
Answer Extraction with Multiple Extraction

Engines for Web-Based Question Answering

Hong Sun1, Furu Wei2, and Ming Zhou2

1 School of Computer Science and Technology, Tianjin University, Tianjin, China
kaspersky@tju.edu.cn

2 Microsoft Research Asia, Beijing, China
{fuwei,mingzhou}@microsoft.com

Abstract. Answer Extraction of Web-based Question Answering aims
to extract answers from snippets retrieved by search engines. Search re-
sults contain lots of noisy and incomplete texts, thus the task becomes
more challenging comparing with traditional answer extraction upon off-
line corpus. In this paper we discuss the important role of employing mul-
tiple extraction engines for Web-based Question Answering. Aggregating
multiple engines could ease the negative effect from the noisy search re-
sults on single method. We adopt a Pruned Rank Aggregation method
which performs pruning while aggregating candidate lists provided by
multiple engines. It fully leverages redundancies within and across each
list for reducing noises in candidate list without hurting answer recall. In
addition, we rank the aggregated list with a Learning to Rank framework
with similarity, redundancy, quality and search features. Experiment re-
sults on TREC data show that our method is effective for reducing noises
in candidate list, and greatly helps to improve answer ranking results.
Our method outperforms state-of-the-art answer extraction method, and
is sufficient in dealing with the noisy search snippets for Web-based QA.

Keywords: Web-based Question Answering, Answer Extraction, Rank
Aggregation, Learning to Rank.

1 Introduction

Question Answering (QA) aims to give exact answer to questions described in
natural language. Some QA systems directly employ well-built search engines
for this task which are called Web-based QA systems [1]. This kind of systems
contain three modules: 1) question analysis module to analyze question and
generate queries; 2) passage retrieval module to retrieve relevant passages from
search engine; 3) answer extraction module to extract the final answer. Compar-
ing with traditional QA, Web-based QA can take advantage of the tremendous
data resource provided by Web and eliminate the efforts to store and index huge
amount of documents. Current search engines are becoming more and more so-
phisticated, so Web-based QA can also benefit from the optimized search results
provided by search engines.

C. Zong et al. (Eds.): NLPCC 2014, CCIS 496, pp. 321–332, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

322 H. Sun, F. Wei, and M. Zhou

We focus on Answer Extraction task for Web-based QA. The task is to gener-
ate exact answers with search snippets. It contains two steps: extract candidates
such as noun phrases and later rank them based on ranking function, e.g., similar-
ity between question and sentence bearing the candidate. Traditional web-based
answer extraction is conducted on search snippets [1] instead of plain texts in
the retrieved web pages, so that it can utilize the high-quality summarizations
generated by search engines without parsing or mapping sentences into the orig-
inal web pages. The side-effect is that answer extraction results are influenced
by the incomplete and noisy search snippets. On the one hand, using search
snippets containing many negative sentences results with large amount of noisy
candidates; on the other, state-of-the-art answer extraction methods rely on syn-
tactic information [2,3] could be seriously affected by the incomplete structure of
search text. Previous work about Web-based QA have discussed using n-grams
as candidates and rank them based on redundancies [10]. This method elimi-
nates the need of deep understanding of the noisy search snippets and leverages
substantial redundancy encoded in the large amount of search texts. However,
enumerating n-grams results with even more negative candidates in the hypoth-
esis space which poses too much address on ranking [4].

Single extraction method is easily affected by the noisy search snippets, in
order to ease the problem, we discuss an effective way by adopting multiple
extraction engines for Web-based QA. Different engines analyze texts from dif-
ferent aspects, the chance for them all being wrong is small, thus the consen-
sus information among them is useful for alleviating the impact from the noisy
texts. With multiple engines, we can perform more strict pruning to filter noisy
candidates and perform more accurate ranking. Specifically, we first aggregate
multiple extraction engines’ results with a Pruned Rank Aggregation method.
We employ a modified Supervised Kemeny Ranking model for rank aggregation
and at the same time perform pruning on each engine’s list based on redundan-
cies within and acrose different extraction engines. After generating the list, we
use Learning to Rank with similarity, redundancy, quality and search features
to rank the candidate list. Experiments on TREC dataset show that our prun-
ing and ranking algorithm is efficient for reducing noises in candidate list and
achieving better ranking results than state-of-the-art answer extraction method.
This result makes Web-based QA more accurate, robust and applicable in real
application scenarios.

