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Abstract. Hierarchical phrase-based model has two main problems.
Firstly, without any semantic guidance, large numbers of redundant rules
are extracted. Secondly, it cannot efficiently capture long reordering. This
paper proposes a novel approach to exploiting case frame in hierarchical
phrase-based model in both rule extraction and decoding. Case frame is
developed by case grammar theory, and it captures sentence structure
and assigns components with different case information. Our case frame
constraints system holds the properties of long distance reordering and
phrase in case chunk-based dependency tree. At the same time, the num-
ber of HPB rules decrease with the case frame constraints. The results
of experiments carried out on Japanese-Chinese test sets shows that our
approach yields improvements over the HPB model (+1.48 BLEU on
average).

1 Introduction

The hierarchical phrase-based (HPB) model (Chiang, 2007) is widely used in
statistical machine translation. Extended from phrase-based (PB) rules (Koehn
et al., 2003), HPB rules are capable of capturing phrase-level reordering by ex-
ploiting the underlying hierarchical structures in natural language. HPB model
is formally synchronous context-free grammar but this is learned from a bitext
without any syntactic information, so that HPB suffers from limited phrase re-
ordering in the case of combining translated phrases with monotonic glue rules.
As a result, it performs not so well in long distance reordering. Furthermore,
without phrase boundary determination, the number of HPB rules increases
explosively with the increase in training data. To address the HPB model limi-
tation, a number of work is motivated in two aspects.

In the process of HPB decoding, many recent work are motivated to preserve
linguistic information in HPB model derivation. Syntactic features are derived
from the source dependency parsing to directly guide derivation in HPB model
(Marton and Resnik, 2008; Huang et al., 2010; Gao et al., 2011; Marton et al.,
2012). However, these systems perform not so well in agglutinative language
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translation due to the agglutinative properties of complex and varied morphol-
ogy. The agglutinative languages are usually provided with relatively accurate
chunk-based dependency analysis. The structure impedes the utilization of word-
based dependency to string translation model (Flannery, et al. 2011).

In terms of extraction and presentation of HPB rules, many significant works
focus on assigning HPB rules with extra constraints to explore search space (Li
et al., 2012; He et al., 2010), and the suited HPB rules can be selected from
the rule selection model (Liu et al., 2008; He et al., 2008). However, the total
number of HPB rules remains the same, and a large number of redundant rules
are extracted.

To solve the above two problems, we exploit case frame constraints (CFCs)
in this paper. The description of case frame will be introduced in section 3.
At the same time, this paper presents case chunk-based dependency, and the
purposes of our works include alleviating reordering problem and restricting
HPB rule extraction in case frame, and finally case frame HPB rules (CF-HPBs)
are extracted. In terms of the reorder- ing process, case frame reordering rules
(CF-Rs) are automatically extracted from the source side parsing and aligning
parallel corpus, and this aims to alleviate the reordering problems under the
condition of preserving all the components in the sentence.

This paper proposes a novel approach to use case frame constraints in
Japanese-Chinese statistical machine translation as an example and achieve bet-
ter performance than HPB model and word-based dependency model as shown
in our experimental results.

According to our knowledge, case frame is rarely used in statistical machine
translation. Our work is the first to try case frame in statistic ma- chine trans-
lation. The main contributions of our works are using case frame constraints in
HPB rule extraction and decoding.

The remainder of this paper is organized as follows. Section 2 introduces
some related work and mainly contributes to this paper. We present case frame
constraints HPB rules (CF-HPBs) extraction in section 3, then we define the case
chunk-based dependency tree and describe case frame reordering rules in section
4. Section 5 presents our model. Section 6 reports our experiments. Section 7
presents the analysis on the experimental. Section 8 concludes this paper with
prospects for future work.

2 Related Work

In recent years, word-based dependency structure is widely used to incorpo-
rate linguistic information into machine translation (Lin, 2004; Quirk et al.,
2005; Ding and Palmer, 2005; Xiong et al., 2007). The reordering problem can
be alleviated, especially in long distance reordering problem (Xie et al., 2011).
Dependency-to-string model employs rules whose source-side is a word-based
dependency structure with POS and target as string. Reordering problem can
be alleviated by simple nodes exchange.

