
Answering Natural Language Questions
via Phrasal Semantic Parsing�

Kun Xu, Sheng Zhang, Yansong Feng��, and Dongyan Zhao

Peking University, Beijing, China
{xukun,evancheung,fengyansong,zhaodongyan}@pku.edu.cn

Abstract. Understanding natural language questions and converting them into
structured queries have been considered as a crucial way to help users access
large scale structured knowledge bases. However, the task usually involves two
main challenges: recognizing users’ query intention and mapping the involved
semantic items against a given knowledge base (KB). In this paper, we propose
an efficient pipeline framework to model a user’s query intention as a phrase level
dependency DAG which is then instantiated regarding a specific KB to construct
the final structured query. Our model benefits from the efficiency of linear struc-
tured prediction models and the separation of KB-independent and KB-related
modelings. We evaluate our model on two datasets, and the experimental results
showed that our method outperforms the state-of-the-art methods on the Free917
dataset, and, with limited training data from Free917, our model can smoothly
adapt to new challenging dataset, WebQuestion, without extra training efforts
while maintaining promising performances.

1 Introduction

As very large structured knowledge bases have become available, e.g.,YAGO [2],
DBpedia [3] and Freebase[4], answering natural language questions over structured
knowledge facts has attracted increasing research efforts. Different from keyword based
information retrieval, the structure of query intentions embedded in a user’s question
can be represented by a set of predicate-argument structures, e.g., <subject, predicate,
object> triples, and effectively retrieved by a database search engine. Generally, the
main challenge of understanding the query intention in a structural form is to solve
two tasks: recognizing the predicate-argument structures and then instantiating these
structures regarding a given KB.

Considering the example question shown in Figure 1, the structure of the query in-
tention consists of multiple predicate-argument pairs, involving an named entity france
mapping to a KB entity “France”, a word country mapping to a KB type “Country”
and a verb colonise possibly indicating a KB relation a country “/colonise” another
country. Intuitively, the two subtasks would be solved in a joint framework, e.g., [14]

� This work was supported by the National High Technology R&D Program of China (Grant
No. 2012AA011101, 2014AA015102), National Natural Science Foundation of China (Grant
No. 61272344, 61202233, 61370055) and the joint project with IBM Research.

�� Corresponding author.

C. Zong et al. (Eds.): NLPCC 2014, CCIS 496, pp. 333–344, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

334 K. Xu et al.

[which] did [france] [colonise]

variable category

[country]

entity relation

[which]v did [france]E [colonise]R[country]c

[which]v did [france]E [colonise]R[country]c

?x fb:location.country fb:en.france fb:colonise

SP
PO

SC

SP
PO

SC

phrase detecting

parsing

instanting

select ?x where
{

?x fb:object.type fb:location.country
fb:en.france fb:colonise ?x

}

Fig. 1. An example of converting a natural language question into a structured query via phrasal
semantic parsing

proposed a PCFG-based semantic parser to simultaneously learn the combination rules
among words or phrases and the mappings to specific KB components. However, given
the size of existing KBs (usually thousands of predicates, millions of entities and bil-
lions of knowledge facts), it makes difficult to jointly train such a PCFG-based parser
(the model of [14] takes several days to train with 3,000 sentences), and even more
difficult to adapt to other KBs, let alone retrieving multiple KBs within one query, e.g.,
some queries in the QALD task[6] are mixed with predicates from both DBpedia and
Yago. In contrast, we find that recognizing the query intention structure is usually KB-
independent. Take Figure 1 as an example, without grounding to a knowledge base, we
can still guess that a location called france has some relationship, indicated by the verb
“colonise”, with some countries, (the queried objects), which can be learned directly
without reliance on a specified KB. On the other hand, the task of mapping semantic
phrases from the intention structures to items in a given KB and producing the final
structured queries is KB-dependent, since one has to solve these mappings according to
the schema of a specified KB.

Given the observations above, we thus assume that the structure of a question’s query
intention can be learned independent from a specific knowledge base, while grounding
and converting a query intention into a structured query is dependent on a knowledge
base. Our assumption will naturally lead to a pipeline paradigm to translating a natural
language question into a structured query, which can then be directly retrieved by a
structured database query engine, e.g., Virtuoso1.

