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Abstract. Density analysis plays an important role in font design and recogni-
tion. This paper presents a method of density analysis for Chinese characters. A 
number of density metrics are adopted to describe the density degree of a cha-
racter from both local and global perspectives, including center-to-center dis-
tance of connected components, gap between connected components, ratio of 
perimeter and area, connected components area ratio, and area ratio of holes. 
The experiment results demonstrate that the proposed method is effective in 
measuring the density of Chinese characters.  

Keywords: density analysis, shape analysis, porosity, compactness, connected 
components. 

1 Introduction 

Density is a significant factor in the design, recognition, and other applications of 
Chinese characters as fonts. Three scenarios illustrate how density metrics benefit the 
design and application of fonts. First, the evaluation of font beauty is related to densi-
ty, as shown in Fig. 1. The density adjustment of a single character results in different 
visual effects. 

(a) (b) 

Fig. 1. An example of different density of a same character in same style 

Second, considering the aesthetic quality of a page, the density of different charac-
ters from the same font should not considerably vary, especially for Chinese charac-
ters whose stroke numbers differ significantly. In general, characters with many 
strokes tend to appear extremely dense on printed pages, whereas characters with 
relatively few strokes appear sparse. However, as Fig. 2 illustrates, some designs for a 
font without appropriate adjustments result in an unacceptable visual perceptions 
from the scale of a paragraph or a whole page.  

Third, cross-cultural communication is becoming a staple to modern life at the 
present time, resulting in a large number of publications with mixed languages and 
characters. Density is an important factor for editors and designers to select fonts for 
different languages to achieve the consistent overall effect of layout. 



 A Method of Density Analysis for Chinese Characters 55 

 

(a) (b) 

Fig. 2. Comparison between layout results of different designs for the same kind of fonts. (a) 
shows stronger consistency than (b) as considering more about density. 

However, character density can only be estimated by human subjective judgments 
rather than by a quantification method in most font companies. At least three chal-
lenges exist. First, density degree is basically evaluated by human visual perception, 
which lacks reasonable visual models. Second, various factors influence shape densi-
ty, thus requiring deep-seated shape analysis. Lastly, no evaluation method or com-
mon dataset is authorized to judge the validity of the density metric. 

This paper describes a feasible method for calculating the density of Chinese cha-
racters. We regard Chinese characters as shapes with multiple connected components 
and analyze several factors influencing the density of the characters, such as center-
to-center distance of connected components, gap between connected components, 
ratio of perimeter and area, scale of connected components, and scale of holes. 

The rest of this paper is organized as follows. Section 2 gives an overview of re-
lated work. Section 3 introduces some basic concepts. Section 4 details the proposed 
method about the measurement of density. Section 5 shows the experiment results. 
Finally, Section 6 draws the conclusions of this study and recommends future work. 

2 Related Work 

Research on character density has so far been few. However, density analysis has 
been involved in some studies on pattern recognition and image retrieval, which use 
similar concepts such as porosity and compactness. Some of the related studies are 
briefly examined in this section. 

Song et al. [2] explicitly defined porosity as the scale of the gap between connected 
components based on mathematical morphology [7]. A closing operation was adopted 
on the object shape using a circular element with a different radius, analyzing the 
scale of the gap with a multi-scale. Finally, porosity was described by the diameter of 
the minimum circle connecting all connected components. 

Bribiesca [3] used compactness to separately analyze 2D and 3D shapes. An object 
in the 3D domain, for example, has compactness that is classically related to the en-
closing surface area and volume and can be measured by the ratio (area3)/(volume2).  

Liu et al. [8] proposed a concept of foreground pixel density, which is simply de-
fined as the ratio of foreground pixels in an object with respect to the foreground pix-
els in the entire image. Liu et al. [10] employed the density distribution feature, which 
is defined as a matrix whose components determine the relative density of the fore-
ground pixel in each small region. 
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Liu et al. [11] presented point–line distance distribution (PLDD) to detect arbitrary 
triangles, regular polygons, and circles, based on the common geometric property that 
the in-center of the shape is equidistant to the tangential lines of the contour points. 
Unlike SC [12] and IDSC [13], PLDD directly presented image features that are very 
similar to density by distance distribution. 