Many novel approaches are presented for restricting HPB rules extraction
(He et al., 2010; Xiong et al., 2010). These methods employ supervised learning
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technology, and suitable features are selected to train a boundary classifier as soft
constraint for decoding. However, a total number of HPB rules is not decreased
and a large-scale corpus is needed for training classifier.

Our proposed approach focuses on case frame constraints (CFCs) to improve
the quality of extracted rule and decoding. Moreover, this paper defines a new
structure dependency tree, which is more suitable for agglutinative language
than word-based dependency tree. The derivation based on new structure tree
holds two merits. Firstly, the number of HPB rules is decreased. Secondly, the
decoding efficiency and translation quality are improved.

Fig. 1. An example of phrase boundary determination for CF-HPBs extraction

where (a1) is sentence pair with word alignments; (b1) is an example of HPB rules
without case frame constraints; (c) is source side sentence with case boundary generated
by KNP tools; (a2) is a sentence pair with word alignment and case boundary (marked
in bold); (b2) is a set of CF-HPBs examples.

Fig. 2. Examples of unreasonable derivation (a) and reasonable derivation (b)

3 Case Frame Constraints

3.1 Case Frame

Case grammar created by Fillmore (1968) and developed by Cook (1989) in
English case grammar, is used to linguistically analyze the surface syntactic
structure of sentences by investigating the combination of cases. Case frame
is analyze by case grammar. Case grammar has been developed in different
languages. In Japanese, a case frame corpus is extended and built from web
resources (Kawahara and Kurohashi, 2006). Under the case frame corpus, the
system of Japanese syntactic and case structure analysis turns to be a state-of-
the-art (Buchholz and Marsi, 2006).
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3.2 CFCs on HPB Rules

HPB rules replaces common phrase with non-terminal variables, which confuses
primary with secondary linguistic. A large number of long HPB rules are slightly
linguistic, especially in the case of the Japanese language.

Let S = (sw0, sw1, ..., swl)be a source word sequence and T = (tw0, tw1, ...,
twm) be a target sequence, where swi and twj are source word and target word
respectively. With word alignment, HPB rules can be extracted as:

(sw0 X(1)→(0) sw2, X(1)→(0) tw1),
(sw0 X(1...2)→(0...1) sw3 sw4, X(1...2)→(0...1) tw2 tw3),
(sw0 X(1...3)→(0...2) sw4, X(1...3)→(0..2) tw3),

where X is non-terminal variable and its indices denotes the word alignment.
The non-terminal variables in HPB rules can be generated by replacing common
phrase without distinguishing what the component means. To make derivation
more reasonable, we use syntax to assign components with specific semantic
information that makes sense.

According to case frame theory, a sentence is divided into many components.
CFCs are used in determining component boundaries during HPB rule extrac-
tion, at the same time, each component can be labeled with specific case infor-
mation. Each case boundary is regarded as the phrase boundary in the process
of HPB rule extraction. Suppose a case frame in source language given like
CF = {(sw0)subject, (sw1 sw2)verb−head (sw3 sw4)object...}where the phrase sw0

is marked as subjective case, phrase sw1...2 as head, and sw3...4 as objective case.
The traditional HPB rule with the non-terminal variableX(1...3)→(0...2) is filtered
due to the fact that X(1...3) is over verb-head case boundary (phrase boundary).
As a result, phrases without over the case boundary (phrase boundary) can be
generalized as non-terminal variable. It means that many rules without suitable
to case frame are filtered, and finally CF-HPBs will be achieved semantically.
An example is shown in Figure 1, where “tongxue men” means students, and
“gan kuai dao” means “catch up fast”. “men gan kuai” is unreasonably general-
ized for a non-terminal variable in Figure 1(b1). Also, in case frame constraints,
“men gan kuai” is aligned to source side sequence “tachi ha isoide” over the
case boundary that is forbidden in CF-HPBs, and then it will be filtered. In
this way, each component in CF-HPBs can be assigned with a semantic label,
namely case.

The extra properties of CF-HPBs are maintained bellow:

Property 1. An acceptable non-terminal variable is only generalized by the
phrase without over the component boundary (case boundary).

Property 2. An acceptable non-terminal variable can be generalized by any
common phrase inside one component.

