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Abstract.: Entity linking has received much more attention. The purpose of 
entity linking is to link the mentions in the text to the corresponding entities in 
the knowledge base. Most work of entity linking is aiming at long texts, such as 
BBS or blog. Microblog as a new kind of social platform, entity linking in 
which will face many problems. In this paper, we divide the entity linking task 
into two parts. The first part is entity candidates’ generation and feature extrac-
tion. We use Wikipedia articles information to generate enough entity candi-
dates, and as far as possible eliminate ambiguity candidates to get higher  
coverage and less quantity. In terms of feature, we adopt belief propagation, 
which is based on the topic distribution, to get global feature. The experiment 
results show that our method achieves better performance than that based on 
common links. When combining global features with local features, the perfor-
mance will be obviously improved. The second part is entity candidates  
ranking. Traditional learning to rank methods have been widely used in entity 
linking task. However, entity linking does not consider the ranking order of 
non-target entities. Thus, we utilize a boosting algorithm of non-ranking  
method to predict the target entity, which leads to 77.48% accuracy. 
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1 Introduction 

Entity linking, a task to make the mentions certain in tweets, is to link mentions to the 
unambiguous knowledge base. Entity linking usually can be divided into two major 
steps: entity candidates’ generation and ranking.  

The first step is to generate candidate sets of entities. The entity candidates’ gener-
ation process often involves query expansion. Mining the text of mentions and mak-
ing full use of various resources will expand mentions to the entities that are literally 
close. Using search engine with the HTML marks could obtain huge sets of relevant 
candidates. The main drawback is that this approach requires to crawl a lot of docu-
ments from the search engine. For different search engines, we need to make different 
rules to expand the mentions. We utilize Wikipedia article pages as extended entity 
reference resources and fully mine the Wikipedia article’s text. To a specified men-
tion, the entity candidates will be quite large, and include many ambiguous candi-
dates. Therefore, we design a reasonable classifier to reduce the number of entity 
candidates and increase the coverage of target entities. 
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As the language used in tweet is not formal and the text is short, only limited fea-
tures could be effectively extracted. For entity linking, features are usually 
represented in space vector. The element’s value in the vector can be binary or TF-
IDF, and this vector is very sparse. The local features mainly focus on the relation-
ships between entities and mentions. In addition to the context semantic similarity of 
TF-IDF, there are anchor text prior probability, string edit distance between mention 
and entity’s Wikipedia article title, the position of ranking returned by search engine, 
the length and page views of the candidates’ Wikipedia articles. Global features are 
mainly considering the relationship among candidates. For different mentions from 
the same tweet, their target entities should have coordinate relationship. We use topic 
distribution instead of common links to get global feature during belief propagation. 
Topic distribution provides more information than common links in the perspective of 
semantics.  

A problem often faced in information retrieval is to rank query’s related docu-
ments, in the recommendation system is primarily to recommend interested items to 
users, however in entity linking is to rank the entity candidates and choose the candi-
date of the Top1. Ranking task usually adopts scoring mechanism. However, in entity 
linking, learning to rank method is often used to rank the candidates. Pairwise ap-
proach will transform the order of entity candidates into pairs, which the more related 
entity with the less one to be labeled as +1, otherwise -1. While the listwise approach 
makes use of the order sequence of entity candidates. In information retrieval, the 
number of training set is very large due to the fact that every pair of the candidates 
and every different order sequence could be made into a new training example. Since 
only predicting the Top1 candidate as the result of candidates’ ranking without consi-
dering the other candidates’ relative ranking and the mentions in entity linking have 
the similar feature distribution, we believe the model based on single candidate will 
produce a better result in entity linking task. We adopt Regularized Greedy Forest 
model [1], which is based on Gradient Boosting Decision Tree [2], to predict the tar-
get candidate. Our experiment results show that this method which doesn’t rely on 
relative ranking features could produce a better performance.  