In this paper, we deal with the task of understanding natural language questions in
a pipeline paradigm, involving mainly two steps: recognizing the query intention struc-
ture inherent in the natural language questions, and then instantiating the query intention
structures by mapping the involved semantic items into existing KBs. In the first phase,
we build a phrase detector to detect possible semantic phrases, e.g., variables, entity
phrases, category phrases and relation phrases. We then develop a semantic parser to

1 http://www.virtuoso.com

Answering Natural Language Questions via Phrasal Semantic Parsing 335

predict the predicate-argument structures among phrases to represent the structure of
query intentions. In the second phase, given the intention structures, we are then able
to adopt a structured perceptron model to jointly solve the mappings between semantic
phrases and KB items. By taking a two-phase format, our proposed model can benefit
from the separation of KB related components and KB independent steps, and recog-
nize the intention structures more efficiently while making the KB-related component
flexible, e.g., we can only retrain the second phase when adapting to new KBs, which
is similar in sprite with [13], who rely on a CCG parser to produce an ontological-
independent logical representation to express users’ intention. We evaluate our model
on three datasets, and show that our model can effectively learn the structures of query
intentions, and outperform the state-of-the-art methods in terms of question-answering
accuracy. Specifically, by testing on a new dataset with large and broad-coverage KB
predicates, our model can still perform comparably to the state of the arts without any
extra training on the new datasets. By just adjusting the KB related components, our
model can maintain a promising results on a new KB.

This rest of the paper is organized as follows. We first briefly describe related work
in Section 2. Our Task definition is introduced in Section 3. Section 4 and 5 describe
the two steps of our framework: recognizing the structure of query intention and instan-
tiating query intention regarding KB. Our experiments are presented and discussed in
Section 6. We finally conclude this paper in Section 7.

2 Related Work

Question answering is a long-standing problem in the field of natural language pro-
cessing and artificial intelligence. Previous research is mainly dominated by keyword
matching based approaches, while recent advancements in the development of struc-
tured KBs and structured query engines have demanded the research of translating nat-
ural language questions into structured queries, which can then be retrieved using a
structured query engine. Existing methods can be roughly categorized into two streams,
pattern/template-based models [8–10] and semantic parsing-based models [11–15].

[8] use lexical-conceptual templates for query generation but do not address the dis-
ambiguation of constituents in the question. [16] rely on a manually created ontology-
driven grammar to directly map questions onto the underlying ontology, where the
grammars are hard to adapt or generalize to other large scale knowledge bases. They
further develop a template-based approach to map natural language questions into struc-
tured queries[10]. [9] collect the mapping between natural language expressions and
Yago2 predicates using a set of predefined patterns over dependency parses, and find
an optimal mapping assignments for all possible fragments in the questions using an
ILP model. Those methods are mainly reply on a set of manually created templates or
patterns to collect lexicons or represent the structure of query intentions, therefore are
difficult to scale in practice due to the manual efforts involved.

[11] use distant supervision to collect training sentences as well as manual rules to
construct CCG lexicons from dependency parses in order to train a semantic parser. [12]
develop a probabilistic CCG-based semantic parser, FreeParser, where questions are au-
tomatically mapped to logical forms grounded in the symbols of certain fixed ontology

336 K. Xu et al.

or relational database. They take a similar distant supervision approach to automatically
construct CCG lexicon and induce combination rules [17], though with inadequate cov-
erage, for example, their parser will fail if any phrase in the question is not included in
the lexicon of the PCCG parser. [14] develop a PCFG-based semantic parser, where a
bridge operation is proposed to improve coverage and they utilize a set of manual com-
bination rules as well as feature-simulated soft rules to combine predicates and produce
logical forms.

To handle the mismatch between language and the KB, [13] develop a PCCG parser
to build an ontology-independent logical representation, and employ an ontology match-
ing model to adapt the output logical forms for each target ontology. [15] first gener-
ate candidate canonical utterances for logical forms, then utilize paraphrase models
to choose the canonical utterance that best paraphrases the candidate utterance, and
thereby the logical form that generated it.

