [4].
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1. Introduction

Deep Learning in English NLP

S b) then use a multi-layer neural network
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1. Introduction

Differences between Chinese and English

The Chinese language is composed of characters, while English of words.
a) 5,000 Chinese characters, cover 99% of Chinese Wikipedia
b) > 120,000 English words, cover 99% of English Wikipedia

Meanings in Chinese are conveyed by complex relationships between
characters.

Chinese characters have meanings themselves, they can still form words
that have completely different meanings from the meanings represented
by the characters alone.
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1. Introduction

Due to These Differences

Complete pre-training is more beneficial for deep models for Chinese NLP.

a) Current deep learning approaches for English NLP lack a pre-training
solution for the hidden layers, they only pre-train the embedding
layer.

b) This may be due to that vocabulary in English is so large that the
embedding layer dominates in the model.

There is no explanation on why training a neural language model is a good
way to pre-train the embedding layer,

or its relationship with other commonly used pre-training methods.
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1. Introduction

In this paper

We propose a deep neural network model for sequence tagging tasks in
Chinese NLP, as well as a complete pre-training solution.

a) We use a different criterion to build Chinese neural language model.

b) We explain that the training process of our neural language model is
essentially the same as training a special denoising autoencoder on

text window, which we call text window denoising autoencoder
(TINA).

c) We describe the method to stack TINA as a way to pre-train deep
neural networks for Chinese word segmentation.
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2. Deep Neural Network Framework
for Chinese Word Segmentation

We view Chinese word
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3. Pre-train Chinese Character
Embeddings

Pre-training by building (a slightly unconventional) Chinese neural
language model: a neural network to predict the center character in a text
window given its context.

For example, given the text window:
RIF_t 57

the model should predict the probability distribution of the Chinese
characters appear in the position of _.
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3. Pre-train Chinese Character
Embeddings

The model is given the context as well as a random character, and then

estimate the probability that the given character is the correct one with
the context.
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3. Pre-train Chinese Character
Embeddings

We want to build a neural network to predict the central character in a
text window given its context:

Or more formally:
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3. Pre-train Chinese Character
Embeddings

Positive examples are text windows extracted directly from a given
Chinese corpus.

Negative examples are generated by replacing the central character in a
positive example with a random character.

Train the model by maximizing the following log-likelihood criterion:
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4. Pre-train Hidden Layer: (Stacked) Text
Window Denoising Autoencoder

4.1 Neural Language Model as Text Window Denoising Autoencoder

The neural language model is essentially a special denoising autoencoder,
which we call text window denoising autoencoder (TINA).
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4. Pre-train Hidden Layer: (Stacked) Text
Window Denoising Autoencoder

4.1 Neural Language Model as Text Window Denoising Autoencoder

Formally, given our neural language model with a single hidden layer:

Ll(cl ----- Cs) == Lh.fi.dde'n.(sz'.-n,put(Cle SRIEEE Cs))

= tanh(w- (W -cq....,W.¢c5) + b)
LQ(CI: c e Cs) = L'O'u,t,put(Ll(Cla “ . aCs))

— sigmoid(w - (L{(cq1,....cs) + b).
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4. Pre-train Hidden Layer: (Stacked) Text
Window Denoising Autoencoder

4.1 Neural Language Model as Text Window Denoising Autoencoder

The encoder of text window denoising autoencoder (TINA):

encoder(x) = (Li1(x,c1),...,L1(x,cs)),

Jeaturelx) = (Y1553 Va)s

The decoder of text window denoising autoencoder (TINA):

decoder(y) = (Lao(y1),...,La(yn)).
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4. Pre-train Hidden Layer: (Stacked) Text
Window Denoising Autoencoder

4.1 Neural Language Model as Text Window Denoising Autoencoder

The square reconstruction error that this text window denoising
autoencoder (TINA) optimizes is:

. s/2
E(9 u-"‘_sl./gs wo, u"l/ ) % Z (712'. - 1{ci:'wo})2a
VCiED

Note that since:

_ s/2
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Minimizing the reconstruction loss function of TINA is exactly the same as
maximizing the log-likelihood criterion we proposed for the Chinese
neural language model.