The above analysis shows that the density of shapes with multiple connected com-
ponents has not been particularly and extensively studied as a separate issue. Studies 
are merely involved in some image research, and the methods have limitations. For 
example, porosity, defined as the gap between connected components, merely em-
ploys the minimum gap, which is a simple description of the density. Compactness 
only qualitatively represents dispersion of a shape without considering the quantifica-
tion of distance between pixels. Thus the description of the density is not comprehen-
sive. 

3 The Basic Concepts 

Before discussing the algorithm proposed in this study, some basic concepts about 
density are necessary to be introduced. 

3.1 Convex Hull 

The convex hull of a shape is defined as its initial envelope, as shown in Fig. 3. 
 

(a) (b) 

Fig. 3. The effect of convex hull: (a) a Chinese character (b) corresponding convex hull 

3.2 Hole 

A hole of a connected component is a closed region whose gray level is obviously 
different from others. In a binary image, a hole is a black region in a white connected 
component, as shown in Fig. 4. 

(a) (b) 

Fig. 4. The effect of filling holes: (a) a Chinese character (b) the effect after filling holes 

3.3 Morphologic Closing Operation 

A shape’s morphologic closing operation corresponds to (1) the morphologic dilation 
and (2) the morphologic erosion with Eq. (1) – (6) illustrated in Gonzalez et al [26]: 
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ܣ  ڄ ܤ ൌ ሺܣ ْ ሻܤ ٚ  (1) ܤ

ܣ  ْ ܤ ൌ ቄݖቚ൫ܤ൯௭ ת ܣ ്  ቅ (2)

ܣ  ٓ ܤ ൌ ሼݖ|ሺܤሻ௭ ת ܣ ൌ  ሽ (3)

ܣ  ൌ ሼݓ|ݓ ב  ሽ (4)ܣ

ܤ  ൌ ሼݓ|ݓ ൌ െܾ, ܾ ∈  ሽ (5)ܤ

 ሺܤሻ௭ ൌ ሼܿ|ܿ ൌ ܾ  ,ݖ ܾ ∈  ሽ (6)ܤ

4 Density Analysis 

Density is one of the important properties for shape analysis. A character, in this pa-
per, is regarded as a shape composed of multiple connected components. By analyz-
ing the elements and structures in characters, many factors contributing to the density 
are found. We select five dominant metrics for a more in-depth analysis and effective 
description of density: (1) center-to-center distance of connected components, (2) gap 
between connected components, (3) ratio of perimeter and area (4) connected compo-
nents area ratio, and (5) area ratio of holes. More details about them and their rela-
tionships are provided in following subsections. 

4.1 Center-to-Center Distance of Connected Components (CCDCC) 

To achieve an accurate description of density, the distribution of all connected com-
ponents in a Chinese character is taken into account firstly. The distances between 
geometric centers of connected components can be used as an important feature. 
Hence, we propose the connected components center distance (CCDCC) to represent 
the layout information in a character. The CCDCC is defined as following: 

 ݀ ൌ ට൫ݔҧ െ ҧ൯ଶݔ  ൫ݕ െ ത൯ଶݕ
 (7) 

ܦ  ൌ ൛݀ଵଶ, ݀ଵଷ, ڮ , ݀, ڮ , ݀ሺିଵሻൟ, |ܦ| ൌ ,ሺ݊ܥ 2ሻ (8) 

where ሺݔҧ , ,ҧݔതሻ and ൫ݕ -ത൯ are the ith and jth connected component’s center, respecݕ
tively, i = 1, 2, …, n, j = 1, 2, …, n, i ≠ j, D is the set of center distances, and n is the 
number of connected components of a Chinese character. 

Referring to the perspective that Liu et al. [8] and Bai et al. [9] proposed graph 
structure for image matching, we represent each of the connected components with its 
centroid. Then, a Chinese character is converted to a graph, all connected components 
mapping to the graph nodes. CCDCC is based on distances between each pair of the 
nodes. 