In contrast, we focus on translating natural language questions into structured queries
by separating the KB independent components from the KB-related mapping phase.
Like [12], our model takes question-phrase dependency DAG pairs as input for our
structure recognition phase, but relies far less training data than [12] towards a open
domain parser, since we do not learn KB related mappings during structured predic-
tions. We then learn a joint mapping model to instantiate the phrase dependency DAG
with a given KB. Our model is simple in structure but efficient in terms of training,
since we have a much smaller search space during structure prediction with respect to
the query intention, and still hold the promise for further improvement, for example,
taking question-answer pairs as training data after initializing with some question-DAG
training samples.

3 The Task

We define the task of using a KB to answer natural language questions as follows:
given a natural language question qNL and a knowledge base KB, our goal is to trans-
late qNL into a structured query in certain structured query language, e.g., SPARQL,
which consists of multiple triples: a conjunction of <subject, predicate, object> search
conditions.

4 Recognizing the Structure of Query Intention

Our framework first employs a pipeline of phrase detection and phrase dependency
parsing to recognize the inherent structure of user’s query intention, which is then in-
stantiated regarding a specific KB.

4.1 Phrase Detection

We first detect phrases of interest that potentially correspond to semantic items, where
a detected phrase is assigned with a label l ∈ {entity, relation, category, variable}.
Entity phrases may correspond to entities of KB, relation phrases correspond to KB’s

Answering Natural Language Questions via Phrasal Semantic Parsing 337

predicates and category phrases correspond to KB’s categories. This problem can be
casted as a sequence labeling problem, where our goal is to build a tagger to predict
labels for a sentence. For example:

what are the sub-types of coal
V-B none R-B R-I R-I E-B

(Here, we use B-I scheme for each phrase label: R-B represents the beginning of a
relation phrase, R-I represents the continuation of a relation phrase). We use structured
perceptron[18] to build our phrase tagger. Structured perceptron is an extension to the
standard linear perceptron for structured prediction. Given a question instance x ∈
X , which in our case is a sentence, the structured perceptron involves the following
decoding problem which finds the best configuration z ∈ Y , which in our case is a label
sequence, according to the current model w:

z = arg max
y′∈Y (x)

w · f(x, y′)

where f(x, y′) represents the feature vector for instance x along with configuration y′.
We use three types of features: lexical features, POS tag features and NER features.
Table 1 summarizes the feature templates we used in the phrase detection.

Table 1. Set of feature templates for phrase detection

p = pos tag; n = ner tag; w = word; t = phrase type tag; i = current index
1 unigram of POS tag pi
2 bigram of POS tag pipi+1, pi−1pi
3 trigram of POS tag pipi+1pi+2, pi−1pipi+1, pi−2pi−1pi
4 unigram of NER tag ni

5 bigram of NER tag nini+1, ni−1ni

6 trigram of NER tag nini+1ni+2, ni−1nini+1, ni−2ni−1ni

7 unigram of word wi

8 bigram of word wiwi+1, wi−1wi

9 trigram of word wiwi+1wi+2, wi−1wiwi+1, wi−2wi−1wi

10 previous phrase type ti−1

11 conjunction of previous ti−1wi

phrase type and current
word

4.2 Phrase Dependency Parsing with Multiple Heads

As shown in Figure 1, query intention can be represented by dependencies between
“country”, “france” and “colonise”, forming a phrase dependency DAG, we thus in-
troduce a transition-based DAG parsing algorithm to perform a structural prediction
process and reveal the inherent structures.

338 K. Xu et al.

[what]vIn [year]C did [harry potter and the goblet of fire]E [win]R the [hugo award for best novel]E

fb:m.02hm249
fb:m.05q1cnk
fb:m.0dplz5f
fb:m.08vs8qm
fb:m.031786

...

fb:m.04p4lvx
fb:m.04p3_v_
fb:m.0l_v4kd
fb:m.0gbwdzs
fb:m.0gbwgrp
fb:m.01yz0x

...

fb:sports.sports_team.championships
fb:award.award_winning_work.award
s_won..award.award_honor.award

...

fb:time.month
fb:time.day_of_year
fb:time.event
fb:time.year

...

fb:award.award_winning_work.award
s_won..award.award_honor.award
fb:award.award_winning_work.award
s_won..award.award_honor.year

...

SP
PO

SP
PO

Phrase DAG

Fig. 2. An example of phrasal semantic DAG, where the dashed boxes list the mapping candidates
for all phrases and the underlined are the gold-standard mappings.)

