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Abstract. Cross-lingual sentiment classification aims to automatically
predict sentiment polarity (e.g., positive or negative) of data in a label-
scare target language by exploiting labeled data from a label-rich lan-
guage. The fundamental challenge of cross-lingual learning stems from a
lack of overlap between the feature spaces of the source language data
and that of the target language data. To address this challenge, previ-
ous work in the literature mainly relies on machine translation engines or
bilingual lexicons to directly adapt labeled data from the source language
to the target language. However, machine translation may change the
sentiment polarity of the original data. In this paper, we propose a new
model which uses stacked autoencoders to learn language-independent
distributed representations for the source and target languages in an un-
supervised fashion. Sentiment classifiers trained on the source language
can be adapted to predict sentiment polarity of the target language with
the language-independent distributed representations. We conduct ex-
tensive experiments on English-Chinese sentiment classification tasks of
multiple data sets. Our experimental results demonstrate the efficacy of
the proposed cross-lingual approach.
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1 Introduction

With the development of web 2.0, more and more user generated sentiment data
have been shared on the web. They exist in the form of user reviews on shopping
or opinion sites, in posts of blogs or customer feedback in different languages.
These labeled user generated sentiment data are considered as the most valu-
able resources for the sentiment classification task. However, such resources in
different languages are very imbalanced. Manually labeling each individual lan-
guage is a time-consuming and labor-intensive job, which makes cross-lingual
sentiment classification essential for this application.

Cross-lingual sentiment classification aims to automatically predict sentiment
polarity (e.g., positive or negative) of data in a label-scare target language by
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exploiting labeled data from a label-rich language. The fundamental challenge of
cross-lingual learning stems from a lack of overlap between the feature spaces of
the source language data and that of the target language data. To address this
challenge, previous work in the literature mainly relies on machine translation
engines or bilingual lexicons to directly adapt labeled data from the source lan-
guage to the target language [17,26,24,16,12,27]. Although the machine transla-
tion based approaches are intuitive and have advanced the task of cross-lingual
sentiment classification, they have certain limitations. First, machine transla-
tion may change the sentiment polarity of the original data [9]. For example,
the negative English sentence “it is too beautiful to be true” is translated to
a positive sentence in Chinese “SZTE /& K=& B2 f)” by Google Translate
(http://translate.google.com/), which literally means “it is too beautiful and
true”. Second, many sentiment indicative words cannot be learned from the
translated labeled data due to the limited coverage of vocabulary in the machine
translation results. Recently, Duh et al. [3] report a low overlap between the vo-
cabulary of English documents and the documents translated from Japanese to
English, and the experiments also show that vocabulary coverage has a strong
correlation with sentiment classification accuracy. Third, translating all the sen-
timent data in one language into the other language is a time-consuming and
labor-intensive job in reality.

In this paper, we propose a deep learning approach, which uses stacked au-
toencoders [2] to learn language-independent distributed representations of data
for cross-lingual sentiment classification. Our model is firstly trained on a large-
scale bilingual parallel data and then projects the source language and the target
language into a bi-lingual space that fuses the two types of information together.
The goal of our model is to learn distributed representations through a hierar-
chy of network architectures. The learned distributed representations can be
used to bridge the gap between the source language and the target language.
For example, if we have learned language-independent distributed representa-
tions English and Chinese sentiment data, then a classifier trained on labeled
English sentiment data can be used to classify Chinese sentiment data.

The novelty of our approach lies in that we employs a deep learning ap-
proach to project the source language and the target language into a language-
independent unified representations. Our work shares certain intuition with the
mixture model for cross-lingual sentiment classification [9] and the bilingual
word embeddings used in cross-lingual sentiment classification [11] and phrase-
based machine translation [29]. A common property of these approaches is that
a word-level alignment (extracted using GIZA++) of bilingual parallel corpus is
leveraged [8,9,11,29]. In this paper, we only require alignment parallel sentences
and do not rely on word-level alignments of bilingual corpus during training,
which simplifies the learning procedure.

