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Abstract. Semantic matching is widely used in many natural language 
processing tasks. In this paper, we focus on the semantic matching between 
short texts and design a model to generate deep features, which describe the 
semantic relevance between short “text object”. Furthermore, we design a me-
thod to combine shallow features of short texts (i.e., LSI, VSM and some other 
handcraft features) with deep features of short texts (i.e., word embedding 
matching of short text). Finally, a ranking model (i.e., RankSVM) is used to 
make the final judgment. In order to evaluate our method, we implement our 
method on the task of matching posts and responses. Results of experiments 
show that our method achieves the state-of-the-art performance by using shal-
low features and deep features. 
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1 Introduction 

Many natural language processing (NLP) tasks (such as, paraphrase identification 
[11], information retrieval [8]) can be reduced to semantic matching problems. In this 
paper, we focus on a short text-matching task called short text conversation, firstly 
defined by Wang et.al [3]. For a given short text such as a post, this task aims to find 
a massive suitable response from the candidate set. It’s a simplified task of modeling 
a complete dialogue session such as Turing test. For the convenience of description, 
we give the following example, the post P (post), R+ (positive response), R1- (nega-
tive response) and R2- (negative response). 

• P: 深圳 Sč č气 怎5样？ How is the weather like today in Shenzhen? 

• R+: 深圳 现在 正 大雨磅礴 。 It's pouring down in torrents now in Shenzhen. 

                                                           
* Corresponding author. 
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• R1-: 在 深圳 过的 怎5样 ？ How is everything going in Shenzhen? 

• R2-:Sč 5海 č气 不错哦 。 The weather in Shanghai is very good today. 

The semantic matching is a challenging problem, since it aims to find the semantic 
relevance between two “text objects”. Wang et al. [3] describe a retrieval-based mod-
el, which uses about 15 shallow matching features. Most of the features are learned 
from matching models or generated directly from posts and responses. Although the 
retrieval-based model performs reasonably well on the post-response matching task, it 
can only capture the word-by-word matching and latent semantic matching features 
between posts and responses. For retrieval-based model, it is difficult to recognize 
R1– as a negative response. However, it is easy to recognize R2– as a negative re-
sponse, only if we add a feature describing whether the named entities from the post 
and response are the same. Distributed representation (also called word embedding) 
of text induced from deep learning is well suited for this task, because it contains rich 
semantic information of text and can model the relevance between different words or 
phrases. Related works have demonstrated that the embedding-based method can 
capture rich semantic relevance between “text objects” and performs well on tasks 
like paraphrase identification [11] and information retrieval [8]. However, they are 
not powerful enough at handling the subtlety for specific task. For embeddings of “上
č”(Shanghai) and “深圳”(Shenzhen) are very close, it is difficult for embedding-
based method to recognize R2- as negative response to P. 

In this paper, we study the shallow features and deep features for short text match-
ing and try to combine them to improve the performance. The remainder of this paper 
is organized as follows. Section 2 reviews the relevant works for our task. Section 3 
describes our model for this task. Experimental design, comparison and analysis are 
presented in Section 4. Finally, we make conclusions in the Section 5. 

2 Related Works 

Previous works often use rule-based or learning-based models for modeling a com-
plete dialogue [4, 5, 13]. These methods require well-designed rules or particular 
learning algorithms but relatively less training data. Recent years, by leveraging the 
massive short text data collected by social media and information retrieval techniques, 
researchers attack this problem from a new angle [2, 10]. Wang, et al. [3] released a 
short text dataset collected from Sina Weibo and proposed a retrieval-based response 
model for short-text conversation. This model considers semantic matching between 
posts and responses, then retrieves and returns the most appropriate response for a 
given post. Most of the features used in this model are latent semantic features, which 
can’t capture the deep semantic relevance between posts and responses. In this paper 
we start from this dataset and combine shallow features and deep features to improve 
the performance of the short-text conversation. 

Deep learning is another approach to solve this task. Such works in that thread in-
clude deep architecture for matching short texts (DeepMatch) proposed by Lu and Li 
[16] and deep structured semantic models for information retrieval proposed by 
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Huang et al. [8]. Lu and Li [16] use a deep architecture to combine the localness and 
hierarchy intrinsic to natural language problem by using a massive dataset. However, 
this architecture almost use the traditional features instead of deep features of short 
text (i.e., word embedding). Most of these works, which claimed to have used deep 
architecture, are embedding-based models. Word embedding, also called distributed 
representation of words [1, 6, 9, 15], shows strong power for measuring syntactic and 
semantic word similarities and has achieved success in many NLP tasks such as sen-
timent analysis [12] and statistical machine translation [7]. Our work is also related 
with Socher et al. [11], which use the unfolding recursive auto-encoder and parsing 
tree to construct the interaction matrix of two sentences. This strategy combining with 
dynamic pooling achieves state-of-the-art performance on paraphrase identification 
task. 