Due to these properties, a reasonable derivation can be obtained as shown in
Figure 2, which is part of derivation in the case of Figure 1.
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Fig. 3. Example of chunk-based dependency structure and word-based dependency
structure

where (a) is the original source side sentence; (b) is a chunk-based dependency struc-
ture given by KNP; (c) is a word-based dependency structure with a simple change
from chunk-based structure and (d) is a case chunk-based dependency structure, where
“The American president” is subjective denoted by specific case tag, “the congress” is
objective and “state of the union message” is direction

4 Case Frame Reordering

4.1 Case Chunk-Based Dependency

Before extraction of case frame reordering information, a specific structure,
namely case chunk-based dependency structure, is firstly defined.

In case frame, a sentence can be divided into many components with different
cases, where each component is a word or a phrase, which is defined as a chunk
in this paper. Case chunk-based dependency tree can be defined as a tuple CT =
(Σ,Λ,C,D), where Σ is a set of words, Λ is a set of chunks corresponding to
case boundary, C is a set of possible case tag for chunks, and D is dependency
relation2 between chunks. It is distinguishable for case chunk-based dependency
tree with word-based dependency tree shown in Figure 3. In case chunk-based
dependency tree, each node consists of chunk and related case tag.

Due to parallel sentence pairs given for statistical machine translation, in
our model, source side sentence is represented by case chunk-based dependency
structure and target side sentence is represented by word sequence. With word
alignments, our initial model is defined by a tuple (CT,Δ,A) where CT is source
side case chunk-based dependency tree, Δ is a set of target side words and A
is word-to-word alignment. An example is shown in Figure 4(a). Since source
side item (node) is chunk-level and target side item is word-level, the change is
carried out from word-to-word alignment A to chunk-to-word alignment A′.
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A′ = {(c, tw)|∃sw ∈ c, (sw, tw) ∈ A, c ∈ Λ, tw ∈ Δ}

So our final model is defined by M = (CT,Δ,A′). Based on the model, case
frame reordering rules can be extracted.

4.2 Case Frame Reordering Rule

Case frame reordering rules (CF-Rs) are represented by a tuple (t, s,∼) where:

– t is a dependent relation of the source dependency structure, with each node
labeled with a variable from a set X = {x1, x2, ...} constrained by a case
from C. Specially, head node can be also labeled by a chunk constrained by
a case from C.

– s ∈ X are the target side chunk slots corresponding to source side non-
terminal variables.

– ∼ is a one-to-one mapping from slot in s to variables in t

One example is shown in Figure 4(c).
According to our rule definition, CF-Rs have two properties bellow:
Property 3. Each node, except head node in source side of rules, is unlexical-

ized, and each item in target side is slot with variable corre- sponding to source
side variable.

Property 4. Head node in source side can be lexicalized or unlexicalized. And
thus CF-Rs can be classified into CF-LRs (lexicalized) and CF-URs (unlexical-
ized).

Prior work on rule extraction, reordering and lexical translation are both con-
sidered at the same time. Also, alignment error propagation impacts reordering
rule and lexical translation. Instead, during the extraction process of CF-Rs, we
only consider the variables reordering on the target side. In the following section,
we will present how to extract rules using our model.

4.3 CF-Rs Acquisition

Now, it focuses on reordering rule extraction. Before extraction, anchor is de-
fined to assist reordering formation extraction among each item on the target
side. Anchor can be represented as a function Ach(sp), where sp ∈ SP denotes
possible span on the target side. Here, span is a set of word index on the target
side corresponding to certain node on the source side tree (same index may occur
twice or more), where spans of all child nodes are at chunk-level and spans of
head nodes are at word-level. So the amount of spans is larger than the number
of nodes on the source side tree. In Figure 4(b), the head node has two spans
and each child node has only one span. The value of Ach(sp) is a real number
which is computed using following formula

Ach(spi) = sum(Sign(spi, SPi))

Where spi denotes the ith span in SP , SPi denotes set of spans except spi,
Sign(spi, SPi) returns a |SPi| size vector (Vi) where each item is 1 or 0 and
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Fig. 4. An example of CF-Rs extraction

where (a) is a case chunk-based dependency-to-string with word alignment, where the
red dotted line is noise alignment; (b) is with chunk alignment, where each node has
three extra items in extraction, first is spans, second is signal vector, and third is
anchor ; (c) is an extracted rule.