To evaluate the effectiveness of the proposed approach, we conduct experi-
ments on the task of English-Chinese cross-lingual sentiment classification. The
empirical results show the proposed approach is very effective for cross-lingual
sentiment classification, and outperforms other comparison methods.
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The remainder of this paper is organized as follows. Section 2 introduces the
related work. Section 3 presents our proposed learning distributed semantics for
cross-lingual sentiment classification. Section 4 presents the experimental results.
Finally, we conclude this paper in section 5.

2 Related Work

2.1 Monolingual Sentiment Classification

Sentiment classification has gained wide interest in natural language processing
(NLP) community. Methods for automatically classifying sentiments expressed in
products and movie reviews can roughly be divided into supervised and unsuper-
vised (or semi-supervised) sentiment analysis. Supervised techniques have been
proved promising and widely used in sentiment classification [13,14,7]. However,
the performance of these methods relies on manually labeled training data. In
some cases, the labeling work may be time-consuming and expensive. This mo-
tivates the problem of learning robust sentiment classification via unsupervised
(or semi-supervised) paradigm.

The most representative way to perform semi-supervised paradigm is to em-
ploy partial labeled data to guide the sentiment classification [4,18,6]. However,
we do not have any labeled data at hand in many situations, which makes the
unsupervised paradigm possible. The most representative way to perform unsu-
pervised paradigm is to use a sentiment lexicon to guide the sentiment classifi-
cation [22,20,28] or learn sentiment orientation of a word from its semantically
related words mined from the lexicon [15]. Sentiment polarity of a word is ob-
tained from off-the-shelf sentiment lexicon, the overall sentiment polarity of a
document is computed as the summation of sentiment scores of the words in the
document. All these work focuses on monolingual sentiment classification, we
point the readers to recent books [14,7] for an in-depth survey of literature on
sentiment classification.

2.2 Cross-Lingual Sentiment Classification

Cross-lingual sentiment classification aims to automatically predict sentiment
polarity (e.g., positive or negative) of data in a label-scare target language by
exploiting labeled data from a label-rich language. The fundamental challenge
of cross-lingual learning stems from a lack of overlap between the feature spaces
of the source language data and that of the target language data.

To bridge the language gap, previous work in the literature mainly relies on
machine translation engines or bilingual lexicons to directly adapt labeled data
from the source language to the target language. Banea et al. [1] employed the
machine translation engines to bridge the language gap in different languages for
multilingual subjectivity analysis. Wan [23] and Wan [24] proposed to use ensem-
ble methods to train Chinese sentiment classification model on English labeled
data and their Chinese translations. English labeled data are first translated into
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Chinese, and then the bi-view sentiment classifiers are trained on English and
Chinese labeled data respectively. Pan et al. [12] proposed a bi-view non-negative
matrix tri-factorization (BNMTF) model for cross-lingual sentiment classifica-
tion problem. They employed machine translation engines so that both training
and test data are able to have two representations, one in source language and the
other in target language. The proposed model is derived from the non-negative
matrix factorization models in both languages in order to make more accurate
prediction. Prettenhofer and Stein [16] proposed a cross-lingual structural corre-
spondence learning (CL-SCL) method to induce language-independent features.
Instead of using machine translation engines to translate labeled text, the au-
thors first selected a subsect of pivot features in the source language to translate
them into the target language, and then use these pivot pairs to induce cross-
lingual representations by modeling the correlations between pivot features and
non-pivot features in an unsupervised fashion. Recently, Xiao and Guo [27] used
the similar idea with [16] for cross-lingual sentiment classification. Instead of
in an fully unsupervised fashion, Xiao and Guo [27] performed representation
learning in a semi-supervised manner by directly incorporating discriminative
information with respect to the target prediction task. In this paper, we propose
a deep learning approach, which uses stacked autoencoders [2] to learn language-
independent distributed representations of data instead of machine translation
engines.