The CCDCC metric, obviously, is sensitive to the areas of connected components. 
When the area is small, it performs well in revealing the distance between two con-
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nected components. On the contrary, if the regions of connected components enlarge 
in size, the distance between them is unsuitable to be described only with CCDCC. To 
eliminate the negative influence, we assign different weights to the CCDCCs, a mi-
nimal weight wmin given to the maximal center distance dmax, a maximal weight wmax 
given to the minimal center distance dmin, and an average weight wavg given to the 
average center distance davg. The weighted CCDCC, WCCDCC, is obtained in  
Eq. (10), 

 ݀௩ ൌ ∑ ௗೕିௗೌೣିௗ||ିଶ  (9) 

ܥܥܦܥܥܹ  ൌ ௗೌೣכ௪ାௗכ௪ೌೣାௗೌೡכ௪ೌೡೌೌ  (10) 

where ∑ ݀  is the sum of all center distances and Ldiagonal is the diagonal length of 
bounding box of a character. Two examples are shown in Fig. 5. 

(a) (b) 

Fig. 5. An example of WCCDCC (a) WCCDCC = 0.1348 (b) WCCDCC = 0.5142 

4.2 Gap between Connected Components (GCC) 

Another feature of component distribution is the gaps between connected compo-
nents. We improve the porosity metric [2] based on gaps for more accurate density 
measurement at local level.   

We adopt a closing operation to measure the gap between two connected compo-
nents. The closing operation uses a predefined structure element (eg. circle) at differ-
ent scales (radius) to analyze the size of the gap. A morphologic closing operation is 
adopted to maintain the original shape compared to the morphologic dilation, and it is 
useful for gap junction between connected components. The size of gap is obtained 
when the circle radius are large enough to merge the two connected components. 

Therefore, the minimum diameter of the circle that leads to joining two connected 
components together reveals the size of gap objectively, and then, this diameter is 
defined as the size of gap (gapij) between two connected components. A set GAP_SET 
composed of all the gapij is obtained in Eq. (11) and Eq. (12) based on the operation 
of morphologic closing predefined in Section 3.3. 

ܽ݃  ൌ 2 כ ݉݅݊൛ݏห݊݉ܥ൫ܣ ڄ ௦൯ܤ ൌ 1ൟ (11) 

ܣܩ  ௌܲா் ൌ ൛݃ܽଵଶ, ,ଵଷܽ݃ ڮ , ,ܽ݃ ڮ , ,ሺିଵሻൟܽ݃ |ܩ| ൌ ,ሺ݊ܥ 2ሻ (12) 

where Aij is a target shape composed of the ith and jth connected components, Bs is a 
predefined structure element (such as a circle) at scale s, Compn(X) returns the num-
ber of connected components in the shape X, gapij is the gap between the ith and jth 
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connected component, i = 1, 2, …, n, j = 1, 2, …, n, i ≠ j, and n is the number of con-
nected components in a Chinese character. Finally, an average value of gaps is calcu-
lated with Eq. (13). 

௩ܽ݃  ൌ ∑ ೕିೞכೞିೌೣכೌೣିכ|ீ|ିೞିೌೣି  (13) 

where gapmost, gapmax, gapmin and gapavg respectively denotes the mode gap value, 
maximum value, minimum value and the average in the GAP_SET, nmost, nmax, nmin 
and navg denote the numbers of corresponding gaps individually. 

4.3 Ratio of Perimeter and Area (RPA) 

The appearance of the outline also affects character density. Bribiesca [3] proposed a 
simple and effective measurement for the compactness of 2D and 3D shapes. We 
employ compactness to depict the density of Chinese characters in reference to the 
equation in 2D domain. Compactness for a 2D shape associates the perimeter with the 
area of the shape and can be measured by the ratio (perimeter2) divided by area. The 
contact perimeter corresponds to the sum of the lengths of the segments shared by two 
adjacent pixels. The relation between the contact and the shape perimeters is 
represented by Eq. (14). 

 2 ܲ  ܲ ൌ  (14) ܰܮ4

where PC is the contact perimeter, P is the perimeter of the shape, L is the length of a 
side of the pixel, and N is the number of pixels. In Fig. 6, each square represents an 
image pixel, the solid lines denote the perimeter, and the dashed ones correspond to 
the contact perimeter, N = 9, L = 1, P = 12, PC = 12. 

