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Abstract. Time stamped texts or text sequences are ubiquitous in real
life, such as news reports. Tracking the topic evolution of these texts
has been an issue of considerable interest. Recent work has developed
methods of tracking topic shifting over long time scales. However, most
of these researches focus on a large corpus. Also, they only focus on
the text itself and no attempt have been made to explore the temporal
distribution of the corpus, which could provide meaningful and compre-
hensive clues for topic tracking. In this paper, we formally address this
problem and put forward a novel method based on the topic model. We
investigate the temporal distribution of news reports of a specific event
and try to integrate this information with a topic model to enhance the
performance of topic model. By focusing on a specific news event, we
try to reveal more details about the event, such as, how many stages are
there in the event, what aspect does each stage focus on, etc.
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1 Introduction

Wth the dramatic increase of these digital document collections, the amount
of information is far more beyond that person can efficiently and effectively
process. There is a great demand for developing automatic text analysis models
for analyzing these collections and organizing its contents. Probabilistic topic
models, such as Latent Dirichlet Allocation (LDA) [1], Author-Topic Model [2]
were proven to be very useful tools to address these issues.

With the need to model the time evolution of topics in large document collec-
tions, a family of probabilistic time series models were developed. Dynamic topic
model (DTM) [3] captures the evolution of topics in a sequentially organized cor-
pus of documents. Topic over Time (TOT) [4] model treats time as a continuous
variable. Continuous Dynamic Topic Model (cDTM) [5] uses Brownian motion
to model continuous time topic evolution. iDTM [6] is an infinite dynamic topic
model which allows for an unbounded number of topics and captures the ap-
pearance and vanishing of topics. These models are quite useful when dealing
with corpus with many different topics mixed up, but when it comes to a specific
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news event, the result seems to be not such remarkable. A couple of methods for
generating timeline were proposed to deal with these issues in recent year [7],
[8], [9].

However, most of these methods are trying to get a summarization of the
event from the text but none of these methods mentioned above have taken
the advantage of the temporal information as a prior knowledge. In this paper,
we first explore the temporal distribution of news event, then propose an al-
gorithm to automatically divide the corpus into different stages, in which the
documents may have more coherence. By incorporating temporal information to
topic model, we introduce a framework for tracking a specific news event evolu-
tion. The rest of this paper is organized as follows. In section 2, we illustrate the
temporal distribution of the news event and describe the division algorithm in
detail. In section 3, we propose our analysis framework and explain how temporal
information can enhance the topic model. In section 4, we present the case study
experiment in detail. In section 5, we conclude the paper with some analysis and
outlook for future work.

2 Temporal Distribution of News Events

When a sensational event burst out, related reports will overflow in media very
soon. Later the quantity of related reports would gradually decline. But once new
details are disclosed or someone else is involved, the event gains its popularity
again and likewise the amount of related reports would move up sharply. Suppose
we label each of the popular period as a stage. Generally, most news events may
have several stages, and each stage has its own focus. The results showed in the
Fig.1 are exactly in conformity with what we’ve assumed above.
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Fig. 1. Temporal distribution of news reports quantity about ”Edward Snowden” and
”Obamacare”. X-axis represents day’s interval from the beginning date and the Y-axis
represents article count. Articles were crawled from The Guardian with the key words
”Edward Snowden” from 9 June 2013 to 10 Jan 2014, and ”Obamacare” from 1 Jan
2013 to 10 Jan 2014.
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2.1 Documents Division and the Adaptive K-Means Algorithm

In Blei’s DTM [3], the corpus was evenly divided by time, thus every episode
has the same time scale. Let’s take a look at the Fig.1, if the documents are
divided by time evenly, the dividing points may just locate at the peak point.
Intuitively, this is not a good choice. Because the reports around the peak point
mainly focus on the same aspect and they have a strong coherence.

So, we propose a simple but efficient method which is called the Adaptive
K-Means algorithm. This algorithm is based on the K-Means algorithm[10] and
could automatically divide the documents without setting the cluster number K
in advance. In this paper the cluster number K means the episode number. The
algorithm is described as follow:

Algorithm 1: Adaptive K-Means algorithm

Data: X: news count of each day; max k: the maximum k; t: threshold value
Result: count: article count of each episode; dists: weighted mean distance

array; K: the best count of cluster

Y ←− remove zero points from X
for i ← 1 to max k do

[count, sumd] = kmeans(Y, i);
// count: point count of each cluster

// sumd: sum distance of each cluster

means ← calc mean distance(count, sumd);
// means: mean distances of all clusters

dists[i] ← calc weighted mean distance(means);
if i > 1 then

if dists[i]− dists[i− 1] < t then
K ← (i− 1); break;

end

end

end
if K = 0 then

K ← max k;
end

The Adaptive K-Means algorithm starts with a small number of clusters, and
adds the number one by one. At each iteration of the algorithm, we calculate the
weighted mean distance of all clusters. The weighted mean distance is defined as
follows:

Weighted Mean Distance =

∑n
i=1 mean distance of cluster i

n
(1)

The distance calculated in the Equation.1 refers to Euclidean distance. In the be-
ginning, the number of centers is much smaller than the best K, so the Weighted
Mean Distance would decline rapidly. With the number getting closer to the best
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K, the decrease value becomes smaller and smaller. Once the decrease value is
smaller than a specific threshold value, then the current number of centers is
regarded as the best K.

3 Incorporating Temporal Information into Topic Model

In this section, we illustrate how to use topic model to track news topic evolution
and why temporal information can improve the analysis result.

3.1 Basic Concepts

First of all, we would like to give the definitions of some basic concepts which
would be frequently mentioned.

