
G. Zhou et al. (Eds.): NLPCC 2013, CCIS 400, pp. 355–362, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Research of an Improved Algorithm
for Chinese Word Segmentation Dictionary

Based on Double-Array Trie Tree

Wenchuan Yang, Jian Liu, and Miao Yu

Beijing University of Posts and Telecommunication, Beijing, 100876, China
yangwenchuan@bupt.edu.cn

Abstract. Chinese word segmentation dictionary based on the Double-Array
Trie Tree has higher efficiency of search, but the dynamic insertion will con-
sume a lot of time. This paper presents an improved algorithm-iDAT, which is
based on Double-Array Trie Tree for Chinese Word Segmentation Dictionary.
After initialization the original dictionary. We implement a Hash process to the
empty sequence index values for base array. The final Hash table stores the sum
of the empty sequence before the current empty sequence. This algorithm adopt
Sunday jumps algorithm of Single Pattern Matching. With slightly and reason-
able space cost increasing, iDAT reduces the average time complexity of the
dynamic insertion process in Trie Tree. Practical results shows it has a good op-
eration performance.

Keywords: Double-Array, Trie Tree, Time Complexity, Word Segmentation
Dictionary.

1 Introduction

Presently the matching algorithms based on dictionary is still the method used by
the dominant search engine company. The foundation of Chinese word automatic
segmentation is dictionary, and its structure is directly related to the speed and effi-
ciency for word segmentation. Automatic word segmentation is basis for Chinese
information processing system, which leads to further syntax and semantic analysis of
Chinese text[1]. Lexicon will directly influence the segmentation speed. The data
structure of dictionary is mainly through the indexed methods, which include index
table, inverted lists, hash tables and search tree[2].

A maximum matching algorithm is presented in paper[3]. The nearest neighbor
matching algorithm document is put forward in paper[4] based on the first word Hash
algorithm. In paper[5], it presents the dictionary organization method and algorithm
to combine first word Hash and entire word binary search, and this further improve
the segmentation speed. Since there are so many Chinese words, it's hard to use the
Hash table to control the data distribution, and reduce the conflict. There are 6768
commonly used Chinese characters in GB-2312, each Chinese characters can be
mapped uniquely to 1-6768[6]. So we can use Double-Array Trie Tree as the data

356 W. Yang, J. Liu, and M. Yu

structure of the Chinese word segmentation dictionary. A linear table based Trie Tree
is presented in paper[7], and the double array Trie Tree is an improved version.

The searching efficiency of Double-Array Trie Tree is O(n), n for matching cha-
racter length. It has a good search performance, and weak insert performance. Its
insert performance is still O(cm2) even after tuning. Here m is the character set size,
constant C. For the study of Chinese dictionary based on Double-Array Trie Tree,
method for processing node with more branch first to improve space utilization in
paper[8].

As we mentioned before in paper[2], there's a method to arrange the conflict nodes
into the Hash table without redistribute node to improve the efficiency of the insertion
process. Yet the Hash conflict is inevitable, and the use of Hash will increase the
number of search. A optimization method based on genetic algorithm and Sherwood
double array Trie Tree is purposed in paper[8]. It improves the space utilization rate,
and it also avoid the local optimal solution for the algorithm.

In this paper, we will propose an improved algorithm-iDAT, which is based on
Double-Array Trie Tree for Chinese Word Segmentation Dictionary. iDAT optimize
the efficiency of inserting together with the ability of search performance as for
Double-Array Trie Tree.

2 Double-Array Trie Tree

2.1 Double Array Trie Tree

Trie Tree is essentially a deterministic finite state automata, each node represents a
state. Its state transferred according to the different input variables.

Double array uses two arrays as base[] and check[] to implement Trie Tree. As-
sume the input character is c, and Double-Array Trie Tree changes from state s to
state t, it fits for the following conditions.

 base[s]+c=t (1)

 check[t]=s (2)

Fig. 1. Structure of Double array Trie Tree

 Research of an Improved Algorithm for Chinese Word Segmentation Dictionary 357

For Double-Array Trie Tree shown in the Fig.1, s and t is the array index. With in-
put c, the state s transfer to state t, so we have t=base[s]+c, and check[t]=s. So we can
say that check array keeps record of the translated state for state t.

2.2 Insert Processing

Assuming that each state corresponds to an array index. For state s, if base[s] and
check[s] are both 0, s stands for an empty place(Note: check can be when the node
is idle). Assume t1, t2…tn is the suffix state begin with s , c1,c2…cn is respectively
corresponding to the input state transition. base[s] is defined by the following
process:

If there's a base[s], where base[s]+c1=0, base[s]+c2=0, …base[s]+cn=0, the
base[s] can be accepted. The suffix state ti can be stored in the base[s]+ci.

If the new tx suffix state appears, and the corresponding array for base[s]+cx is
not empty, then we need to redo the above process, and recalculate value for
base[s].