2 Related Work

Our work focus on Answer Extraction of Web-based QA. Methods for this task
can be classified as two types.

The first type of methods consider information from question when gener-
ating candidates and use relatively simple ranking functions. For example, in
traditional QA, one most commonly adopted method is to extract Named En-
tities (NE) matching with answer type with Named Entity Recognition (NER)
tools [5]. For this method, errors in answer type classification will propagate to

Answer Extraction with Multiple Extraction Engines for Web-Based QA 323

the stage of answer extraction, and performance of answer extraction will be
limited by performance of NER. In Web-based QA, search snippets are different
from training texts of NER, this makes results of NER significantly degraded [4].
Pattern-based method is another commonly used method [6]. It has high preci-
sion, but those patterns are defined on predicates which are very fine-grained and
not easy to be adapted to new data. Recent work has studied to apply machine
learning in answer extraction. The first attempt is to view answer extraction as
a process to extract question-biased terms [7], each token in passage is classified
as is or is not an answer token. Within this direction, factor graph [4] is used
to consider the relations among different passages, and Tree Edit Distance is
considered in later work [2] for a more accurate similarity measurement between
question and passages.

The second type of method is to generate candidates based on text’s structure
or dictionaries. Noun Phrase (NP) is one commonly used unit [3], and ranking
score of an NP can be calculated based on syntactic structure of passage. In
the state-of-the-art method [3], each NP considered as a candidate is aligned to
Focus [8] on the parsing tree; thus for each alignment, a similarity score could
be calculated based on tree kernel. This method relies on syntactic structure
and is affected by the noisy search snippets. We’ll show in our experiments that
the performance of this method seriously degraded in the search contexts of
Web-based QA. Besides, some work use dictionaries to generate candidates, for
example, state-of-the-art QA system Watson [9] extracts Wikipedia titles from
passages, and employs Learning to Rank with hundreds of features in answer
ranking. This method requests lots of human effort for feature engineering has
low adaptability to new domains [3]. Besides, n-grams in texts are commonly
employed in Web-based QA [10]. Such method uses answer type to filter out
candidates and perform tiling on candidates with overlaps. Frequencies weighted
with prior score of query are viewed as the ranking score. Extracting n-grams
results with large amount of candidates containing more noises thus requires
more sophisticated ranking function and features [4].

3 Method

Our method for answer extraction contains two steps: 1) joint aggregation and
pruning of candidate lists generated by different extraction engines; 2) rank the
candidate list generated by previous step.

3.1 Pruned Rank Aggregation

The first step could be viewed as a rank aggregation task of candidate lists
generated by multiple extraction engines. As search snippets provide various of
texts from Web, they contain many noises. For example, in our statistics 19%
sentences in TREC corpus [2] contain correct answer, while such ratio is around
10% in search result. This indicates more negative snippets without containing
correct answer will bring many noisy candidates to answer extraction. Thus it’s

324 H. Sun, F. Wei, and M. Zhou

necessary to perform strict pruning during or after the aggregation to reduce the
amount of noises.

Algorithm 1. Pruned Rank Aggregation with Multiple Extraction Engines

Input: Ci = {ci1, ..., cil} as ordered candidate list from engine i, li = |Ci|, each list
ordered by frequency of candidate ncij ; {w1, ..., wk} are weights of each engine,
0 ≤ wi ≤ 1,

∑
i wi = 1; {ti, ...tk} are single engine pruning thresholds, 0 ≤ ti ≤ 1;

p, m, n are pruning thresholds after aggregation.
Output: A = a1, ..., an is candidate list after aggregation and pruning
1: Initialize A = ∅
2: for all Ci do
3: for all cij ∈ Ci do
4: if !ContainContentWord(cij) or (j > ti · li and !Exists(cij , C

′
i),∀i′ 	= i)

then Remove cij from Ci

5: end if
6: end for
7: Update li = |Ci|
8: end for
9: function MergeListWithModifiedSKR({Ci})
10: Initialize Mi,j ⇐ 0, C′ =