1. A stage is a time episode in which documents have a strong coherence, and
documents are likely related to a same aspect of the event

2. The main topic could run throughout all stages and is the line connecting
all the episodes;

3. The auxiliary topics are all the other topics besides the main topic, which
present the new aspects of the main topic in different stages; The auxiliary
topics could be regarded as the progresses of the event because they very a
lot along the time

In order to discover the main topic and track the evolution, we need to calcu-
late the similarity between adjacent episodes. As the topic is characterized by a
distribution over words. A simple measure method of similarity between topics is
the Kullback-Leibler divergence (also called relative entropy). However, the KL
divergence is not a proper distance measure method because it is not symmetric.
An alternative option is the Jensen-Shannon distance, which is a smoothed and
symmetric extension of the KL divergence. For discrete probability distribution
P and Q, the JS Distance is defined to be

DJS (P ||Q) =
1

2
DKL (P ||M) +

1

2
DKL (Q||M) (2)

With the averaged variable M = 1
2 (P +Q).

3.2 Framework of Our Method

Our analytical framework is based on the LDA [1], a generative latent variable
model that treats documents as bags of words generated by one or more topics.
We perform parameter estimation using collapsed Gibbs sampling [11] [12]. We
could firstly divide the corpus into several subsets by time, and apply LDA within
each subset, respectively. As for the division, we’ve described the Adaptive K-
Means algorithm above which makes more sense than the method of simply
dividing the corpus by time evenly

By incorporating temporal information, the overall framework of analysis pro-
cess is as follows:
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1. Prepare documents for each episode with Adaptive K-Means algorithm;
2. Preprocess of the documents in each episode;
3. Draw topic distribution of each episode from topic model (LDA);
4. Discover the main topic and draw the evolution map of the event.

3.3 Document Coherence and Evaluation

Document Coherence measures the topic similarity among documents. Intu-
itively, if articles within a corpus are more coherent, more detail could be revealed
by topic models. In order to better present document coherence we propose a
new evaluation method which is called n Topic Coverage Rate(TCRn).

TCRn =
‖articles belong to these n topics‖

‖all articles‖ ∗ 100% (3)

In this equation, ‖·‖ denotes the element count of a collection. TCRn measures
the documents cover rate of the top n topics within the whole corpus. From the
Equation.3, we can see that with topic number n fixed, the bigger the TCRn

is, the more coherent the articles are. In other words, with the TCRn fixed, the
smaller the n is, the more coherent the articles are.

4 Experiment Result and Analysis

In this section we illustrate the result of the topic model with temporal informa-
tion incorporated. First of all, we demonstrate the division result of the Adaptive
K-Means algorithm with two corpora, and later focus on one of them to give a
deep illustration. We analyze 1550 documents crawled from the Guardian with
the key words ”Edward Snowden” which is one of the top events of 2013. The
time of these documents varies from June 9 of year 2013 to the end of year 2013.
Our corpus is made up of approximately 1.5 million words. First of all, we use
Stanford Parser1 to parse the full text, and only keep words which are noun,
proper noun, verb and adjective. Next, we lemmatize the remaining words. At
last, we prune the vocabulary by removing stop words and removing terms that
occurred less than 5 times. The remaining vocabulary size is 7732.

Fig.2 shows the result after applying the Adaptive K-Means algorithm. Our
corpus of ”Edward Snowden” is divided into 12 subsets. For the sake of docu-
ment coherence comparison, we also divide the corpus into another 12 subsets
by time evenly. We set the initialization parameters as follow: LDA parameters,
α=2 and β=0.5; Gibbs sampling parameters, total iterations=1000, burn-in it-
erations=200, sample interval=3. After running topic model in each episode,
respectively, we calculate TCRn of all episodes. Fig.3(a) is an example of top
5 topics’ coverage. Obviously, our division algorithm has a higher coverage. To
be more convincible, we calculate the average coverage rates of all episodes with
different topic numbers, and the Fig.3(b) shows that our method has a general
advantage.

1 http://nlp.stanford.edu/software/lex-parser.shtml
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Fig. 2. Cluster number determination process and documents division results by ap-
plying adaptive K-Means algorithm. The black ⊗ indicates the best number of clusters
in (a), and the centre point in (b). In (b), data points in different clusters are labelled
with different colours. (the maximum value of episode is 20 and the threshold value is
0.5)

4.1 Evolution Map of ”Edward Snowden”

Considering that the corpus is about one specific event and there won’t be too
many aspects in each episode, so we only pick the top 3 topics of each episode
to draw the evolution map.

Fig.4(a) is the evolution map of the event ”Edward Snowden” drawn from
the method introduced in this paper. On this map, the main topic which runs
throughout all stages is the one chained with arrow lines. To make a contrast,
we also apply the DTM to generate evolution map Fig.4(b). From the Fig.4(b),
we can see that topics in all the episodes seem to be almost the same. That’s
because DTM assumes that topic number is fixed during all episodes and no new
topic would emerge and all the topics are evolved from the first episode. Thus, it
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Fig. 3. TCR of corpus about ”Edward Snowden”
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(b) Topics evolution map of the event ”Edward Snowden” by the DTM

Fig. 4. Evolution Map

is suitable for the corpus that contains many different topics, such as academic
documents. While in this paper, we concentrate on a specific news event, so it
is not applicable.

5 Conclusion

In this paper, we address the problem of modeling sequence documents related to
a specified news event. We explore the temporal distribution of news reports and
treat them as a prior knowledge of the sequence topic model. By incorporating
the temporal information we can generate an evolution map of a specific event.
In the future, we plan to model the entities involved in the event and explore
how they influence the event evolution. We also intend to develop a interactive
system to better explore the event detail.
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