Fig. 5. Span, segment and three spans relation

where (a1) is a span. (a2) is a segment from the span. (b) is a separation span relation,
(c) is an interaction span relation and (d) is an inclusion span relation, where each of
them is a segment.

sum is a function to sum up all item in that vector. Vi = (v0, v1, ..., vj , ..., v|SPi|)
where according to chunk-word alignment, vj is 1 if and only if the jth span is
relatively left to the ith span, otherwise it is 0. To formulate the span relation,
function F (i, j) is defined to capture relation between ith spans and jth span.
F (i, j) follows three strategies, which respectively deal with three situations.

– Separation segment i is separated from segment j, where segment i is
generated by minimum index and maximum index in spi, and segment j
is similar. Under this condition as shown in Figure 5(b), F (i, j) is 1 if and
only if largest index in spi is smaller than or equal to smallest index in spj ,
otherwise it is 0.

– Intersection segment i and segment j are interacted. Under this condition
as shown in Figure 5(c), F (i, j) is 1 if and only if sum of all index in spi is
smaller than in spj , otherwise 0.

– Inclusion segment i cover segment j, or segment j covers segment i. Under
this condition as shown in Figure 5(d), F (i, j) is 0, which means the default
value remains the same.
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Generally speaking, each node on the source side will place its own non-
terminal variable on the target side with left-right order according to its anchor
(may also be called a rank). Briefly speaking, Anchor ensures the order of target
side items corresponds to the source side items. In this way, CF-Rs are extracted
as shown in Figure 4(c).

CF-Rs are similar with dependency-string rules as mentioned in (Xie, et al.
2011). However, CF-Rs are guided by a case frame, and their semantic labels
considers case frame structure in the whole sentence, conversely, POS only con-
sider one word and components are neglected in the whole sentence. Moreover,
some alignment errors will be alleviated in obvious anchor function. Under case
constraints, fuzzy reordering information extraction is useful in agglutinative
language due to its complex morphemes.

Following the case grammar, each component in a sentence will have a com-
plete semantic representation. CF-Rs only achieve reordering information among
components. Translation inside components is done using CF-HPBs as described
in previous section.

Generally, in case frame, outside reordering of each component in sentence is
done using case frame. And then, inside translation each component it is done
using phrase-based rules, which is superior in HPB model in terms of short-
distance reordering and lexical translation.

Fig. 6. An example of derivation

where in each step, the bolded box represents current translation focus.

5 Translation

5.1 Derivation

In this paper, CF-HPBs and CF-Rs are defined, and are integrated in derivation,
where both CF-HPBs and CF-Rs are named case frame rules. This subsection
describes one possible derivation in details as shown in Figure 6.

Under the case frame, a sentence is decomposed into a number of compo-
nents, each of which has completed semantic content. Furthermore, a sentence
is expressed in a form of a case chunk-based dependency tree. For one deriva-
tion, CF-HPBs are used in inside components derivation, and CF-Rs are used
in outside components derivation, i.e. components reordering.
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5.2 Log-Linear Model

Following (Och and Ney, 2002), we adopt a general log-linear model. Let d be
a derivation that translate source chunk-based dependency tree T into a target
string e. The probability of d is defined as:

P (d) ∝ Πiφi(d)
λi

Where φi are features defined on derivations and λi are feature weights. Due to
the fact that our translation rules have two sets, namely CF-HPBs and CF-Rs,
during derivation, two kinds of rules are integrated. In our experiments of this
paper, we used nine features which are similar with (Xie et al., 2011) as follow:

– CR-HPBs translation probabilities PHPB(t|s) and PHPB(s|t);
– CR-HPBs lexical translation probabilities P (HPBlext|s) and PHPBlex(s|t);
– CF-Rs translation probabilities PR(t|s) and PR(s|t);
– CF-Rs lexical translation probabilities PRlex(t|s) and PRlex(s|t);
– Rule penalty exp(−1);
– Language model Plm(e);
– Word penalty exp(|e|).