To determine the value of base[s], the entire array need to be traversed. The ini-
tial value of base[s] is determine by finding the empty node.

2.3 Insert Optimization

To avoid traversing arrays for an empty node from the very beginning, empty state
can be used to construct the empty state sequence based on double linked table
structure, as follows:

Assume 1 2, ... cmr r r are the array index of the empty state for double array state

 check[0] = - 1r (3)

 check[ir] = - ir +1 ; (i ∈ [1, cm-1]) (4)

 check[cmr] = 0 (5)

 base[0] = - cmr (6)

 base[1r] = 0 (7)

 base[ir +1] = - ir ; (i ∈ [1, cm-1]) (8)

From the above definition, when the check value is negative, it indicates that the
location is empty.

Under the array based double linked table structure, we can choose the value for
initial state base[i] by directly traverse empty nodes.

This reduces the time compared with the traversal of the entire array. It also op-
timizes the node deletion operation with double linked table structure.

358 W. Yang, J. Liu, and M. Yu

3 Improved Algorithm

The Double-Array Trie Tree saves the space compared with the traditional Trie Tree.
When this insert processing encountered conflict, it need to determine the maximum
sub-prefix base value, and this is time costly. To solve this problem, we propose a
iDAT algorithm to optimize its insertion time complexity with the same search effi-
ciency.

3.1 Definitions for iDAT

We have the following definitions for iDAT.

1. 1 2{ ... }lN n n n= is the base(or check) array node set, ni denotes the i node, i is

corresponding the array index, l is the array size, and l=N_Length;

2. 1 2{ ... }mR r r r= is the all empty node set in N, rj is the j-th empty node, m is

empty node length; m=R_Length;

3. T is the maximum sub-prefix under insert state, 1 2 _{ }k s lengthS S S S S= is

T's child nodes character set. Since base[s]+c=t, the character sequence in S set,
which was created by traversal N, is in ascending order. So we have

1k kS S −> and

its length is s_length;

4. Assume * * * * *
1 2 _{ }k s lengthS S S S S= is all the inserted child nodes character

set. pos(
*

1s) is the index for the latest insert character
*

1s ;

5.Assume START as the last character to be inserted position in Set S. Since

base[ir +1] = - ir , we have START = -base[pos(
*

1s)];

3.2 Hash Table

Assume the length of Hash table D=N_Length/10, and mapping function as
Hash(t)=t%D. We use linked list to solve the node conflict.

step 1: For the empty node counting, we have a temporary variable tem=0 to in-
itialize the Hash table ht[D];

step 2: After double array dictionary is initialized, we traverse the empty node
from the check[0] position;

step 3: For the empty nodes corresponding array index, a Hash transform is done
sequentially.

step 4: Let ht[Hash(i)]=tem; tem value increased by 1,here i is the current empty
array index.

Here count is sum of all the empty node before the array position.

 Research of an Improved Algorithm for Chinese Word Segmentation Dictionary 359

3.3 Skip Function

To improve and accelerate the algorithm, we design a skip function isAc-
cept(S,START) to determine whether to skip certain base.

The detail work flow is listed as,

step 1: Assume 1lengths s sΔ = − , sΔ stands for intervals between lengths

and

1s . So the insertion position for 1s should be START - sΔ . Try to find whether

check[START - sΔ] is less than 0. If it is less than 0, the location is empty and
enter step2. Otherwise it jump out and returns false;

step 2: Calculate () (_)count hash START hash START s lengthΔ = − − -1,Here

Hash(START) is the empty position number before START. countΔ is the empty
node numbers between the head node and tail node in Set S. IF

_count s lengthΔ < -2 , jump out and returns false. Otherwise enter step3;

step 3: 0

_
[]

s length
base T START S= − , here 0[]base T is the initial values of

base[T]. Let's record the value and return true

3.4 Tree Construction

The construction steps are described as,

step1: initialization the dictionary according to the Double-Array Trie Tree op-
timization flow described before. For the initialized array, let's construct empty
node linked table as formula (3)-(8). Then create Hash table.

step2: Assume insert word is T xs , base[T]+ xs is not empty. Let's traverse the

check table, and get the character set 1 2 _{ }k s lengthS S S S S= ,whose suffix is

the maximum sub-prefix T.
step 3: Set S as input parameter for isAccept(S,START). If the return value is

true, it determines the initial value of base[T], and enter step4. Otherwise enter
step5.

step 4: Process node inserting as described in iDAT algorithm. If the initial value

for base is found, let's record the pos(
*

1s). Otherwise enter step5.

step 5: According to the formula base[ri+1] = -ri, change the value of START,
and jump to step3.

step 6: If pos(
*

1s) is 0, let's update the Hash table as described in step1.