⋃
i Ci, update frequency nck = Σjncij , if ck = cij

11: for all candidate list Ci do
12: for all j = 1 to li − 1 do
13: for all l = j+1 to li do Mcij ,cil ⇐ Mcij ,cil +wi · log(ncij −ncil +0.1)
14: end for
15: end for
16: end for
17: Quick sort C′ with MC′

i
,C′

j
, candidate with larger value gets prior order

18: return C′

19: end function
20: Compute word frequency fwj for all wj ∈ ci and !IsStopword(wj), where ci ∈ C′

21: for all ci ∈ C′ do
22: if i ≤ |C′| · p or Πfwi ≥ n, wi ∈ ci or nci ≥ m then Add ci to A
23: end if
24: end for

Thus we propose a Pruned Rank Aggregation method for joint aggregating
and pruning candidate lists generated by multiple extraction engines. In search
results, texts are more redundant than off-line corpus, so redundancy provides
us with useful information in distinguishing between good and low-quality can-
didates. In addition, as different extraction engines perform analysis differently,
if a candidate is supported by multiple engines, it is unlikely that it’s a noisy
candidate. Thus we design the method for pruning based on inner and inter
redundancies of different extraction engines during rank aggregation. The algo-
rithm is shown in Algorithm 1. Given different candidate lists pre-ordered by
frequencies of candidates, line 1-8 first prune each candidate list to filter candi-
dates existing in only one list and with low rank1. Line 9-19 employ a modified

Answer Extraction with Multiple Extraction Engines for Web-Based QA 325

Supervised Kemeny Ranking (SKR) [11] to aggregate different lists, element of
matrix in SKR is weighted by difference between frequencies of two candidates
in the same list (line 13). Later, the aggregated list is further pruned at line
20-24 based on global candidate-based and word-based frequencies. Pruning pa-
rameters {ti}, p,m, n in the algorithm are tuned with development set; wi is
calculated as accuracy of each engine in development set. After Pruned Rank
Aggregation, we get a candidate list with less noisy candidates, and at the same
time, recall of answer is not hurt comparing to aggregation without pruning.
Such a result helps to increase answer ranking result in the later stage.

3.2 Ranking

Ranking task is that given question Q, search snippets S = {s1, s2, ..., sn}, exter-
nal Knowledge Base K, candidates A = {a1, a2, ..., am}, perform ranking with
scoring function:

f(ai) = P (ai | Q, S, K, A)

= Σj λj · hj(ai, Q, S, K, A) (1)

where {hj(·)} is a set of ranking features and λj is the corresponding feature
weight. Evidences for ranking in this work come from question, search results,
Knowledge Base as well as the whole hypothesis space.

After generating the score, answer extraction ranks candidates with the score
and selects candidate answer with the highest score as the final output:

â = argmax
ai∈A

f(ai) (2)

Previous work has showed that Learning to Rank works well for answer rank-
ing of factoid question [12]. In this work, we follow the strategy and adopt
Rank SVM [13] as our answer ranking model. It converts ranking problem to a
binary classification problem during training, each pair of candidates is viewed
as a positive training sample if correct candidate’s score is higher than negative
ones’ and vice versa. During predication, each candidate’s score is estimated
with features and the weights.

We define 5 different feature sets to capture quality of a candidate from dif-
ferent aspects(number in () indicates number of the features):

Consensus Features (9). This set measures candidates’ agreement across dif-
ferent extraction engines. Such feature set includes: number of engines generating
this candidate; variance of frequencies of the three engines; reciprocal rank of the
candidate in each engine’s ranking list (pre-ranked by the same ranking model
in this work without consensus features); score of candidate in each engine’s list;
number of occurrences identified by two/three engines at the same time.

1 We collect stopword list from http://www.ranks.nl/stopwords. Besides those stop-
words, all words are viewed as content words.

