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Abstract. In text categorization (TC), labeled data is often limited while unla-
beled data is ample. This motivates semi-supervised learning for TC to improve 
the performance by exploring the knowledge in both labeled and unlabeled da-
ta. In this paper, we propose a novel bootstrapping approach to semi-supervised 
TC. First of all, we give two basic preferences, i.e., sufficiency and diversity for 
a possibly successful bootstrapping. After carefully considering the diversity 
preference, we modify the traditional bootstrapping algorithm by training the 
involved classifiers with random feature subspaces instead of the whole feature 
space. Moreover, we further improve the random feature subspace-based boot-
strapping with some constraints on the subspace generation to better satisfy the 
diversity preference. Experimental evaluation shows the effectiveness of our 
modified bootstrapping approach in both topic and sentiment-based TC tasks. 
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1 Introduction 

Text categorization (TC) aims to automatically assign category labels to natural lan-
guage text (Sebastiani, 2002) and this task can be grouped into two major categories: 
topic-based text classification (Yang and Liu, 1997) (referred to as topic classification 
in the following) and sentiment classification (Pang et al., 2002). While the former 
classifies a document according to some objective topics, such as education, finance, 
and politics, the latter classifies a document according to some subjective semantic 
orientations, such as positive and negative. Nowadays, the most popular approach to 
both categories of TC tasks is based on supervised learning methods which employ 
large amounts of labeled data to train a classifier for automatic classification. Howev-
er, it is often  expensive and time-consuming to obtain labeled data. To overcome 
this difficulty, various semi-supervised learning methods have been proposed to im-
prove the performance by exploiting unlabeled data that are readily available for most 
TC tasks (Blum and Mitchell, 1998). 

In principle, an unlabeled document could be helpful for classification. Consider 
the following review from a corpus for sentiment classification:  
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Example 1: This brand is the worst quality that I have purchased. I would avoid this 
brand. 

Each sentence in this review provides a strong indicator, i.e., "worst quality" and 
"avoid this brand", for predicting the review as a negative one. Assume that a trained 
classifier has already possessed the classification knowledge for predicting "worst 
quality" but got no idea about "avoid this brand". Once the review is correctly pre-
dicted and added into the labeled data for further learning, the classifier is then likely 
to contain the classification knowledge for predicting "avoid this brand". Therefore, 
when we iteratively label the unlabeled documents and use them to retrain the clas-
sifier, it is possible to introduce helpful knowledge in the unlabeled documents. This 
process is exactly a typical implementation of the semi-supervised learning approach 
named bootstrapping. Intuitively, this approach should be effective for semi-
supervised TC since the information of many documents are often redundant for pre-
dicting categories, that is, there are usually more than one indicator for predicting the 
category label. Unfortunately, bootstrapping has been reported to be a poorly-
performed approach for semi-supervised TC in previous studies. For example, as 
reported by Li et al. (2010), bootstrapping (called self-training therein) is one of the 
worst approaches for semi-supervised sentiment classification and fails to improve the 
performance across almost all the eight domains.  

In this paper, we will change the awkward situation of bootstrapping. First of all, 
we give two basic preferences for a possibly successful bootstrapping, namely suffi-
ciency and diversity. While sufficiency indicates the ability of the classifier for cor-
rectly predicting the class to enable a successful bootstrapping, diversity indicates the 
preference of adding unlabeled samples which better represent the natural data distri-
bution. Specifically, to better satisfy the diversity preference, we use several feature 
subspace classifiers to automatically label and select samples instead of using a single 
classifier over the whole feature space. In this way, selected samples tend to be more 
different from the existing labeled data in terms of the whole feature space. Empirical 
studies demonstrate a great success of our novel bootstrapping approach by using 
feature subspace classifiers.  

The rest of this paper is organized as follows. Section 2 reviews related work on 
semi-supervised TC. Section 3 describes the two preferences for a successful boot-
strapping. Section 4 proposes some novel alternatives of bootstrapping with a focus 
on the diversity preference. Section 5 presents experimental results on both topic and 
sentiment classification. Finally, Section 6 gives the conclusion and future work. 

2 Related Work 

2.1 Topic Classification 

Generally, two major groups of methods are exploited in topic classification: the  
first is Expectation Maximization (EM) which estimates maximum posteriori parame-
ters of a generative model (Dempster et al., 1977; McCallum and Nigam, 1998; Ni-
gam et al., 2000; Cong et al., 2004) and the second one is Co-training which employs 
two or multiple disjoint views to train a committee of classifiers to collectively select 



 Semi-supervised TC by Considering Sufficiency and Diversity 107 

 

automatically labeled data (Blum and Mitchell, 1998; Braga et al., 2009). Both of 
them have achieved great success on topic classification. To compare EM and Co-
training, Nigam and Ghani (2000) present an extensive empirical study on two 
benchmark corpus: WebKB and 20News. The results show that EM performs slightly 
better than Co-training on WebKB while Co-training significantly outperforms EM 
on 20News. The general better performance of Co-training is due to its more robust-
ness to the violated assumptions.  