2 Related Work 

Entity candidates’ generation directly affects the performance of the entity linking. 
Generating entity candidates usually adopts abbreviated words expansion, domain 
dictionary building. Chang [3] used online abbreviation dictionary to expand relative-
ly formal medical abbreviations. Han [4] matched the words before the phrases, such 
as “also called”, “known as”, “short for”. But these methods have not considered 
abbreviations for informal words. Nadeau [5] used supervised machine learning me-
thods and taken advantage of part of speech information. However, this method could 
only be limited to the situation that abbreviation and the expansion of words are in the 
same sentence. When extended to the other documents, the performance would be 
seriously affected by the noise data. Zhang [6] also made use of supervised machine 
learning methods which relied not only on HTML mark and language clues, but also 
on semantic information.  
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Features measuring mention and entity’s relevancy are referred to local features. 
Local features often used vector dot product, cosine similarity, K-L divergence, Jac-
card distance, etc. Liu [7] utilized both local features and global features. Local fea-
tures included edit distance similarity between mentions and entities, the probability 
of mention as anchor text to be appeared in the entity's Wikipedia article, etc. Global 
features described the relationship among the entities of different mentions in a tweet, 
such as the common link of entities’ Wikipedia articles. Han [8] built a collective 
graph model to coordinate the relationship among entities of different mentions and 
correlate mentions with entities in Wikipedia knowledge base. Zheng [9] taken advan-
tage of deep neural network to represent the mentions’ text and entities’ Wikipedia 
articles respectively.  

Linking mentions into knowledge base is usually seen as a way to provide seman-
tic information. The idea has been widely applied to various kinds of media, such as 
text, multimedia, news, radio reports, etc. Milene and Witten [10] used traditional 
classifiers such as Naïve Bayes, C4.5[11]. Meij adopted the Gradient Boosting Deci-
sion Tree model to predict the target entity. Another common method to link men-
tions to entities in knowledge base was to use learning to rank model. Zheng [12] 
utilized pairwise method (Ranking Perceptron [13]) and listwise method (ListNet 
[14]). In this paper, we make use of belief propagation process on the topic distribu-
tion to obtain global feature and analyze the validity of this feature and other local 
features. Then we compare the learning to rank method with Regularized Greedy 
Forest, an improved Gradient Boosting Decision Tree model. 

3 Candidates Generation and Ranking 

3.1 Candidates Generation 

Entity candidates’ generating process involves query expansion. Various resources 
could be made full use of to expand the mentions. We mine the Wikipedia pages and 
extract redirect page title, disambiguation page title, bold words in first paragraph,  
 

Table 1. Feature set for filtering ambiguous candidates 

Feature Feature Description 

Cap_All Whether mention is capitalized. 

LCS_First Edit distance between mention and first letter of entity word. 

Length_3 Whether the length of mention is less than 3. 

Parenthesis Whether entity has parenthesis. 

Match_All Whether mention and entity’s string match exactly. 

Redirects Whether entity is from redirect page. 

Disam Whether entity is from disambiguation page. 

Anchor Whether entity is anchor text. 

Bold Whether entity is bold. 
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anchor texts of the mention’s candidates. The set of entity candidates is quite large 
and contains many ambiguous candidates. Thus we train SVM model to filter parts of 
the candidates to ensure the quality of the entity candidates. Table 1 shows the fea-
tures we used to train our model. 

3.2 Candidates Ranking 

Features for Linking  
In this part, we will introduce the features used for candidates ranking. The features 
include local features and global features. First we define the symbol used in describ-
ing features as showed in Table 2. 

Table 2. Symbol used to describe feature 

Symbol Description 

M   Mention. 

E  Entity candidate. 
Ei  Entity candidate of the ith mention. 

 

• 1f  is the prior probability which is the quantitative proportion of M to be pre-

sented as anchor text in M，s candidates’ Wikipedia article. 
• 2f  is edit distance similarity between E and M . 

• 3 4,f f  are binary values. The feature value will be 1, if M contains E, otherwise 0. 

• 5f  is a feature related with ranking position of Wikipedia search result. If the posi-

tion is in the first place, the value will be 1, otherwise 0. 

• 6f  is the TF-IDF similarity between M，s tweet and E，s Wikipedia article. 

• 7 8,f f  are E，s Wikipedia article’s length and page view counts respectively. 

• 9 10,f f  are links similarity and topic distribution similarity between Ei and E j of 

different mentions in a tweet. 