Phrase Dependency DAG. We propose to use the predicate-argument dependencies
to capture the query intention, that is, the arguments of a predicate are dependents of
that predicate. Here, each predicate is either a unary predicate (characterize its only
argument) or a binary predicate (represents the semantic relation between its two argu-
ments). For example, in Figure 2, the category phrase “year” indicates the variable is
one specific year, and the relation phrase “win” indicates that the award “hugo award
for best novel” is won by “harry potter and the goblet of fire”.

Phrase Dependency Parsing. Note that, in our setup, one phrase can have more than
one head, as in Figure 2, variable node what has two heads in the resulting dependency
DAG. We thus use the framework proposed by [19], i.e., extending traditional arc-eager
shift-reduce parsing with multiple heads to find a DAG directly. Specifically, given a
question with sequence of phrases, our parser uses a stack of partial DAGs, a queue of
incoming phrases, and a series of actions to build a dependency DAG. We assume that
each input phrase has been assigned a POS-tag and a semantic label.

Our semantic parser uses four actions: SHIFT, REDUCE, ARCRIGHT and AR-
CLEFT.

The SHIFT action follow the standard definitions that just pushes the next incoming
phrase onto the stack.

The REDUCE action pops the stack top. Note that, the standard REDUCE action
which is taken on the condition that the stack top has at least one head. This precondition
ensures the dependency graph is a connected graph. However, our phrase dependency
parser only concerns the predicate-argument structures, and we add a dependency only
between the predicate and argument of our interest. In our case, the dependency graph
can be a unconnected directed graph.

The ARCRIGHT action adds a dependency edge from the stack top to the first phrase
of the incoming queue, where the phrase on the stack is the head and the phrase in the

Answering Natural Language Questions via Phrasal Semantic Parsing 339

Algorithm 1. The decoding algorithm for the phrase DAG parsing; K is the beam size
Require: sentence x

agenda: hold the K-best candidate items
Ensure: candidate output
1: agenda.clear()
2: agenda.insert(GetStartItem(x))
3: candidate output = NONE
4: while not agenda.empty() do
5: list.clear()
6: for all item ∈ agenda do
7: for all action ∈ getActions(actions, item) do
8: item

′
= item.apply(action)

9: if item
′
.F == TRUE then

10: if candidate output == NONE
or item

′
.score > candidate output.score then

11: candidate output = item
′

12: end if
13: else
14: list.append(item

′
)

15: end if
16: end for
17: end for
18: agenda.clear()
19: agenda.insert(list.best(K))
20: end while

queue is the dependent (the stack and queue are left untouched), as long as a left arc
does not already exist between these two phrases.

The ARCLEFT action adds a dependency edge from the first phrase on the queue
to the stack top, where the phrase in the queue is the head and the phrase on the stack
is the dependent (again, the stack and queue are left untouched), as long as a right arc
does not already exist between the two phrases.

The Decoding Algorithm for Phrase DAG Parsing. We apply the standard beam-
search along with early-update to perform inexact decoding [20] during training. To
formulate the decoding algorithm, we define a candidate item as a tuple <S,Q,F>,
where S represents the stack with partial derivations that have been built, Q represents
the queue of incoming phrases that have not been processed, and F is a boolean value
that represents whether the candidate item has been finished. A candidate item is fin-
ished if and only if the queue is empty, and no more actions can be applied to a candidate
item after it reaches the finished status. Given an input sentence x, we define the start
item as the unfinished item with an empty stack and the whole input sentence as the in-
coming phrases(line 2). A derivation is built from the start item by repeated applications
of actions (SHIFT, REDUCE, ARCLEFT and ARCRIGHT) until the item is finished.

To apply beam-search, an agenda is used to hold the K-best partial (unfinished) can-
didate items at each parsing step. A separate candidate output is used to record the

340 K. Xu et al.

current best finished item that has been found, since candidate items can be finished
at different steps. Initially the agenda contains only the start item, and the candidate
output is set to none(line 3). At each step during parsing, each candidate item from
the agenda is extended in all possible ways by applying one action according to the
current status(line 7), and a number of new candidate items are generated(line 8). If a
newly generated candidate is finished, it is compared with the current candidate output.
If the candidate output is none or the score of the newly generated candidate is higher
than the score of the candidate output, the candidate output is replaced with the newly
generated item(line 11); otherwise the newly generated item is discarded (line 14). If
the newly generated candidate is unfinished, it is appended to a list of newly generated
partial candidates. After all candidate items from the agenda have been processed, the
agenda is cleared(line 18) and the K-best items from the list are put on the agenda(line
19). Then the list is cleared and the parser moves on to the next step. This process re-
peats until the agenda is empty (which means that no new items have been generated in
the previous step), and the candidate output is the final derivation. Pseudocode for the
decoding algorithm is shown in Algorithm 1.