Another group of works propose to use an unlabeled parallel corpus to induce
language-independent representations [8,9]. They assume parallel sentences in
the corpus should have the same sentiment polarity and labeled data in both
the source and target languages are available. However, this method requires
labeled data in both the source and target language, which are not always readily
available [9]. Meng et al. [9] proposed a generative cross-lingual mixture model
(CLMM) to learn previously unseen sentiment words from the large bilingual
parallel data. A common property of this approach is that a word-level alignment
(extracted using GIZA++) of bilingual parallel corpus is leveraged [9]. In this
paper, we only require alignment parallel sentences and do not rely on word-
level alignments of bilingual corpus during training, which simplifies the learning
procedure.

3 Learning Distributed Semantics for Cross-Lingual
Sentiment Classification

3.1 Model Formulation

Recently, parallel data in multiple languages provides an alternative way for
multiview representations, as parallel texts share their semantics, and thus one
language can be used to ground the other. Some work has exploited this idea to
learn distributed representations at the word level [11,29]. A common property
of these approaches is that a word-level alignment (extracted using GIZA++)
of bilingual parallel corpus is leveraged [11,29]. In this paper, we only require



142 G. Zhou, T. He, and J. Zhao

reonsirucion %, (@ Q@@ - @ @) ®

i

bi-lingual coding

W(I)T leiT

e x (QOOO -0 ~ HEEN- HE

source language target language

Fig. 1. Denoising stacked autoencoders (DAESs) trained on large-scale parallel sentence
pairs (xs,x¢). Input to the model are binary bag-of-words vector representations ob-
tained from the source language and the target language. The model minimize the
distance between the sentence level bi-lingual coding of bitext L(y%,y:) as well as the
reconstruction errors from the source language and the target language.

alignment parallel sentences and do not rely on word-level alignments of bilingual
corpus during training, which simplifies the learning procedure.

Given a large-scale parallel sentence pairs (xs,x;), we would like to use it
to learn distributed representations in both languages that are aligned. The
idea is that a shared representation of two parallel sentences would be forced
to capture the common information between two languages. Figure 1 shows the
model architecture. For each sentence with binary bag-of-words representation
X in the source language and an associated binary bag-of-words representation
x; for the same sentence in the target language, we use the hyperbolic tangent
function as the activation function for an encoder fy and a decoder gy:. The
weights of each autoencoder are tied, i.e., W/(1) = W) in Figure 1. We employ
denoising stacked autoencoders (DAEs) for pre-training the sentences in each
language. For example in Figure 1, let X5 and denote the corrupted versions of
the initial input vector x,, we have the following high-level latent representations:
s = fo,(Xs) = s(OWIx, +bW), vl = fo (ys) = s(WEy, + b®). Essentially,
the same steps repeat for the input vector x;.

During the decoding phase, we want to be able to perform a reconstruction of
the original sentence in any of the languages. In particular, given a representation
in any language, we'd like a decoder go: that can perform a reconstruction in
the source language and another decoder ge; that can perform a reconstruction
in the target language. Given the reconstruction layers, we have y = go =
s(WOg+b'®) g, = gg = s(WE' +b'®) and %, = gj = s(W'g,+b'D).
Essentially, the same steps repeat for the reconstruction process of %;.

The encoder/decoder decomposition allows us to learn a mapping within each
language and across the languages. Specially, for a given parallel sentence pair
(xs,X¢), we can train the model to (1) reconstruct x, from itself (loss L(xs, Xs));
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(2) reconstruct x; from itself (loss L(xy,X;)); and (3) distance between the sen-
tence level encoding of the bitext (loss L(y’,y})). The overall objective function
is therefore the weight sum of these errors over a set of binary bag-of-words input
vectors C = {(Xgl)ﬂigl)% B 7(Xgn)7xgn))}:

- - A
T 0) = 30 (Lt )+ L)+ Ly) + o (100 +10']2)
(x57xt)ec
(1)

where L is a loss function, such as cross-entropy. 6 = {6,,0;} and 0" = {0.,6;}
are the set of all model parameters. Note that we use tied weights for the stacked
autoencoder, i.e., W) = W1 In our experiments, we also add the constraints
b = b® b® =b® b1 = b and b’ = b/ before the nonlinearity
across encoders, to encourage the encoders in both languages to produce repre-
sentations on the same scale.