3 Matching Short Texts Using Both Shallow and Deep Features 

The previous work [3] learned a ranking model with 15 shallow matching features, 
which are learned from matching models or generated directly from post and re-
sponse. In our method, we build three new matching models and learn both shallow 
features and deep features between posts and responses. Then we build a ranking 
model to evaluate the candidate responses with both shallow features and deep  
features. 

For shallow matching features, we first introduce a variant of vector space model 
to measure post-response similarity by a word-by-word matching. Then we use  
LSI (Latent semantic indexing) model to capture the latent semantic matching fea-
tures, which may not be well captured by a word-by-word matching. For deep match-
ing features, we construct a matching models based on neural networks and word 
embedding. 

3.1 Shallow Matching Features 

Post-Response Similarity: To measuring the similarity between a post and a re-
sponse by a word-by-word matching, we use a simple vector space model. For exam-
ple, given a post and a response, the sparse representations of them in vector space 
model are x and y, then the Post-Response Similarity can be measured by the cosine 
similarity. Simሺݔ, ሻݕ ൌ CosineSimሺݔ, ሻݕ ൌ  ԡݕԡԡݔԡݕ்ݔ

Unlike the traditional vector space model such as Bag-of-words model, in our 
model the values in the vector are the TF-IDF weights of words. Vector space model 
based on TF-IDF weights is valuable words bias and shows better performance than 
traditional Bag-of-words model in the experiment. 
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Post-Response Latent Semantic Similarity: LSI model has been used in many NLP 
task for measuring latent semantic matching. It learns a mapping from the original 
sparse representation to a low-dimensional and dense representation for text. For ex-
ample, we represent post as vector x and response as vector y. Using LSI model, we 
map x and y to low-dimensional vector representations xlsi and ylsi. Similarly, the se-
mantic similarity between the post and the response can be measured by the cosine 
similarity of xlsi and ylsi. 

 SemSimோሺݔ௦ , ௦ሻݕ ൌ CosineSimሺݔ௦ ,  ௦ሻݕ

Post-Post Latent Semantic Similarity: Inspired by previous work [3], we also con-
sider the semantic similarity between a post and a post. The intuition is that a  
response y is suitable for a post x if its original post x’ is similar to x. So we use se-
mantic similarity between x and the original post x’ to measure this kind of indirect 
correlation between a post and a response. Here we also use the LSI model to measure 
the post-post semantic similarity. 

 Corሺݔ, ሻݕ ൌ SemSimሺݔ௦, Ԣ௦ሻݔ ൌ CosineSimሺݔ௦ ,  Ԣ௦ሻݔ

3.2 Deep Matching Feature 

As is stated above, we can acquire shallow matching features between a post and a 
response. To learn the deep matching features between posts and responses, we pro-
pose a matching model based on neural networks and word embedding. 

With the learned word embeddings, we first map every word of posts and res-
ponses to a unique vector. As shown below, given a post x or a response y, we first 
convert them into a set of vectors. ݔ ൌ ሺݓଵ ݓଶ ݓଷ ݓ …   … ሻ ՜ ܺ ൌ ሺݒଵ ݒଶ ݒଷ ݒ …   … ሻ ݕ ൌ ሺݓଵ ݓଶ ݓଷ ݓ …   … ሻ ՜ ܻ ൌ ൫ݒଵ ݒଶ ݒଷ ݒ …   … ൯ 

Here wi is the i-th word in x and vi is the corresponding word embedding. By mea-
suring cosine similarity for each vector pair in X and Y, we can get a correlation ma-
trix Mcor. ܯ ൌ ቀCosineSim൫ݒ, ݒ ൯ቁݒ ∈ ܺ, ݒ ∈ ܻ 

The size of this correlation matrix is variable for variable-length posts and res-
ponses. In order to use neural networks and prevent the dimension of the feature space 
becoming too large, we need to convert variable-length posts and responses to fixed-
length. We sort all the words in post x and response y by their TF-IDF weights in 
descending order, then we choose the top m words in x and top n words in y. Finally, 
we can get a correlation matrix with size m*n. ݀݁ݐݎݏሺݔሻ ௧  ௪ௗ௦ሳልልልልልልልልሰ ᇱݔ ൌ ሺݓଵ ݓଶ ݓଷ ሻݓ …  ՜ ܺԢ ൌ ሺݒଵ ݒଶ ݒଷ  ሻݒ … 
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ሻݕሺ݀݁ݐݎݏ ௧  ௪ௗ௦ሳልልልልልልልሰ ᇱݕ ൌ ሺݓଵ ݓଶ ݓଷ ሻݓ …  ՜ ܻԢ ൌ ሺݒଵ ݒଶ ݒଷ Ԣܯ ሻݒ …  ൌ ቀCosineSim൫ݒ, ݒ ൯ቁݒ ∈ ܺԢ, ݒ ∈ ܻԢ 
Here X’, Y’ and Mcor’ have fixed size. For the post with a length less than m or the 