326 H. Sun, F. Wei, and M. Zhou

Redundancy Features (7). This set measures redundancy for each candidate
in the whole hypothesis space and includes: frequency of the candidate; number
of different search snippets and passages containing the candidate; n-gram based
redundancy score:

f(aj , A) = ΣT
i p(tki) (3)

where tki is n-gram in aj , T is the number of the n-grams. Score of an n-gram
is estimated with:

p(tki) = ΣN
j=1

naj ∗ δ′(tki, aj)
nj

(4)

where δ′(tki, aj) is the indicator function equals to 1 if tki appears in candidate
aj and 0 otherwise, naj is the frequency of aj ; N is the number of candidates,
nj is the number of n-grams in aj . We compute the above scores of unigram and
bigram, in addition with such scores normalized by candidate’s length.

Similarity Features (41). This set measures similarity between candidate and
question, including text similarity of candidate’s context and semantic similarity
between candidate and answer type. For text similarity, to avoid syntactic pars-
ing we use term level similarities such as: Longest Common Sequence (LCS), se-
quential LCS, edit distance, number overlapped content words in sentences, and
number of overlapped content words in contexts around candidate and question
focus (phrase in question could be replaced by answer [14]) respectively. Those
similarities are calculated both in passage level and sentence level (each search
snippet contains about 3 sentences separated by “...”), and normalized by ques-
tion length and sentence/passage length respectively. In addition, 9 similarity
features are based on word embddding [15] such as average similarity between
question phrases and search snippet phrases.

For semantic similarity, we measure whether the candidate matches with an-
swer type or Lexical Answer Type (LAT) [14]. LAT is more specific concept
than answer type, such as Doctor, city, etc. We build answer type dictionary
from FreeBase 2 and adopt NeedleSeek [16] as LAT dictionary. We also build
regular expressions to identify quality and date candidates.

Candidate Quality Features (9). This set measures the candidate’s own
quality, including: whether the candidate is capitalized; number of content words
in the candidate and the value normalized by total token number of the can-
didate; number of candidate’s tokens in question and the value normalized by
total token number; length of the candidate.

Search Features (7). This set includes average, worse and best rank of snip-
pets bearing the candidate given by search engine; the candidate is extracted
from search snippets or titles; whether the candidate is extracted fromWikipedia
site.
2 www.freebase.com

Answer Extraction with Multiple Extraction Engines for Web-Based QA 327

3.3 Extraction Engines

In this work we employ three extraction engines:

Sequential Labeling Method (CRF). The first method is sequential labeling
method similar with previous work [2,4,7]. Each token in passage is labeled as is
or is not an answer token. Question-answer pairs are used to generate training
data for this method. Given a question Q, answer A and search snippets S,
sequential tokens in S are labeled with 1 if they match with A and 0 otherwise.
We adopt 15 features similar to previous work [4] but without syntactic-based
features, and employ CRF [17] as our labeling model. In order to increase recall
of this method, we follow the setting of forced CRF [2], that for each passage,
beside tokens with positive labels, we change top k (k is set to 2 based on results
in development set) negative tokens’ labels to positive (those tokens are ranked
based on their scores of positive label). If continuous tokens’ labels are 1, they
are merged to form a single candidate answer.

Wikipedia Title-Based Method (Wiki). Following state-of-the-art system’s
method [9], we extract Wikipedia title entries appeared in search snippets.
Specifically, we build a dictionary of 7.8 million entries consisting of all Wikipedia
title entries. Given a search snippet, we scan the snippet with forward maximum
matching and extract all the matched entries case-insensitively.

Noun Phrase-Based Method (NP). As we focus on factoid questions, Noun
Phrases cover most of the correct answers. Noun phrases are extracted from
search snippets, we adopt Stanford parser 3 to identify noun phrases.

4 Experiments

4.1 Experiment Setup

Our data is collected from TREC data. We build training and development set
from TREC. There are two test sets in our work. The firs one (Test-1) is the one
used in previous work [2,3], previous work have provided documents for answer
extraction for this set. The second one (Test-2) is a larger test set, but there’s no
documents provided for this set. For all the training, development and testing
sets, we collect search snippets for each question. The snippets are retrieved
by five queries: the question; verb, noun, adj, adv words in question; Named
Entities (if any) in question; noun phrase and verbs; verb and its dependents in
question. For each query we collect top 20 snippets returned by search engine,
and select 60 search snippets most similar to the question from them. Summary
of the data is shown in Table 1. Avg. Passage per Q indicates in average for each
question, there are how many passages available for answer extraction; Rate
of Positive Passages Per Q (%) indicates among all the passages, the rate of
positive passages that contains the correct answer.