 

Fig. 6. A shape composed of 9 pixels 

RPA of a Chinese character is calculated using Eq. (15). 

ܥ  ൌ ିോସି√  (15) 

RPA can be applied not only to Chinese characters with multiple connected com-
ponents, but also to those with single connected component. RPA reveals the distribu-
tion of all pixels of a character and partially describes its density. A higher pixel  
distribution results in a more concentrated image, as shown in Fig. 7. 
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(a) (b) 

Fig. 7. An example of the RPA (a) RPA = 0.9922 (b) RPA = 0.9514 

4.4 Connected Components Area Ratio (CCAR) 

The scale of connected components refers to the fullness by which the strokes of a 
Chinese character cover the entire region. A character is the foreground, and the  
convex hull is the background. The ratio of the foreground area, CCAR, is used for 
calculating the scale of the connected components. As shown in Eq. (16), CCAR is 
calculated as the ratio of the sum area of all connected components in a Chinese cha-
racter with respect to the area of the region enclosed by the entire convex hull:  

ܴܣܥܥ  ൌ ௦భା௦మାڮା௦ାڮା௦ௌ  (16) 

where si and Scon denote the ith area of the connected component and that of the con-
vex hull in a Chinese character, respectively, i = 1, 2, …, n, and n is the number of 
connected components. 

The higher the CCAR of a Chinese character, the denser is the image being per-
ceived by human visual perception, as shown in Fig. 8. 

 

(a) (b) 

Fig. 8. An example of CCAR: (a) CCAR = 0.2979 and (b) CCAR = 0.4122 

CCAR can be applied to both characters with multiple connected components and 
characters with single connected components.  

4.5 Area Ratio of Holes (ARH) 

The structure of strokes in a Chinese character also affects the human vision about 
density. The hole, predefined in Section 3.2, is one of the most important and relative-
ly dominant parts of a character. We consider the scale of the holes and define it as 
ARH based on the algorithm in Soffer et al. [4] with Eq. (17) 

ܪܴܣ  ൌ ௌௌ (17) 

where Shole is the area of all holes in a Chinese character, and Scom is the area of the 
character whose holes have been filled. 
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Though CCAR can reveal density differences to a certain extent, it is not always 
the best factor. For example, the CCAR of Fig. 9(a) and (b) are nearly the same, but 
(b) looks denser than (a). 

 

(a) (b) 

Fig. 9. An example of CCAR and ARH: (a) CCAR = 0.4171, ARH = 0.2195 and (b)CCAR = 
0.4138, ARH = 0.0915 

ARH reveals the relative size of the holes in a Chinese character. When ARH is 
high, the hole is large with respect to the character, and the character will seem loose 
and expanded to human vision. In the same example, Fig. 9 (a) has larger holes than 
(b), hence (b) appears denser. 

4.6 Overall Density Metric 

With the above extracted five density features, a density descriptor can be directly 
obtained by the five-dimension vector Vdensity expressed as Eq. (18).  

 ௗܸ௦௧௬ ൌ ሺܹܥܥܦܥܥ, ,ܲܣܩ ,ܣܴܲ ,ܴܣܥܥ  ሻ (18)ܪܴܣ

However, the five factors have varying importance. CCAR and RPA are only ef-
fective in local regions. They are used as weights to adjust other global factors. More 
specifically, to quantify the density of a character, we give different gaps obtain in 
section 4.2 with different weights. CCAR and RPA are adopted to calculate weights 
in Eq. (19) to enhance the gap value, because they have closer relationships with gaps, 

ܲܣܩ  ൌ ௦௧ܽ݃ כ ௦௧ݓ  ௫ܽ݃ כ ௫ݓ  ܽ݃ כ ݓ  ௩ܽ݃ כ  ௩ (19)ݓ

where gapmost, gapmax, gapmin and gapavg respectively denotes the mode gap value, 
maximum value, minimum value and the average; wmost, wmax, wmin and wavg are their 
weights; GAP is the enhanced gap value, and an example is shown in Fig. 10. 

We thus propose a combined form density metric. While GAP is calculated based 
on CCAR and RPA, the final density is the combination of the other three metrics, 
namely, ARH, WCCDCC, and GAP. We normalize GAP by Ldiagonal as Eq. (20) to 
derive GAPnorm. The overall density metric is defined in Eq. (21). 