Except the two main groups, some studies propose other semi-supervised learning 
approaches for topic classification, such as transductive learning (Joachims, 1999) 
and SemiBoost (Mallapragada et al., 2009). All these studies confirm that using unla-
beled data can significantly decrease classification error in topic classification. 

2.2 Sentiment Classification 

While supervised learning methods for sentiment classification have been extensively 
studied since the pioneer work by Pang et al. (2002), the studies on semi-supervised 
sentiment classification are relatively rare. 

Dasgupta and Ng (2009) integrate several technologies, such as spectral clustering, 
active learning, transductive learning, and ensemble learning, to conduct semi-
supervised sentiment classification. However, the obtained performance remains very 
low (the accuracies on Book and DVD domains are about 60% when using 100 la-
beled samples).  

More recently, Li et al. (2010) propose a Co-training algorithm with person-
al/impersonal views for semi-supervised sentiment classification. Their experiments 
show that both self-training and tranductive learning completely fail and even in their 
co-training approach, incorporating unlabeled data is rather harmful on DVD domain.  

Unlike both studies mentioned above, our bootstrapping approach is much more 
successful for semi-supervised sentiment classification and impressively improves the 
performance on Book and DVD domains when using 100 labeled samples. 

3 Two Basic Preferences for Successful Bootstrapping 

Bootstrapping is a commonly used approach for semi-supervised learning (Yarowsky, 
1995; Abney, 2002). In bootstrapping, a classifier is first trained with a small amount 
of labeled data and then iteratively retained by adding most confident unlabeled sam-
ples as new labeled data.  

To guarantee successful bootstrapping, two basic preferences should be reinforced. 
On one side, the classifier C in bootstrapping should be good enough to correctly 
predict the newly-added samples in each iteration as many as possible. Otherwise, 
many wrongly predicted samples would make bootstrapping fail completely. For clar-
ity, we refer to this preference as sufficiency.  
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Fig. 1. Possible hyperplane (the solid red line) when the labeled samples are more concentrated 

                                 : Initial labeled samples 

                                     : Newly-added labeled samples 

                              : Unlabeled samples 

 

 

 

Fig. 2. Possible hyperplane (the solid red line) when the labeled samples are less concentrated 

On the other side, traditional bootstrapping is prone to label the samples very simi-
lar to the initial labeled data in the initial several iterations because these samples 
could be predicted with much more confidence due to the small scale of the labeled 
data. However, labeling similar samples might be dangerous because the labeled data 
including the initial and the newly-added ones would violate the data distribution and 



 Semi-supervised TC by Considering Sufficiency and Diversity 109 

 

fail to obtain a good classification hyperplane. Figure 1 shows the trained hyperplane 
(the solid line) under the situation when the labeled data are concentrated. We can see 
that when the newly-added data is too close to the initial labeled data, the trained 
hyperplane might be far away from the optimal one (the dotted line). One possible 
way to overcome the concentration drawback is to make the added data more different 
from the initial data and better reflect the natural data distribution. Figure 2 shows the 
situation when the labeled data are less concentrated. In this case, the trained hyper-
lane would be much better. For clarity, we refer to this preference of letting newly-
labeled data more different from existing labeled data as diversity.  

4 Subspace-Based Bootstrapping for Semi-supervised TC 

4.1 Feature Subspace in TC 

A document is represented as a set of features { }1,...,= mF f f  in a machine learn-

ing-based method for TC. Assume 1 2( , ,..., )nX X X X=  the training data containing 

n documents and a document iX  is denoted as 1 2( , ,..., )i i i imX x x x=  where ijx  is 

some statistic information of the feature jf , e.g., tf , tf idf⋅ . 

When a feature subset, i.e., { }1 ,...,S S S
rF f f=  ( r m< ), is used to generate the 

feature vectors of the documents, the original m-dimensional feature space becomes 
an r-dimensional feature subspace. In this way, the modified training data 

1 2( , ,..., )S S S S
nX X X X=  , denoted as subspace data, consists of r-dimensional sam-

ples 1 2( , ,..., )S S S S
i i irX x x x=  ( 1,..., )i n= . A classifier trained with the subspace train-

ing data is called a subspace classifier. 