3.2 Learning Algorithm

Let 8 = {6,,6,}) = {WO W2 WE W& b® b® bl b®H} and
0 = {0.,0)) = (WO W WG W ) bR p'E b} be the set
of our model parameters, then the gradient becomes:

+ 00, 2)

oL 0J (xs,%¢;0,0")
00 Z

00
(xs,%x¢)EC

The gradient can be computed efficiently via backpropagtion. Since the deriva-

tion of the minimization of the distance between the sentence-level bi-lingual cod-

ing of bitext and the reconstruction errors can also modify the matrices W),

W®, W) and W® | the above objective is not necessarily continuous and a

step in the gradient descent direction may not necessarily decrease the objective.

However, we find that L-BFGS run over the unlabeled parallel data to minimize

the objective works well in practice, and that convergence is smooth, with the
algorithm typically finding a good solution quickly.

3.3 Cross-Lingual Sentiment Classification

Once we have learned the parameters 6 and ¢, we can transform the binary bag-
of-words representation of the training data from the source language into the
bi-lingual coding space using the learned parameter 6, and then train a simple
sentiment classification model using a linear support vector machine (SVM) [5].
For each of the test data from the target language, we also transform its bag-of-
words representations into the bi-lingual coding space using the learned param-
eter 6 and then predict the sentiment polarity of the test data using the trained
classification model.
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Table 1. Statistics of data sets used in this paper

MPQA NTCIR-EN  NTCIR-CH

Positive 1,471 (30%) 528 (30%) 2,378 (55%)

Negative 3,487 (70%) 1,209 (70%) 1,916 (44%)
Total 4,958 1,737 4,204

4 Experiments

4.1 Experimental Setup

In this section, we conduct experiments for cross-lingual sentiment classification.
We focus on the two common cross-lingual sentiment classification settings. In
the first setting, no labeled data in the target language are available. This task
has realistic significance, since in some situations we need to quickly develop a
sentiment classifier for languages that we do not have labeled data in hand. In
this case, we classify documents in the target language using only labeled data
in the source language. In the second setting, we have some labeled data in the
target language. In this case, a more reasonable method is to make full use the
labeled data in the source language and the target language to build the senti-
ment classification model. In our experiments, for each setting, we consider two
cases, one is English as the source language and Chinese as the target language,
another is Chinese as the source language and English as the target language.

4.2 Data Set

For cross-lingual sentiment classification, we use the benchmark data set de-
scribed in [8,9]. The labeled data sets consist of two English data sets and one
Chinese data set.

MPQA-EN (Labeled English Data): The multi-perspective question an-
swering (MPQA-EN) corpus [25] consists of newswire documents manually la-
beled with subjectivity information. Following the literature [8], we also discard
the sentences with both positive and negative strong expressions.

NTCIR-EN (Labeled English Data) and NTCIR-CH (Labeled Chi-
nese Data): The NTCIR opinion analysis task [19] provides sentiment labeled
news data in Chinese and English. The sentences with a sentiment polarity
agreed to by at least two annotators are extracted. In this paper, we use the
Chinese data from NTCIR-6 as our Chinese labeled data, the English data from
NTCIR-6 and NTCIR-7 as our English labeled data. The Chinese sentences are
segmented using the Stanford Chinese word segmenter [21].