ܣܩ  ܲ ൌ ீೌೌ (20) 

ݕݐ݅ݏ݊݁ܦ  ൌ ሺܹܥܥܦܥܥ  ܣܩ ܲ  ሻܪܴܣ ോ 3 (21) 

(a) (b) 

Fig. 10. An example of GAP (a) GAP = 22 (b) GAP = 64 
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5 Experiments 

5.1 Setup and Datasets 

The experiment environment included an Intel Core i3 (3.30 GHz) processor with 
4.00 G RAM and Windows 8 operating system, as well as Matlab 2013a. 

We access four Chinese character databases, with each corresponding to a type-
face, namely, Song, Fangsong, boldface, and regular script. Each database also con-
tains 6,715 Chinese characters that are 128 x 128 in size. 

5.2 Experiment Results 

Comparison Results. We calculate the five features and the density of each Chinese 
character in the four databases and compare them. The samples of comparison results 
are shown in Table 1. 

Table 1. The samples of comparison on the five features of four different typefaces 

 Song Fangsong Boldface Regular Script 

(a) 
  

WCCDCC 0 0 0 0 
GAP 2.5 2.5 2.5 2.5 
RPA 0.8943 0.9306 0.9766 0.9619 

CCAR 0.5399 0.9159 0.9690 0.8449 
ARH 0 0 0 0 

Density 0.0072 0.0079 0.0075 0.0073 

(b) 
  

WCCDCC 0.3154 0.2938 0.3329 0.3150 
GAP 8 8 8 12 
RPA 0.9333 0.9111 0.9632 0.9353 

CCAR 0.2874 0.2459 0.4413 0.3062 
ARH 0.2595 0.2207 0.1381 0.1305 

Density 0.2077 0.1883 0.1734 0.1734 

(c) 
  

WCCDCC 0.3443 0.3017 0.3457 0.3295 
GAP 57.7750 21.7273 59.1364 77.8000 
RPA 0.9125 0.8940 0.9469 0.9238 

CCAR 0.2845 0.2605 0.3913 0.3035 
ARH 0 0 0 0 

Density 0.2312 0.1456 0.2375 0.2751 
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Table 1. (continued) 
 

(d) 
  

WCCDCC 0.2765 0.2792 0.2871 0.2895 
GAP 23.7000 21.7000 26.4000 19.8000 
RPA 0.9456 0.9352 0.9701 0.9564 

CCAR 0.2888 0.2704 0.4118 0.3695 
ARH 0.5340 0.5122 0.4197 0.4067 

Density 0.3185 0.3113 0.2907 0.2764 

(e) 
  

WCCDCC 0.3290 0.3129 0.3347 0.3096 
GAP 49.0909 17.2364 55.2000 47 
RPA 0.9211 0.8932 0.9491 0.9252 

CCAR 0.3349 0.2620 0.4601 0.3263 
ARH 0 0 0 0 

Density 0.2715 0.1438 0.2346 0.143 

 
Table 1 shows that a Chinese character has similar and different feature values rel-

ative to the typeface. For (a), when the number of the character strokes is small and 
the structure is simple, the density has no obvious differences between the four typical 
typefaces. However, from (b) to (e), as the number of strokes increases and the struc-
ture becomes more complex, the difference in the typefaces become more evident. 
Therefore, for most Chinese characters, density varies with different typefaces. 

Clustering Results. We use the K-means algorithm to cluster Chinese characters with 
boldface based on the feature vectors comprising the five features, namely, 
WCCDCC, GAPnorm, RPA, CCAR and ARH. The experiment results demonstrate, 
that at K = 3, the differences between clusters are the most evident. Tables 2 and 3 
summarize the experiment results and the corresponding character examples for all 
clusters. 

Table 2. The clustering results based on the feature vectors 

 WCCDCC GAPnorm RPA CCAR ARH 
(a) 0.3383 0.4808 0.9519 0.4136 0.0732 
(b) 0.2945 0.0725 0.9606 0.4276 0.1314 
(c) 0.3161 0.2580 0.9543 0.4160 0.0776 
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