response with a length less than n, we set zero for the corresponding value in the cor-
relation matrix. At the last step of the model, we flatten Mcor’ to a feature vector with 
the same size m*n. Then we build neural networks with single hidden layer, which 
uses values of the feature vector as input features and outputs a matching score. The 
whole model is shown in Figure 1. 

 

Fig. 1. Matching model based on neural networks and word embedding 

Training: For training this model, we use the ranking-based strategy. Given a post x, 
the model should output a higher score for positive response y+ than negative re-
sponse y-. So our instance for training is (x, y+, y-). We use the unlabeled data to train 
our embedding matching model. For a post x, every original response of x is used as 
positive response y+, and choose a response randomly from the response dataset as 
negative response y- for each y+. Hence, we get the following ranking-based loss as 
objective: 

,ݔఏሺܧ  ,ାݕ ሻିݕ ൌ ,൫0ݔܽ݉ ߙ  ,ݔሺݏ ሻିݕ െ ,ݔሺݏ  ାሻ൯ݕ

Where ݏሺݔ, -is the margin between posi ߙ ,ሻ is the output matching score for (x, y)ݕ
tive response and negative response,  ߠ is the parameters for the embedding match 
model. The optimization is relatively straightforward with the back-propagation. 

3.3 Other Matching Features 

In addition to the matching features generated from the matching models above, we 
also use some handcraft features for this task, which can describe the relevance be-
tween post and response for some special cases. 
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,ݔሺݕݐ݅ݐ݊ܧ_݊݉݉ܥ •  ሻ: This feature measures whether post x and response y haveݕ
same entity words such as first and last names, geographic locations, addresses, 
companies and organization name. The intuition here is that a post and a response 
in the nature conversation usually contain some common key words. 

,ݔሺݎܾ݁݉ݑܰ_݊݉݉ܥ •  ሻ: This feature measures whether post x and response yݕ
have same number such as date and money. 

,ݔሺݐ݄݃݊݁ܮ_ݏ݀ݎܹ_݊݉݉ܥ •  ሻ: This feature indicates the length of the longestݕ
common string between a post and a response. In social media such as Micro-blog, 
a response can be forwarded as a new post. We may find a response which is very 
similar to the given post, but it’s not a suitable response. With this feature, we can 
filter this kind of responses. 

,ݔሺ݅ݐܴܽ_݄ݐ݃݊݁ܮ •  ሻ: This feature indicates the ratio of the length of post x to theݕ
length of response y. 

3.4 Ranking and Combination of Features 

At the last step of our method, a ranking model with all the matching features above is 
learned to further evaluate the candidate responses. As shown in Figure 2, given a 
post, the ranking model gives a matching score for each candidate response. Then we 
pick the response with the highest matching score from the candidate set as suitable 
response for the post. 

 

Fig. 2. Ranking model for short texts matching 

The ranking function of the ranking model is defined as following, which is a linear 
score function and trained with RankSVM [14]. 

,ݔሺ݁ݎܿܵ  ሻݕ ൌ ∑ ,ݔሺߔݓ ሻୀଵݕ  

Here ߔሺݔ, ݓ ሻ stands for the acquired matching features andݕ  is the weight of ߔሺݔ,  .ሻ to be learnedݕ
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4 Experiment 

4.1 Dataset 

In our experiments, we made use of the dataset of short-text conversation based on the 
real-world instances from Sina Weibo, which is published by Wang, et al. [3], as 
shown in Table 1. 

Table 1. Dataset of short-text conversation based on the real-world instances from Sina Weibo 

Dataset Size 

Unlabeled post-response pairs 38,016 posts, 618,104 responses 

Labeled post-response pairs  422 posts, 12,402 responses 

Vocabulary 125,817 

This dataset includes two parts: unlabeled post-response pairs and labeled post-
response pairs. The unlabeled post-response pairs are training set, which contains 
38,016 posts and 618,104 responses. The labeled post-response pairs are test dataset, 
which contains 422 posts and 12,402 responses, and there are about 30 candidate 
responses for each post. The vocabulary of this dataset contains 125,817 words. 