During feature tuning process, different features are added into log-linear model
and each weight of features can be discriminatively trained by MERT (Och,
2003), which is similar to (Li et al., 2012; Xie et al., 2011). Features include
translation probabilities, lexical translation probabilities, language model, rule
penalty, and word penalty.

5.3 Decoding

Our decoder is based on bottom up chart parsing. It determines the best deriva-
tion d∗ that translates the input case chunk-based dependency structure into a
target string among all possible derivations D: d∗ = argmaxd∈DP (D)

Given a source case chunk-based dependency structure T . For each accessed
internal node n, it gets a case frame corresponding to the node n, and checks
if the CF-Rs are set for the matched reordering rules, and then checks if the
CF-HPBs rule is set for matched translation rules. If there is no matched rule,
we construct a pseudo translation rule according to the case frame, which has
no reordering information like glue rules. Due to a large search space, a large
number of translation is generated by substituting the variables in the target
side of a translation rule with the translations of the corresponding slots in the
source case frame. Similar to (Xie, et al. 2011), we make use of cube pruning
(Chiang, 2007; Huang and Chiang, 2007) to find candidates with integrated
language model for each node.

6 Experiments

We evaluate the case frame constraints in the replications of hierarchical phrase-
based model in Japanese-Chinese translation. In these experiments, a replication
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of hierarchical phrase-based model is taken as a baseline model with beam size
is 200 and the beam threshold of 0. The maximum initial phrase length is 10.
In order to compare chunk-based dependency and word-based dependency, we
also take dependency to string (dep2str) system by simply changing from chunk
dependency to word dependency in word-POS process as shown in Figure 3. Un-
der the same condition, this paper utilizes our model to constrain rule extraction
and decoding.

6.1 Data

Due to that Japanese-Chinese parallel corpus is rare, our corpus consists of 280k
sentence pairs for training which come from CWMT 2011 (Zhao et al., 2011)
Japanese-Chinese evaluation task data in news domain. 500 sentence pairs are
for parameters optimization. For testing, we use 900 sentence pairs provided by
the task. In addition, we mix all the sentence pairs (including training, developing
and testing data), and randomly select 500 sentence pairs for developing, 900
sentence pairs for testing and the rest of the sentences for training.

The source side sentences are parsed by KNP (Kurohashi and Nagao, 1994)
into chunk dependency structures whose nodes are at chunk-level. Also we achieve
corresponding case frame analysis from byproduct of KNP. The word alignment
is obtained by running GIZA++ (Och and Ney, 2003) on the corpus in both
direction and applying “grow-diag-and” refinement (Koehn et al., 2003). We ap-
ply SRI Language Modeling Toolkit (Stolcke, 2002) to train a 5-gram language
model for target side sentences.

6.2 Baseline Model

In order to evaluate our system performance, we take a replication of Hiero (Chi-
ang, 2007) as the hierarchical phrase-based model baseline (hiero-re for short),
where we set the beam size b = 200 and the beam threshold β = 0. The maxi-
mum initial phrase length is 10.

Also, we use dep2str as the dependency-to-string model baseline, which con-
sider word based dependency as provided by (Xie et al., 2011), where the same
parameters are used for the experiment.

6.3 Result

Table 1 illustrates the translation experimental results. It shows that our system
has achieved the best results on test sets, with +2.83 BLEU points on average
higher than that of dep2str, and +1.23 BLEU points on average higher than that
of hiero-re. It demonstrates that case frame constraints are useful to improving
translation quality for HPB model. Compared with dep2str, chunk-based de-
pendency tree performs better than word-based dependency does. In terms of
the rule amount, the number of CF-Rs and CF- HPBs is decreased by more
than half in the corpus of 280k sentence pairs. We believe case frame constraints
superiority can be more obvious in larger corpus.
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Table 1. The BLEU-4 score (%) on test sets of different system

System Rule# CWMT Mix Avg

hiero-re 24.0M 22.26 18.46 20.33
dep2str 2.8M 19.34 18.12 18.73
ours 1.4M+10.0M 22.62* 20.50* 21.56*

where the “+” denotes the 1.4 million CF-Rs and 10 million CF-HPBs on case frame
constraints. The “*” denotes that the results show significant improvements over all of
the other systems (p¡0.01)

7 Analysis

In HPB model, glue rule is frequently used for combining long sub-sentence
without considering possible reordering. The agglutinative language, Japanese
for example, has complex and varied morphology. Although the utilization of
POS is general for the dependency rule variables in dep2str, it has local lexi-
calization, and some translation words are omitted. CF-HPBs maintain phrase
translation with semantic label and CF-Rs alleviate long distance reordering
problem. To further our analysis, we compare some actual translations gener-
ated by hiero-re, dep2str and our system. Figure 7 give one translation of our
test set, which is helpful to elucidate these problems in terms of reordering and
lexical translation.