Table 2. The set of feature templates used in our phrase DAG parser

p = phrase; t = POS-tag; s = phrase type
Category Description templates

lexical stack top STpt; STp; ST t;
features current phrase N0pt; N0p; N0t

next phrase N1pt; N1p; N1t;
ST and N0 STptN0pt; STptN0p;
POS bigram N0tN1t
POS trigrams N0N1tN2t;
N0 phrase N0pN1tN2t;

semantic Conjunction of N0s; N0ts; N0ps;
features phrase label and N1s;N1ts;ST tN0s;

pos tag STsN0t; STpN0s;
ST tN0t; STsN0s;

structural Indicates whether ArcLeft(STs, N0s);
features exists an arc ArcRight(STs, N0s)

between the stack
top item and next
input item, and if
so what type of arc

Features. Features play an important role in transition-based parsing. Our parser takes
three types of features: lexical, semantic and structure-related features. We summarize
our feature templates in Table 2, where ST represents the top node in the stack, N0,
N1, N2 represent the three incoming phrases from the incoming queue, subscript t
indicates POS tags, subscript p indicates lexical surface forms and subscript s represent
the semantic label of the phrase (entity,relation, category and variable).

Answering Natural Language Questions via Phrasal Semantic Parsing 341

Lexical features include features used in traditional word level dependency parsing
with some modifications: all co-occurrences are built on phrase nodes and the POS tag
of a phrase is defined as the concatenation of each token’s POS tag in the phrase.

Note that ARCLEFT and ARCRIGHT actions are considered only when the top
phrase of the stack and the next phrase are variable, entity or relation phrases.To guide
the ARCLEFT and ARCRIGHT actions, we introduce semantic features indicating the
semantic label of a phrase.

Recall that, our phrase semantic DAG parser allows one phrase to have multiple
heads. Therefore, we modify the ARCLEFT and ARCRIGHT actions so that they can
create new dependency arcs without removing the dependent from further consideration
for being a dependent of other heads. We thus introduce new structure-related features
to indicate whether an arc already exists between the top phrase on the stack and the
next phrase on the queue.

5 Instantiating Query Intention Regarding Existing KBs

Given the query intention represented in the phrase dependency DAG, we need to
convert it into a structured query Qind, which can be then grounded to a KB-related
database query Qd via mapping the natural language phrases to the semantic items in
the KB, e.g., Freebase. However, each phrase in Qind can be potentially mapped to
multiple candidate items of Freebase, as shown in Figure2. Given a knowledge base KB
and the Qind that consists of n triples, we will have:

Q∗
d = argmaxP (Qd|Qind)

For the simplicity of computation, we made necessary independent assumptions, and
approximate P (Qd|Qind) as:

P (Qd|Qind) =

n∏
i=1

P (sdi |sindi)P (odi |oindi)P (pdi |pindi)

where the (s, p, o) corresponds to the three parts of a query triple: the subject s, predi-
cate p and object o. In practice, we use the Freebase search API2 to compute the proba-
bilities of mapping the subject and object phrase. All subject and object phrases are sent
to this API, which returns a ranked list of relevant items with their scores. We normalize
the score by the sum of all candidate scores.

Inspired by ?, we apply the Naive Bayes model to compute the probability of map-
ping the relation phrase:

P (pd|pind) = P (pind|pd)P (pd)

=
∏
w

P (w|pd)P (pd)

2 https://developers.google.com/freebase/

342 K. Xu et al.

where the w is the word in the phrase pind. We used the dataset contributed by [21]
additionally with type constraints to estimate P (pd) and P (w|pd). For instance, given
the subject /en/france that has a Freebase type /location/country and the object /en/French
that has a Freebase type /language/human language, the target pd should take a subject
of type /location/country and an object of type /language/human language, which are
the type constraints in this case. In this case, the candidates of pd only contains two
properties: /location/country/official language and /location/country/languages spoken.