The statistics of the data sets are shown in Table 1. In our experiments, we
evaluate four settings of the data: (1) MPQA-EN — NTCIR-CH; (2) NTCIR-EN
— NTCIR-CH; (3) NTCIR-CH — MPQA-EN; and (4) NTCIR-CH — NTCIR-
EN, where the word before an arrow corresponds with the source language and
the word after an arrow corresponds with the target language.
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To learn the parameters 6 and €', we use the Chinese-English parallel cor-
pus [10]. As mentioned earlier, unlike the previous work [8,9,11], we do not use
any word alignment between these parallel sentences. Specifically, we segment
the Chinese sentences using the Stanford Chinese word segmenter [21] and re-
move all punctuations from the parallel sentences.

4.3 Model Architecture

Our model has many hyper-parameters, we set these parameters empirically
as follows: the source language autoencoder (see Figure 1, left side) and the
target language autoencoder (see Figure 1, right side) consist of 1000 hidden
units which are then mapped to the second hidden layer with 500 units (the
corruption parameter is set to v = 0.5). The 500 source language and the 500
target language hidden units are fed to a bi-lingual autoencoder containing 500
latent units. We use the model described above and the language-independent
representations obtained from the output of the bi-lingual latent layer for the
cross-lingual task. Note that some performance gains could be expected if these
parameters are optimized on the development set.

4.4 Baseline Methods

In our experiments, we compare our proposed DAEs with the following baseline
methods:

SVM: This method learns a SVM classifier for each language given the mono-
lingual labeled data. In this paper, SVM-light [5] is used for all the SVM-related
experiments.

MT-SVM: This method employs Google Translate (http://translate.
google.com) to translate the labeled data from the source language (e.g., En-
glish) to the target language (e.g., Chinese) and uses the translated results to
train a SVM classifier for the target language.

MT-Cotrain: This method is based on a co-training framework described in [24].
For easy description, we assume that the source language is English while the
target language is Chinese. First, two monolingual SVM classifiers are trained
on English labeled data and Chinese data translated from English labeled data.
Second, the two classifiers make prediction on Chinese unlabeled data and their
English translation, respectively. Third, the most confidently predicted English
and Chinese documents are added to the training set and the two monolingual
SVM classifier are re-trained on the expanded training set. Following the lit-
erature [9], we repeat the second and third steps 100 times to obtain the final
classifiers.

Joint-Train: This method uses English labeled data and Chinese labeled data to
obtain initial parameters for two maximum entropy classifiers, and then conduct
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Table 2. Sentiment classification accuracy for Chinese only using English labeled data.
Improvements of different methods over baseline MT-SVM are shown in parentheses.

Method MPQA-EN — NTCIR-CH NTCIR-EN — NTCIR-CH

1 SVM N/A N/A
2 MT-SVM 54.33 62.34
3 MT-Cotrain 59.11 (+4.78) 65.13 (+2.79)
4 Joint-Train N/A N/A
5 CLMM 71.52 (+17.19) 70.96 (+8.62)
6 DRW 72.27 (+17.94) 71.63 (+9.29)
7 DAEs 72.85 (418.52) 72.21 (+9.87)

EMe-iterations to update the parameters to gradually improve the agreement of
the two monolingual classifiers on the unlabeled parallel data [8].

CLMM: This method proposes a generative cross-lingual mixture model
(CLMM) [9] and learns previously unseen sentiment words from the large-scale
bilingual parallel data to improve the vocabulary coverage.

DRW: This is the state-of-the-art method for cross-lingual sentiment classifica-
tion described in [11]. This method learns distributed representations of words
via multitask and word alignment for cross-lingual sentiment classification.

4.5 Cross-Lingual Sentiment Classification Only Using Source
Language Labeled Data

In this section, we investigate cross-lingual sentiment classification towards the
case that we have only labeled data from the source language. The first set of
experiments are conducted on using only English labeled data to build sentiment
classifier for Chinese sentiment classification. This is a challenging task since we
do not have any Chinese labeled data in hand.