November 18, 2013 School of Computer Science & Engineering, Southeast University



4. Pre-train Hidden Layer: (Stacked) Text

Window Denoising Autoencoder
4.2 Building Deep Architecture

Because our neural language model can be seen as a special kind of
denoising autoencoder.

We can then follow the stacking strategy of standard denoising
autoencoders [12] and build a deep neural network for Chinese word
segmentation.
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5. Experiments and Analysis

5.1 Text Window Denoising Autoencoder as a Language Model

The performance of text window denoising autoencoder as a language
model.

Language Model Log Rank Score
3-Gram (Katz backoff) 2.54
5-Gram (Katz backoff) 2.53
NLM with Margin Loss 2.48
TINA with 1 Hidden Layer 2.44

(PKU dataset of Chinese word segmentation bakeoff 2005

TINA model: embedding dimension = 100, hidden layer size = 300, text
window size = 11)
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5. Experiments and Analysis

5.2 Stacking

The log rank score of stacked TINA models:

Number of Hidden Layers Log Rank Score

1 Hidden Layers 2.61
2 Hidden Layers 2.52
3 Hidden Layers 2.45

(PKU dataset of Chinese word segmentation bakeoff 2005

TINA model: embedding dimension = 50, hidden layer size = 300, text
window size = 5)
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5. Experiments and Analysis

5.3 Chinese Word Segmentation

Word segmentation performance of deep neural networks pre-trained by
stacking TINA models (Chinese word segmentation bakeoff 2005 dataset):

Dataset Model Precision Recalloov Recall;y F1

PKU Baseline 83.6%  5.9% 95.6% 86.9%
50CE(r) + 1L * 300U(r) 93.5% 75.0% 92.7%  92.6%
50CE(p) + 1L * 300U(r) 93.7% 75.9% 93.7% 93.2%
50CE(p) + 3L * 300U(r) 93.7% 76.0% 93.9% 93.3%
50CE(p) + 3L * 300U(f) 93.7% 76.3% 94.6% 93.6%
50CE(p) + 3L * 300U(TINA) 94.4% 77.9% 94.8% 94.1%
50CE(p) + 4L * 300U(TINA) 94.6% 76.6% 95.0% 94.3%

MSR  Baseline 91.2% 0% 98.1% 93.3%
50CE(r) + 1L * 300U(r) 94.5% 64.0% 95.1% 94.4%
50CE(p) + 1L * 300U(r) 95.1% 63.6% 96.1% 95.2%
50CE(p) + 3L * 300U(r) 95.0% 63.9% 96.0% 95.1%
50CE(p) + 3L * 300U(f) 95.2% 64.4% 96.0% 95.2%
50CE(p) + 3L * 300U(TINA) 95.7% 65.0% 96.4% 95.6%
50CE(p) + 4L * 300U(TINA) 95.6% 64.9% 96.4% 95.6%
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6. Future Works

Although our best model still under perform the state of the art Chinese
word segmentation model [13] by a small margin. Our work has
demonstrated that deep learning can be applied to Chinese NLP tasks,
especially in sequence tagging. Also the model for Chinese NLP is different
from that for English NLP.

We think our method shows great potential:

a) We've only tested a few possible model configurations. Better
performance is likely to be achieved by simply using larger
embedding dimensions or more hidden units.

b) There also exists tricks that can significantly boost the performance of
deep neural network, for example, dropout training [6].
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6. Future Works

Try other deep learning models

a) Combine prior knowledge or hand-crafted features with Deep Belief
Network.

b) Probability nodes versus computational neurons.

c) Chinese syntactic parsing and semantic analysis (such as PCFG and
CCG) by combining deep learning and Markov Logic.

There is still much more work to be done...
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Thank you
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