6 Experiments

6.1 Experimental Setup

The Free917 dataset [12] contains 917 questions annotated with logical forms grounded
to Freebase. Note that in all of our experiments, we only use the training set of Free917
as our training data. To prepare the training data for our parser, we first parse these
questions with CCG parser and accordingly replace the KB items in the gold-standard
logical forms with natural language phrases, which we manually assign a semantic label
to. Following [12], we held out 30% of the data for the final test, and perform 3 random
80%-20% splits of the training set for development.

The WebQuestions dataset [14] contains 5,810 question-answer pairs, with the same
training/testing split with previous work. This dataset was created by crawling ques-
tions through the Google Suggest API, and then obtaining answers through Amazon
Mechanical Turk. We directly employ the parser trained on the Free917 to test on the
test set of WebQuestions and retrieve the answers by executing the queries against a
copy of Freebase using the Virtuoso engine.

When evaluating on the Free917 dataset, we use the parsing accuracy, instantia-
tion accuracy and system accuracy as the evaluation metrics. Specifically, the pars-
ing accuracy evaluates our parsing phase, which converts the question into a KB-
independent logical form. The instantiation accuracy evaluates the mappings from a
KB-independent logical form to a KB-related database query. The system accuracy
evaluates the whole pipeline approach, which converts a question into a KB-related
database query. Note that we also evaluate gold answers for this dataset, since the
queries with aggregation functions may differ from the gold queries. Considering the
WebQuestions dataset only contains the gold answers, we use the F-measure as the
system accuracy to evaluate our approach.

Table 3. Results on test sets of Free917 and WebQuestions

Free917 WebQuestions
CY13 59.0% -
BCFL13 62.0% 35.7%
KCAZ13 68.0% -
BCFL14 68.5% 39.9%
Our work 69.0% 39.1%

Answering Natural Language Questions via Phrasal Semantic Parsing 343

6.2 Main Results

Table 3 represents results on the test set. Our main empirical result on the Free917
dataset is that our system obtains an answer accuracy of 69.0% on the test set, outper-
forming 59% reported by [12], 62% reported by [14]. and 68.5% reported by [15].

Note that, the Free917 dataset covers only 635 Freebase predicates and are only
about Freebase. We thus evaluate our parser on a more natural dataset, WebQuestions,
introduced by [14]. WebQuestions consists of 5,810 question-answer pairs involved
more domains and relations.

We experiment on the original test set, directly using the parser trained on Free917
to predict the query intention regarding Freebase. Interestingly, our system is able
to achieve a relative higher accuracy of 39.1% given the fact that the WebQuestions
datasets covers a larger and broader set of predicates in Freebase, indicating that the
KB-independent structured predictions can be learned separately from the KB-related
mappings, while maintaining a comparable performance. In other words, these experi-
ments show that regardless of the topics people are asking, their way of presenting the
questions are still similar, which can be captured by learning the structures of phrases
of semantic meanings.

6.3 Error Analysis

We analyzed the WebQuestions and the Free917 examples and found several main
causes of errors: (i)Phrase detection also accounts for many errors, e.g., the entity phrase
detected in “What is the name of justin bieber brother” is “justin biber brother” and not
“justin biber”. This detection error is propagated to phrasal semantic parsing (ii)the
probabilistic mapping model may map a relation phrase to a wrong predicate, which is
mainly due to the limited coverage of our mapping resources. (iii)our system is unable
to handle temporal information, which causes errors in questions like “what kind of
government did the united states have after the revolution” in WebQuestions, where we
fail to recognize “after the revolution” as a temporal constraint, due to the fact that we
never saw this syntax structures in our training data.

7 Conclusion and Future Work

In this paper, we propose a novel framework to translate natural language questions
into structural queries, which can be effectively retrieved by structured query engines
and return the answers according a KB. The novelty of our framework lies in modeling
the task in a KB-independent and KB-related pipeline paradigm, where we use phrasal
semantic DAG to represent users’ query intention, and develop a KB-independent shift-
reduce DAG parser to capture the structure of the query intentions, which are then
grounded to a given KB via joint mappings. This gives the advantages to analyze the
questions independent from a KB and easily adapt to new KBs without much human
involvement. The experiments on two datasets showed that our model outperforms the
state-of-the-art methods in Free917, and performs comparably on a new challenging
dataset without any extra training or resources.