The skip function isAccept(S,START) is a convergence algorithm. Its ordinary

time complexity is O(1), and its worst-case complexity is O(2cm)(here c is con-
stant,m is empty node number). Since the isAccept function has the ability to skip and
jump quickly. It avoids some unnecessary compare, and also reduces the average time
complexity of the algorithm.

360 W. Yang, J. Liu, and M. Yu

To improve the average time complexity, we create a Hash table. It does cost some
space. In order to minimize the number of maintenance for Hash table. iDAT achieves
inserting from back to front.

4 Evaluations

The experiment try to compare our improved double array Trie Tree(iDAT) solution
with the optimized double array solution proposed in paper[8].

The experimental environment: CPU Core i7, Memory 16Gb, Operating system is
window7, Programming language is Java over Eclipse. The dictionary to be tested is
the open Chinese lexicon provided by sogou (http://www.sogou.com/), which in-
cludes 157201 entries. After we load the test dictionary with Double-Array Trie Tree,
the base (check) array size is 574464.

During the constructing of Double-Array based Chinese dictionary, we find
through the actual simulation ,that there is a certain relationship among the success
rate of insertion, double array empty node proportion, and insert node number.

Fig. 2. Diagram of relation between insert successful ratio and insert node number

Fig. 2 shows relation between insert successful ratio and insert node number. Idle
rate is the proportion of empty nodes in the array sizes. There are three array idle rate,
which are 3/4, 2/3, and 1/2. The X-axis is the insert node number, and the Y-axis is
the success rate. From Fig. 2, we can find that with constant idle rate, the success rate
of insertion may have radical transition under certain insert values.

For the insertion algorithm, the word with a number of child nodes has the high
priority. Based on the idle rate of array, it choose to allocate new space in the tail of
word. This can help to skip the insertion position selection process for entire array,
and can further improve the efficiency of the insertion algorithm.

From the simulation data, we find that the idle rate in array is about 2/3. So we use
the red curve to mark them. When the node number exceeds 35, we allocate some
new space in the end of the array.

 Research of an Improved Algorithm for Chinese Word Segmentation Dictionary 361

The size of new space is determined by the mapping code range for the child
nodes. The time cost comparison for iDAT and EDS is shown in table 2.

Table 1. Time cost comparison for iDAT and EDS

Insert entry \ Algorithm EDS iDAT
100 6.47 5.49
200 9.23 7.01
300 12.89 10.72
400 22.58 18.36
500 31.59 22.61
600 40.04 28.18

As can be seen from Table 1, the advantage of iDAT is not obvious for less insert-

ing entry. Accompany the increasing for entry, the optimized solution will skip more
unnecessary compare. It seem more effective.

The Hash table used in iDAT need extra space cost. The simulation result shows
that ,when the size of hash table is about 1/10 to the total double array size, the per-
formance can meet the requirements. Table 2 shows the analysis of the space cost of
two methods.

Table 2. Space cost comparison for EDS and iDAT

algorithm space cost

EDS array size 574,464

iDAT Array size 583,632 Hash table size 57,449

5 Conclusions

In this paper, we introduce iDAT, which is an improved algorithm for Chinese word
segmentation dictionary based on double array Trie Tree. iDAT can implement fast
mechanical word segmentation, such as maximum matching or reverse matching.
Time cost for search in iDAT is almost the same with the original solution. But it is
more effective than other solutions in insertion operation. In iDAT also can solve the
space cost problem for traditional Trie Tree during Chinese word segmentation. An-
yway, the idle rate for array is about 60% in the actual simulation process. Further
research on the algorithm to optimize the space cost need to be done.

Acknowledgment. This paper is supported by the Opening Project of State Key La-
boratory of Digital Publishing Technology.

362 W. Yang, J. Liu, and M. Yu

References

1. Huang, C.N.: A review of ten years of Chinese word segmentation. Journal of Chinese In-
formation 147, 195–199 (2007)

2. Zhao, H.Y.: A study on Chinese word segmentation based on Double-Array Trie Tree.
Journal of Hunan University 22, 322–329 (2009)

3. Zhao, C.Y.: A word segmentation method based on the word. Journal of Soochow Universi-
ty 18, 44–48 (2002)

4. Chen, G.L.: An improved fast segmentation algorithm. Journal of Computer Research and
Development 37, 418–424 (2009)

5. Li, Z., Xu, Z., Tang, W.: A full two points maximum matching in Computer Engineering
and application of fast segmentation algorithm. Journal of Computer Science 38, 102–108
(2005)

6. Li, J.: A fast algorithm for query Chinese dictionary. Journal of Chinese Information 137,
97–101 (2006)

7. Wang, S.: Research on Double-Array Trie Tree algorithm optimization and its application.
Journal of Chinese Information 138, 131–137 (2006)

8. Wang, S., Li, Z., Ke, X.: Based on improved genetic algorithm and Sherwood thought the
Double-Array Trie Tree. Journal of Computer Engineering 78, 231–236 (2009)