328 H. Sun, F. Wei, and M. Zhou

Table 1. Answer extraction training and testing data used in this work

Data Questions Passage Type
Avg. Passage

Per Q
Rate of Positive

Passages Per Q (%)

Train 1200 Search 60 9.82

Test-1
75 Search 60 10.33
89 Document 17 18.72

Test-2 293 Search 60 10.11

Table 2. Comparative results on testing set

Testset Passage Method Top 1 Acc. Top 5 Acc. MRR

Test-1 Document
Tree Kernel 70.79 82.02 73.91
Our Method 69.66 79.78 72.12

Test-1 Search
Tree Kernel 52.00 78.67 58.17
Our Method 66.67 84.00 70.71

Test-2 Search
Tree Kernel 51.19 72.35 59.81
N-gram 50.85 72.70 60.78

Our Method 66.55 79.52 69.93

Our CRF-based answer extraction method and feature weights of ranking
model is trained on our training set with search texts. Parameters of pruning
are tuned with development set, wcrf = 0.34, wwiki = 0.33, wnp = 0.33, tcrf =
0.9, twiki = 0.75, tnp = 0.9, p = 0.9,m = 2 and n = 2. We compare our method
with state-of-the-art answer extraction method using Tree Kernel[3]. We re-
implement the method and perform training and testing on our dataset. The
author didn’t mention which chunker or parser they employ, so we use Stanford
parser to generate parsing trees and extract NP chunks from the trees.

We report Top 1 Accuracy (ratio of correctly answered questions with the
first candidate in the ranking list), Top 5 Accuracy (ratio of correctly answered
questions with the first 5 candidates) and MRR (multiplicative inverse of the
rank of the first correct answer) metrics.

4.2 Experiment Results

Compare to State-of-the-art Method
The comparative result with Tree Kernel method is shown in Table 24. In docu-
ment set, Tree Kernel based method slightly outperforms ours. When adapting
both methods from regular document to search text, they all degrade. In search
set, Tree Kernel method’s performance seriously drops from 71% accuracy to
52%, while in contrast, our method is less affected and outperforms Tree Kernel

3 http://www-nlp.stanford.edu/software/

Answer Extraction with Multiple Extraction Engines for Web-Based QA 329

method on search texts. This indicates our method is more efficient for Web-
based answer extraction.

For both methods, results on document sets are superior to the one on search
sets, this is because search snippets contain more noises than documents. As
it’s shown in Table 1, rate of positive passages containing the correct answer
in document set is 18.72%, while in contrast, such rate is much lower in search
set. So both of the answer extraction methods have to deal with more negative
candidates in the hypothesis space. Specifically, positive and negative candidates’
rate of our method is 1: 27 in document set, while such rate is 1: 59 in search set
before pruning. In addition, search snippets are often incomplete, and sometimes
key words in question are in sub-sentence apart from the correct answer. We
observe that about half of the positive sentences containing the correct answer
don’t contain any key words in question or aren’t complete sentences. Under such
condition, syntactic similarity between question and answer bearing sentences
will be reduced. The result is that traditional method such as Tree Kernel method
relies on such similarity will degrade on the ill-formed search snippets. Previous
work [10] discuss to use n-gram for answer extraction, as a result, number of
negative samples in the hypothesis space of that method will also be lager. As
Table 2 shows, the n-gram based method also performs worse than our method.

Single Extraction Versus Multiple Extractions
Using multiple extraction engines brings great contributions. There are two pos-
itive effects of the multiple extraction engines-based method: 1) redundancies
among different engines enables us to perform more restrict pruning which re-
duces noises in candidate list; 2) consensus information across different engines
is useful for improving the ranking result.

Table 3 (from this section to save space we show results in Test-2 set as it
contains more testing questions) shows pruning results on single and multiple
extraction engines with the same pruning parameters. When combining all the
engines’ results, recall is increased. Pruning helps to reduce noises, but it also
hurts recall. When independently prune each engine’s candidate list, their re-
calls all degrade, and the combination’s (labeled as Combine with Single Prune)
recall also degrades seriously. As for our method (labeled as Combine with Joint
Prune), when we consider the global appearances from different engines, the
impact from pruning on answer recall is eased.