Currently, our model requires question-DAG pairs as the training data, though we do
not need to annotate new data for every datasets or KBs, it is still promising to extend

344 K. Xu et al.

our model to train on question-answer pairs only, further saving human involvement.
Secondly, in the pipeline of phrase detection and phrase dependency parsing, error prop-
agated from the upstream to downstream. A joint model with multiple perceptrons may
help to eliminate the error propagation.

References
1. Fader, A., Soderland, S., Etzioni, O.: Identifying Relations for Open Information Extraction.

In: EMNLP, pp. 1535–1545 (2011)
2. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A core of semantic knowledge. In: WWW,

pp. 697–706 (2007)
3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A Nu-

cleus for a Web of Open Data. In: Aberer, K., et al. (eds.) ASWC/ISWC 2007. LNCS,
vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

4. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: A collaboratively cre-
ated graph database for structuring human knowledge. In: SIGMOD, pp. 1247–1250 (2008)

5. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic Parsing on Freebase from Question-
Answer Pairs. In: EMNLP, pp. 1533–1544 (2013)

6. Cimiano, P., Lopez, V., Unger, C., Cabrio, E., Ngonga Ngomo, A.-C., Walter, S.: Multilingual
Question Answering over Linked Data (QALD-3): Lab Overview. In: Forner, P., Müller, H.,
Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 321–332. Springer,
Heidelberg (2013)

7. Kwiatkowski, T., Choi, E., Artzi, Y., Zettlemoyer, L.S.: Scaling Semantic Parsers with On-
the-Fly Ontology Matching. In: EMNLP, pp. 1545–1556 (2013)

8. Frank, A., Krieger, H.-U., Xu, F., Uszkoreit, H., Crysmann, B., Jörg, B., Schäfer, U.: Ques-
tion answering from structured knowledge sources. J. Applied Logic, 20–48 (2007)

9. Yahya, M., Berberich, K., Elbassuoni, S., Ramanath, M., Tresp, V., Weikum, G.: Natural
Language Questions for the Web of Data. In: EMNLP-CoNLL, pp. 379–390 (2012)

10. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Gerber, D., Cimiano, P.:
Template-based question answering over RDF data. In: WWW, pp. 639–648 (2012)

11. Krishnamurthy, J., Mitchell, T.: Weakly Supervised Training of Semantic Parsers. In:
EMNLP-CoNLL, pp. 754–765 (2012)

12. Cai, Q., Yates, A.: Semantic Parsing Freebase: Towards Open-domain Semantic Parsing. In:
SEM (2013)

13. Kwiatkowski, T., Choi, E., Artzi, Y., Zettlemoyer, L.S.: Scaling Semantic Parsers with On-
the-Fly Ontology Matching. In: EMNLP, pp. 1545–1556 (2013)

14. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic Parsing on Freebase from Question-
Answer Pairs. In: EMNLP, pp. 1533–1544 (2013)

15. Berant, J., Liang, P.: Semantic Parsing via Paraphrasing. In: ACL (2014)
16. Unger, C., Cimiano, P.: Pythia: Compositional Meaning Construction for Ontology-based

Question Answering on the Semantic Web. In: Muñoz, R., Montoyo, A., Métais, E. (eds.)
NLDB 2011. LNCS, vol. 6716, pp. 153–160. Springer, Heidelberg (2011)

17. Kwiatkowski, T., Zettlemoyer, L.S., Goldwater, S., Steedman, M.: Inducing Probabilistic
CCG Grammars from Logical Form with Higher-Order Unification. In: EMNLP, pp. 1223–
1233 (2010)

18. Collins, M.: Discriminative Training Methods for Hidden Markov Models: Theory and Ex-
periments with Perceptron Algorithms. In: EMNLP (2002)

19. Sagae, K., Tsujii, J.: Shift-Reduce Dependency DAG Parsing. In: COLING, pp. 753–760
(2008)

20. Collins, M., Roark, B.: Incremental Parsing with the Perceptron Algorithm. In: ACL, pp.
111–118 (2004)

21. Yao, X., Van Durme, B.: Information Extraction over Structured Data: Question Answering
with Freebase. In: Proceedings of ACL (2014)