7.1 Better Reordering

Main structure in Japanese structure is SOV-style, which is different from Chi-
nese SVO-style. Reordering problem is significant in Japanese-Chinese transla-
tion, especially with long phrase for S and/or V. Compared with hierarchical
phrase-based rules, CF rules have better phrase reordering. In the first example
as shown in Figure 7, the source sentence main centered verb chunk is “tuujite
(rely on)”, and however, the objective is a long phrase (15 words) depending on
the left of that verb chunk, which is a typical SOV-style. Hiero-re mistakenly
treats that long phrase as subjective, thus results in translation with different
meaning from source sentence. Conversely, our system captures this component
relations in case frame and translates it into “tuujite (rely on)...”. Although
adverb “sarani (further)” is translated with incorrect ordering, the lexical trans-
lation is correct, and it makes sense that it cannot influence the understanding
of source sentence.

7.2 Better Lexical Translation

Although word-based dependency tree-to-string model can also capture distance
reordering problem (Xie, et al., 2011), depending strictly on word alignment in
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Fig. 7. Actual translations produced by the baselines and our system

For our system, we also display the long distance case chunk-based dependencies cor-
respondence in Japanese and Chinese. In source side dotted box is a case frame.

dep2str, this does not lead to good performance on phrase translation as in-
dicated in Figure 7. The adverb “sarani (further)” and “no (of)” has no corre-
sponding translation or incorrect translation in dep2str because they are aligned
into a common or NULL. Moreover, complex morphology expressed by long suf-
fixes caused many words to be aligned to incorrect word. Complex alignment
brings about some rules that cannot be extracted. Conversely, chunk-based de-
pendency with fuzzy alignment can maintain the phrase-based rule (done with
CF-HPBs) extraction of inside components without reordering deficiency (done
with CF-Rs).

7.3 Summary

All these results prove the effectiveness of case frame constraints in both long
reordering and translation. We believe that case chunk-based dependency tree-
string model has an advantage of tending to assign semantic information on
variables in rules with case grammar, and not the POS of a word in dependency-
to-string model, and also it has an advantage of maintaining phrase structure
inside of components with semantic boundary.

The incapability of hiero-re in handling long distance reordering is not caused
by the limitation of rule representation but by the compromise in rule extraction
and decoding for balance be- tween the decoding speed and performance. The
hierarchical phrase-based model prohibits any nonterminal X from spanning a
substring longer than 10 on the source side that makes the decoding algorithm
asymptotically linear-time (Chiang, 2005).
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The dep2str has a good performance in long distance reordering. However,
local lexicalization is restricted by word alignment. Therefore, compatibility with
phrases is necessary (Meng, et al. 2013).

8 Conclusion and Future Work

This paper presents case frame constraints for rule extraction and decoding in
hierarchical phrase-based model. Compared with HPB rules, the amount of CF-
HPBs is decreased. The CF-Rs take the source side as case frame and the target
side as string. Our system has an advantage of both long distance reordering and
phrase constituency. Moreover, CF-Rs distinguish variables with cases. Accord-
ing to the case frame theory, we interestedly discovered that it can disambiguate
some translations. For example, NP with object case or subjective case has dif-
ferent translation.

Case frame constraints are linguistic constraints according to the case gram-
mar theory. It is available for many languages. Case frame can also be used in
many aspect of natural language processing, such as summarization, semantic
role labeling and bilingual alignment. Meanwhile, more deep semantic case in-
formation is expected to further improve the translation quality. Furthermore,
It is meaningful to transmit the case information from Japanese to more other
languages, and it can be useful to improve the translation quality between more
languages.
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