Table 4 shows ranking results of single engine. Single engine’s ranker is trained
on their own candidate list with the same model and features except consensus
features. After combining results from different engines, accuracy of answer ex-
traction is improved comparing to any single one. But if we remove consensus
features during combination, performance of answer ranking drops a lot. Fur-
ther, if we remove pruning based on redundancy among different engines, the

4 We didn’t compare our method with Watson’s extraction method, as Watson em-
ploys lots of manual efforts and hundreds of features, which makes directly compar-
ison impossible. It is also why previous work [2,3] don’t make such comparison.

330 H. Sun, F. Wei, and M. Zhou

Table 3. Results of pruning on single and multiple extraction engines on Test-2. Recall
is the binary recall of correct answer, N:P indicates ratio of negative cases’ number to
positive ones’.

NP Wiki CRF
Combine

(Single Prune)
Combine

(Joint Prune)

Recall N:P Recall N:P Recall N:P Recall N:P Recall N:P
No Pruning 93.52 23 85.32 70 86.69 15 94.54 59 94.54 59
Pruning 82.26 15 77.37 37 79.18 9 85.67 29 93.86 31

Table 4. Performance of ranking results on Test-2 set

Method Top 1 Acc. Top 5 Acc. MRR

NP 53.24 73.72 62.04
Wiki 51.88 71.67 60.36
CRF 54.27 76.45 63.67

All 66.55 79.52 69.93
All -Consensus Features 56.31 75.43 63.97

All -Joint Pruning 54.61 77.82 64.39

result also becomes worse. In all, employing multiple extraction engines helps to
increase the performance of answer extraction for Web-based QA.

Table 5 shows an example in testing set with top 5 candidates. Tree kernel and
NP method tend to extract complete units from search texts, so they share some
common candidates; CRF method tends to extract and give high rank to short
candidates related to question, such as years in this example; Wikititle-based
method extracts entities in snippets, such as years, titles in this case. They per-
form different analysis on the texts thus the results present with different trends.
Although none of the engine correctly answer the question, after combining the
three lists, our method outputs the correct answer.

Feature Ablation Test
We compare contributions from different feature sets by removing one feature
set at a time and performing same training and testing. Results are shown in
Table 6, removing features in ranking does not have impact on recall, so we only
show accuracy measurements. Most of the features are similarity features, so that
set has the most contribution. We only design shallow similarity features, if we
employ more syntactic features, ranking performance can be further improved.
Besides, consensus as illustrated before also has very important role. Follow
is redundancy features, from the results we see that redundancy with only 7
features can greatly improve ranking results. Last, quality and search features,
although with very few number of features, are also useful.

Answer Extraction with Multiple Extraction Engines for Web-Based QA 331

Table 5. Example of different extraction engines’ results

Question When did Jack Welch retire from GE?
Answer 2001
Method Top 5 Candidates

Tree kernel general electric; chairman and ceo; his younger wife; oct 05, 2012;2001
NP general electric; jack welch ’s; 2001; one; chairman and ceo
CRF 2012; 2002; 2001; one; 1999
Wiki general electric; retirement; 2012; 2001; ceo
Ours 2001;general electric; 2012; retirement; ceo

Table 6. Testing results of ablating different feature sets on Test-2 set

Feature Set
Number of
Features

Top 1 Acc. Top 5 Acc. MRR

All 73 66.55 79.52 69.93
-Similarity 73-41=32 54.27 74.06 62.05
-Consensus 73-9=64 56.31 75.43 63.97
-Redundancy 73-7=66 57.34 76.79 64.74

-Quality 73-9=64 63.83 77.47 68.46
-Search 73-7=66 64.51 77.82 68.51

Error Analysis
We randomly select 50 wrongly answered questions and analyze the errors. 5
questions’ answers are missed in the hypothesis space, most of them are Quality
or Time questions. 15 questions are correctly answered, but the labeled answer
is different from our output. For example, for question Where did the Battle of
the Bulge take place?, the given answer is Luxembourg, but our output Ardennes
is also correct. In traditional QA, answers are set based on given corpus, so the
expression of the correct answer is fixed; but in Web, the way to express the
answer are various, strictly judge answer’s correctness based on TREC data will
underestimate performance of Web-based QA. Further, 30 questions’ answers
are wrongly ranked which suggests using more sophisticated ranking features.