4.2 Bootstrapping with Random Subspace  

In bootstrapping, the classifier for choosing the samples with high confidences is 
usually trained over the whole feature space. This type of classifier tends to choose 
the samples much similar to the initial labeled data in terms of the whole feature 
space. As pointed in Section 3, this might cause the labeled data too concentrated to 
form a reasonable classification hyperplane. Instead, when a subspace classifier is 
applied, the added data is only similar to the existing labeled data in terms of the fea-
ture subspace and thus could be possibly more different in terms of the whole feature 
space. Generally, the extent of the differences between each two subspace classifiers 
largely depends on the differences of the features they used. One straight way to ob-
tain different subspace classifiers is to randomly select r features from the whole fea-
ture set in each iteration in bootstrapping. Figure 3 illustrates the bootstrapping algo-
rithm with random subspace classifiers. 
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    Input: 
             Labeled data L   
             Unlabeled data U   
     Output: 
             New classifier C  
      Procedure: 
        For k=1 to N 

(1). Randomly select a feature subset S
kF of size r from F 

(2). Generate a subspace data  S
kL  with S

kF  and L 

(3). Learn a subspace classifier S
kC  with S

kL  

(4). Use S
kC  to predict samples from 1kU   

(5). Choose n  most confidently predicted samples kA   

(6). Add them into kL , i.e., k k kL L A   

(7). Remove  kA  from kU , i.e., 1k k kU U A  

         Use the updated data NL to train a classifier C 

 

Fig. 3. Bootstrapping algorithm with random subspace classifiers 

The size of the feature subset r is an important parameter in this algorithm. The 
smaller r, the more different subspace classifiers are from each other. However, the 
value of r should not be too small because a classifier trained with too few features is 
not capable of correctly predicting samples.  

4.3 Bootstrapping with Excluded Subspace 

Although random feature selection is able to make the subspaces in different boot-
strapping iterations differ from each other to some extent, the degree is still limited. 
To better satisfy the diversity preference, we improve the random subspace generation 
strategy with an constraint which restricts that every two adjacent subspace classifiers 

do not share any feature, i.e., 1
S S

k kF F − = ∅∩ where S
kF  represents the feature sub-

set used in k-th iteration. This can be done by selecting a feature subset S
kF  from  

1
S

kF F −−  instead of F . We refer to this feature generation strategy as subspace ex-

cluding strategy. Figure 4 illustrates the bootstrapping algorithm with excluded sub-
space classifiers. 
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   Input: 
            Labeled data L   
            Unlabeled data U   
    Output: 
            New classifier C  
     Procedure: 
       For k=1 to N 

(1). Select a feature subset S
kF  of size r from  1

S
kF F  

(2). Generate a subspace data  S
kL  with S

kF  and L 

(3). Learn a subspace classifier S
kC  with S

kL  

(4). Use S
kC  to predict samples from 1kU   

(5). Choose n  most confidently predicted samples kA   

(6). Add them into kL , i.e., k k kL L A   

(7). Remove  kA  from kU , i.e., 1k k kU U A  

        Use the updated data NL to train a classifier C 

 
Fig. 4. Bootstrapping algorithm with excluded subspace classifiers 

4.4 Diversity Consideration among Different Types of Features 

TC tasks, especially sentiment classification, often involve many types of features, 
such as word anagrams, word diagrams, or even syntactic features from dependency 
parsing (Xia et al., 2011). Although different types of the features may differ in mor-
phology, some are sharing similar knowledge. Take excellent and is_excellent as ex-
amples of word unigram and bigram features respectively. Obviously, these two fea-
tures share similar classification ability and are very likely to select similar samples. 
Therefore, it is necessary to consider the diversity among different types of features 

for real diversity between each two adjacent subspaces  1
S

kF −  and S
kF . 

Therefore, we introduce another constraint which restricts that every two adjacent 
subspace classifiers do not share any similar features. Here, two features are consi-
dered similar when they contain the same informative unigram. For example, 
is_excellent and very_excellent are considered similar because they both contain the 
informative unigram 'excellent'.  In this study, we perform a standard feature selec-
tion method, mutual information (MI), on the labeled data to select top-N unigrams as 
the informative unigrams (Yang and Pedersen, 1997).  

To satisfy this constraint, we first select a set of unigram features, denoted 

as −S UniF , from 1−− S
kF F ; Then, we collect all the other-type features that contain any 

informative feature in −S UniF and put them into the feature subset. For example, as-

sume that excellent is an informative feature. Once it is selected in −S UniF , we collect 
all bigrams like is_excellent, very_excellent,  not_excellent, etc., and put them into the 
feature subset. It is important to note that the total number of the features for generat-
ing subspace is not guaranteed to a fixed value such as r. Instead, we make that size of 
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the unigram feature set fixed, which equals ⋅UniF θ  where UniF is the feature set of 

word unigrams and θ  ( /= r mθ ) is the proportion of the selected features and all 
features. 