For each post-response pair, a post and a response are represented as post_id and 
response_id. In the labeled post-response pairs, each pair is labeled as a matched pair 
(marked as 2) or a mismatched pair (marked as 1) by human. An example of unla-
beled post-response pair is shown below: 

Post-response pair: 10:81,213 

─ Post: 10##2012 年 − 了 ，祝 好运 、健康 、佳肴 伴ê 度过 ~N 快M 

新年 。 

─ Post: 10##2012 is coming. Good luck, good health, hood cheer. I wish you a 
happy New Year. 

─ Response 1: 81##林 老师 ， 新年 快M 。 
─ Response 1: 81##Teacher Lin, happy new year! 

─ Response 2: 213##祝 教授 ， 工å顺利，身!健康！ 

─ Response 2: 213##Happy new year, good health, professor. 

In order to train word embedding, we also build a Weibo dataset of 33,405,212 
posts. We filter out the posts with length less than 5 and the meaningless posts in the 
dataset. Jieba1, a famous open source software, is used for word segmentation.  
After preprocessing and word segmentation, we use the method introduced by  
Mikolov et al. [6] for learning word embedding. In our experiments, we use a  

                                                           
1 https://github.com/fxsjy/jieba 
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particular implementation of this model2 and the length of word embedding is set to 
100. After training, we learned a set of word embeddings with a vocabulary of size 
810,214. 

4.2 Experiments and Benchmark 

To training matching models in Section 3, we use unlabeled post-response pairs intro-
duced in the dataset. For vector space model based on TF-IDF, the TF-IDF values for 
words can be generated directly from corpus. For training LSI model, we concatenate 
each post and its responses to get informative documents. For matching model based 
on word embedding, we need to sort all the words in a post and a response by their 
TF-IDF weights in descending order, and choose the top m words in the post and top 
n words in the response for generating matching features. By using comparison expe-
riments, we can get best effect with 15 for m and 10 for n. 

After training matching models and generating matching features, we train the 
ranking model defined in Equation 1 with the implementation of RankSVM3. Specifi-
cally we perform a 5-fold cross-validation on the labeled post-response pairs. 

Our model will return the response with the highest matching score. So the evalua-
tion of our models is based on the P@1. This measures the precision of the response 
returned by model. P@1 ൌ ሻݏݐݏሺݐ݊ݑܥሻ݄݀݁ܿݐܽ݉ ݏ݅ ݁ݏ݊ݏ݁ݎ 1 ݐሺݐ݊ݑܥ  

4.3 Performance 

The results of experiments are shown in Table 2. Our competitor methods include 
retrieval-based model [3] and DeepMatch [16] model. For the DeepMatch model, we 
re-implement it and train it on the unlabeled training dataset. VSM stands for the 
matching features generated by vector space model based on TF-IDF. LSI stands for 
the matching features generated by LSI model. The deep feature is generated by em-
bedding match model. 

Table 2. Comparison of different features 

Model and Features P@1 

Retrieval-based Response Model [3] 0.574 
DeepMatch [16] 0.424
Shallow Features (VSM, LSI) 0.577 
Shallow Features + Deep Features 
(VSM, LSI, Embedding Match) 

0.612 

All Features 0.637 

                                                           
2 http://radimrehurek.com/2014/02/word2vec-tutorial/ 
3 http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html 
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From the results, we can see that just using the word features generated by VSM 
model and latent semantic model, the result is as well as retrieval-based model. When 
combined with deep features, the performance significantly outperforms retrieval-
based model and those just using shallow features. This demonstrates that although 
the shallow features are effective for short text semantic matching, it can’t capture the 
deep semantic relevance information between two text object’. After adding other 
handcraft features the performance can be improved further, it implies that deep fea-

tures cannot cover some relevance for some special cases, for example the “上  天

气”(The weather in Shanghai) and“ 圳 天气”(The weather in Shenzhen) case. The 

main reason for the bad performance of DeepMatch may be that the training dataset is 
not big enough for this deep architecture. 

5 Conclusion 

In this paper, we design an embedding match model to generate deep features for 
short text matching and study the effect of shallow features and deep features on the 
performance. Experiments show that the deep features cover rich semantic relevance 
information between post and response, which the shallow features cannot capture. 
Nonetheless, experiment also shows that shallow features are necessary for some 
special cases of semantic matching. Combining the shallow features and deep feature 
generated by embedding match model, we get the state-of-the-art performance on the 
dataset released by Wang et al. [3].  

Although the deep feature has proved significantly effective in this paper, there is 
still much matching information, which it cannot capture. For future work, we will try 
to use deep architecture and massive data to extract rich deep features of short text 
matching. 
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