5 Conclusion

Web-based Question Answering is to generate answer from search snippets re-
turned by search engines. Search snippets contain many noises and many in-
complete sentences, which lowers down performance of traditional methods of
answer extraction. In this paper we discuss about using multiple extraction en-
gines for Web-based QA. We adopt a Pruned Rank Aggregation method to prune
noisy candidates with redundancies among different engines during rank aggre-
gation. The resulted candidate list is ranked with a Learning to Rank method
with similarity, redundancy, search and quality features. Our method improves
performance of Web-based answer extraction, and outperforms state-of-the-art
answer extraction method.

332 H. Sun, F. Wei, and M. Zhou

Acknowledgments. We’d like to thank Yajuan Duan for her contribution of
question analysis components. We also want to thank all the reviewers for their
valuable comments.

References

1. Brill, E., Lin, J., Banko, M., Dumais, S., Ng, A.: Data-intensive question answering.
In: TREC, pp. 393–400 (2001)

2. Yao, X., Van Durme, B., Callison-Burch, C., Clark, P.: Answer extraction as se-
quence tagging with tree edit distance. In: HLT-NAACL, pp. 858–867 (2013)

3. Severyn, A., Moschitti, A.: Automatic feature engineering for answer selection and
extraction. In: EMNLP, pp. 458–467 (2013)

4. Sun, H., Duan, N., Duan, Y., Zhou, M.: Answer extraction from passage graph
for question answering. In: Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, pp. 2169–2175. AAAI Press (2013)

5. Xu, J., Licuanan, A., May, J., Miller, S., Weischedel, R.: Answer selection and
confidence estimation. In: 2003 AAAI Symposium on New Directions in QA (2003)

6. Ravichandran, D., Ittycheriah, A., Roukos, S.: Automatic derivation of surface text
patterns for a maximum entropy based question answering system. In: Proceedings
of HLT-NAACL (2003)

7. Sasaki, Y.: Question answering as question-biased term extraction: A new approach
toward multilingual qa. In: Proceedings of ACL, pp. 215–222 (2005)

8. Bunescu, R., Huang, Y.: Towards a general model of answer typing: Question focus
identification. In: Proceedings of the 11th International Conference on Intelligent
Text Processing and Computational Linguistics, RCS Volume, pp. 231–242 (2010)

9. Chu-Carroll, J., Fan, J.: Leveraging wikipedia characteristics for search and can-
didate generation in question answering. In: Proceedings of AAAI (2011)

10. Lin, J.: An exploration of the principles underlying redundancy-based factoid ques-
tion answering. ACM Transactions on Information Systems 25(2), 6 (2007)

11. Subbian, K., Melville, P.: Supervised rank aggregation for predicting influence in
networks. arXiv preprint arXiv:1108.4801 (2011)

12. Agarwal, A., Raghavan, H., Subbian, K., Melville, P., Lawrence, R.D., Gondek,
D.C., Fan, J.: Learning to rank for robust question answering. In: Proceedings of the
21st ACM International Conference on Information and Knowledge Management,
pp. 833–842. ACM (2012)

13. Joachims, T.: Training linear svms in linear time. In: Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
217–226. ACM (2006)

14. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A.A.,
Lally, A., Murdock, J.W., Nyberg, E., Prager, J., et al.: Building watson: An
overview of the deepqa project. AI Magazine 31(3), 59–79 (2010)

15. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.:
Natural language processing (almost) from scratch. Journal of Machine Learning
Research 12, 2493–2537 (2011)

16. Shi, S., Liu, X., Wen, J.R.: Pattern-based semantic class discovery with multi-
membership support. In: Proceedings of the 17th ACM Conference on Information
and Knowledge Management, pp. 1453–1454. ACM (2008)

17. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data (2001)