5 Experimentation 

5.1 Experimental Setting 

In topic classification, we use two common benchmark corpora: 20News and WebKB, 
where the former consists of 20017 articles divided almost evenly into twenty different 
categories (Joachims, 1999) and the latter contains 4199 web pages from four popular 
categories (Craven et al., 1998). In sentiment classification, we use the product reviews 
from four domains: book, DVD, electronic, and kitchen appliances (Blitzer et al., 2007). 
Each of the four domains contains 1000 positive and 1000 negative reviews. In the ex-
periments, 200 documents in each category are served as testing data and the remaining 
data are served as initial labeled data and unlabeled data. 

Maximum Entropy (ME) is adopted as the classification algorithm with the help of 
Mallet1 tool. All parameters are set to their default values. In particular, we employ 
both word unigrams and bigrams as the features. Our experimental results show that 
combining both word unigram and bigram features achieves similar results to only 
using unigrams in topic classification but apparently more preferable in sentiment 
classification. Nevertheless, our feature subspace-based bootstrapping approach is 
effective in both cases. To highlight the importance of diversity consideration of bi-
gram features, we focus on the results of using both unigram and bigram features. 

5.2 Experimental Results on Bootstrapping 

In this section, we systematically evaluate the performance of our feature subspace-
based bootstrapping and compare it with the supervised baseline: 

1) Baseline: training a classifier with the initial labeled data (no unlabeled data is 
employed); 

2) Bootstrapping-T: the traditional bootstrapping algorithm as shown in Figure 1; 
3) Bootstrapping-RS: the bootstrapping algorithm with random subspace classifiers 

as shown in Figure 3; 
4) Bootstrapping-ES: the bootstrapping algorithm with excluded subspace classifiers 

as shown in Figure 4; 
5) Bootstrapping-ES+: the Bootstrapping-ES implementation with a feature 

excluding strategy as described in Section 4.4 to guarantee the difference between 
different types of features, i.e., word unigrams and bigrams in this study. 

Performance of Different Bootstrapping Approaches 
Figure 5 illustrates the results of the baseline and different bootstrapping approaches 
in topic classification and sentiment classification. For those approaches involving 
random selection of features, we run 5 times for them and report the average results. 

                                                           
1 http://mallet.cs.umass.edu/  
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Figure 5 shows that: 

 Semi-supervised learning in sentiment classification is much more difficult than 
that in topic classification. While the traditional bootstrapping, i.e., Bootstrapping-
T could dramatically outperforms the baseline in both datasets of topic 
classification, it performs much worse than baseline in all four domains of 
sentiment classification.  

 Bootstrapping-RS significantly outperforms Bootstrapping-T (p-value<0.001) 
except in the dataset of WebKB. This may be due to the fact that topic 
classification on WebKB has reached its performance ceiling via traditional 
bootstrapping and thus become difficult to make further improvement. 

 Bootstrapping-ES is more effective than Bootstrapping-RS across four datasets 
but fails to improve Bootstrapping-RS in two datasets: Book and Electronic. This 
failure is due to the fact that using bigrams makes each two adjacent subspaces 
similar to each other to some extent. In fact, if only unigrams is used, 
Bootstrapping-ES always outperforms Bootstrapping-RS, increasing the accuracy 
from 0.62 to 0.67 in Book and from 0.71 to 0.73 in Electronic.  
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Fig. 5. Comparison of different bootstrapping approaches in topic classification (10 labeled 
samples per category) and sentiment classification (50 labeled samples per category) 
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 Bootstrapping-ES+ performs best among the four types of bootstrapping 
approaches and it almost outperforms both Bootstrapping-ES and Bootstrapping-
RS in all datasets. Especially, it performs much better than Bootstrapping-ES in 
Book and Electronic, which verifies the importance of considering the diversity 
among different types of features.  

 
Sensitiveness of the Parameter ( / )r mθ  

The size of the feature subspace is an important parameter in our approach. Figure 6 
shows the performance of Bootstrapping-ES+ with varying sizes of the feature sub-
space. From Figure 6, we can see that a choice of the proportion between 1/3 and 1/6 
is recommended. The size of the feature subspace should not be too small because a 
small amount of features would prevent a subspace well representing the samples and 
violate the sufficiency preference. 
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Fig. 6. Performances of Bootstrapping-ES+ over varying sizes of feature subspace 

6 Conclusion and Future Work 

In this paper, we first give two basic preferences for successful bootstrapping,  
namely sufficiency and diversity.  To better satisfy the diversity preference, we present 
a novel bootstrapping approach by using feature subspace classifiers. Empirical studies 
show that our approach can effectively exploit unlabeled data in both topic and  
sentiment classification and significantly outperforms the traditional bootstrapping  
approach. 

In our future work, we will try to develop a sound theoretical understanding to the 
effectiveness of our approach and propose other diversity strategies to further improve 
the performance on text categorization. Moreover, we will apply our feature sub-
space-based bootstrapping to other tasks in NLP.  
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