Table 2 shows the accuracy of the baseline systems as well as the proposed
model (DAEs). As seen from the table, our proposed approach DAEs outper-
forms all baseline methods for Chinese sentiment classification only using the
labeled English data. Specifically, our proposed approach improves the accu-
racy, compared to MT-SVM, by 18.52% and 9.87% (row 2 vs. row 7) on Chinese
in the first setting and in the second setting, respectively. Meanwhile, the ac-
curacy of MT-SVM on NTCIR-EN — NTCIR-CH is much better than that on
MPQA-EN — NTCIR-CH. The reason may be that NTCIR-EN and NTCIR-
CH cover similar topics. Besides, we also observe that using a parallel corpus
instead of machine translations can improve the classification accuracy (row 2
and row 3 vs. row 5, row 6 and row 7). Moreover, Our proposed DAEs outper-
forms CLMM and DRW (row 5 and row 6 vs. row 7, the comparisons are mildly
significant with ¢-test (p-value < 0.08)). The reason may be that our method can
effectively learn sentence-level distributed representations rather than using the
off-the-shelf word alignment tools (e.g., GIZA++) to bridge the language gap.
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Table 3. Sentiment classification accuracy for English only using Chinese labeled data.
Improvements of different methods over baseline MT-SVM are shown in parentheses.

Method NTCIR-CH — MPQA-EN NTCIR-CH — NTCIR-EN

1 SVM N/A N/A

2 MT-SVM 52.47 58.51

3 MT-Cotrain 58.63 (+6.16) 63.72 (+5.21)
4 Joint-Train N/A N/A

5 CLMM 68.29 (+15.82) 69.15 (+10.64)
6 DRW 70.85 (4+18.38) 72.57 (+14.06)
7 DAEs 71.42 (+18.95) 73.38 (+14.87)

Table 4. Sentiment classification accuracy for Chinese by using English and Chi-
nese labeled data. Improvements of different methods over baseline SVM are shown in
parentheses.

Method MPQA-EN — NTCIR-CH NTCIR-EN — NTCIR-CH

1 SVM 80.58 80.58
2 MT-SVM 54.33 (-26.25) 62.34 (-18.24)
3 MT-Cotrain 80.93 (+0.35) 82.28 (+2.79)
4 Joint-Train 83.42 (+2.84) 83.11 (+2.53)
5 CLMM 83.02 (+2.44) 82.73 (+2.15)
6 DRW 83.54 (+2.96) 83.26 (+2.68)
7 DAEs 83.81 (+3.23) 83.59 (+3.01)

The second set of experiments are conducted on using only Chinese labeled
data to build sentiment classifier for English sentiment classification. Table 3
shows the sentiment classification accuracy for English using only Chinese la-
beled data. From this table, we have the similar observations as in Table 2.

4.6 Cross-Lingual Sentiment Classification Using Source Language
and Target Language Labeled Data

The third set of experiments are conducted on using both English labeled data
and Chinese labeled data to build the Chinese sentiment classifier. We conduct 5-
fold cross validation on Chinese labeled data and use the similar settings with [9].

Table 4 shows the average accuracy of baseline systems as well as our proposed
DAEs. From this table, we can see that SVM performs significantly better than
MT-SVM. The reason may be that we use the original Chinese labeled data
instead of translated Chinese labeled data. We also find that all four methods
which employ the unlabeled parallel corpus, namely MT-Cotrain, Joint-Train,
CLMM and DAEs, still show improvements over the baseline SVM. Moreover,
our proposed DAEs outperforms than DRW and obtains the state-of-the-art
accuracy on both data sets. This again validates that learning sentence-level
distributed representations is better than using word alignment tools for cross-
lingual sentiment classification. Due to limited space, we do not present the
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experimental results for English and some other related discussions, we will leave
these works for further research.

5 Conclusion

In this paper, we present a model that uses stacked autoencoders to learn
distributed representations through a hierarchy of network architectures. The
learned distributed representations can be used to bridge the gap between the
source language and the target language. To evaluate the effectiveness of
the proposed approach, we conduct experiments on the task of English-Chinese
cross-lingual sentiment classification. The empirical results show the proposed
approach is effective for cross-lingual sentiment classification, and outperforms
other comparison methods.
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