Wikipedia articles contain a large number of anchor texts. These text information 
together with the non-text information, such as text length and page view counts, can 
be viewed as the prior knowledge. Feature 9 10f f,  are global features which describe 

the coordination degree between two entities of different mentions while the others 
are local features which only consider the relationship between mention and its candi-
date entity.  

If the entity candidates of different mentions are related to some extent, their Wiki-
pedia articles will also have common inner links. The more the same common inner 
links they have, the more similar their contents are. The candidates of different men-
tions in a tweet also have semantic relationships to some degree. The same topic dis-
tribution should be followed by these entity candidates. We take advantage of belief 
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propagation on the candidates’ common links and topic distribution to obtain the 
coordination degree between mentions and their candidates. The belief propagation is 
showed as: 

 - 01*(1 )* *kk VB VV λ λ= − +  (1) 

In the belief propagation, we useV to represent the belief vector. The vector has 

1n  elements related with mentions and 2n elements with candidates. B is the matrix 

of belief with 2( )1 2n + n elements. [ ]B i, j  is the belief that element j propagates to 

element i . If element j is an entity and element i is a mention, the value of [ ]B i, j  is 

showed in formula 2. If element j is an entity and element i is also an entity, [ ]B i, j  

will use formula 3 as its value. Otherwise, [ ]B i, j will be 0. We initial the belief vec-

tor 0 1[1: ]V n with formula 2. 0 1 1 2[ : ]V n n n+  is set to be 0. λ is the tradeoff between 

original and reallocated belief. After the K times of iterations in the belief propaga-
tion, we will get the final belief vector kV . 
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Where ( , )i jS E E could make use of various similarity measurement between two 

candidates of different mentions in a tweet. The similarity between two candidates 
which is based on common links could be obtained as: 
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  WhereW is the counts of Wikipedia articles and A , B are the sets of entities which 
link to entity iE , jE respectively. In this paper, we make use of topic distribution simi-

larity to compute ( , )i jS E E . 

Methods for Linking 
Ranking problem in entity linking and information retrieval have the same substance. 
Thus the method of learning to rank is often used to rank the entity candidates from 
pairwise approach(RankSVM [15], RankBoost [16], RankNet [17]) to listwise ap-
proach(AdaRank [18], ListNet). We take advantage of Regularized Greedy Forest. 
According to Friedman, when setting the shrinkage parameter small enough, the gra-
dient boosting could achieve good performance. The Fully-Corrective Gradient 
Boosting is to avoid the small step size problem as showed in Algorithm 1. 
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Algorithm 1. Fully-Corrective Gradient Boosting 
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Regularized Greedy Forest uses the Fully-Corrective Gradient Boosting to learn a 
decision forest. At the same time, all the parameters of the trained decision trees 
would be adjusted during each model training time, such as the number of decision 
trees, leaf nodes. The sparse combination of decision rules is completed by the greedy 
search. After obtaining a large number of decision trees, RGF will regularized the 
model appropriately. 

4 Experiments 

4.1 Experiment Setting 

We adopt the Yahoo scientist Meij’s annotation data set. We divide 502 tweets into 
5:1 as the training set and testing set. For the text information and non-text informa-
tion related with entities, we make use of the Wikipedia API to get them. The metrics 
to measure the experiment’s results are  

 ,0 ,0| { | } |
Accuracy i i iC C

N

ς=
=  (5) 
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Where iC is the candidate set of mention ,i ,0iC  is the candidate which ranks at the 

first position for mention .i iς  is the gold standard annotation for mention i . N is the 

number of mentions in the data set. 
Firstly, we make an experiment to decide the size of candidates set which to ensure 

a higher coverage of the gold candidate. Secondly, we verify the effectiveness of local 
features and global features respectively. In the end, we compare the learning to rank 
methods with Regularized Greedy Forest. 
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4.2 Results and Analys
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common links. When combining global features with local features, performance will 
be obviously improved. We compared the traditional learning to rank methods with 
Regularized Greedy Forest. Experiment results show that the RGF model could 
achieve a better performance in the tweets’ entity linking task.  
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