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Overview
# Part I (120 m): Basic theory, models, and algorithms

o Basics of Bayesian methods

o Regularized Bayesian inference and examples

@ Part 11 (60 m): Scalable Bayesian methods

o Online learning

o Large-scale topic graph learning and visualization

# Part III (20 m): Q&A




Readings

# Big Learning with Bayesian Methods, J. Zhu, ]J. Chen, & W.
Hu, arXiv 1411.6370, preprint, 2014




Basic Rules of Probability

# Concepts
p(X) probability of X
p(X|M) conditional probability of X given M
p(X, M) joint probability of X and M

# Joint probability — product rule

p(X, M) = p(X|M)p(M)
& Marginal probability — sum/ integral rule

p(X) = / p(X|M)p(M)dM




Bayes’ Rule

# Combining the definition of conditional prob. with the product
and sum rules, we have Bayes’ rule or Bayes’ theorem

p(X, M)
p(X)
p(M)p(X|M)
J p(M)p(X|M)dM
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Thomas Bayes (1702 — 1761)

& “An Essay towards Solvjng a Problem in the Doctrine of Chances”
published at Philosophical Transactions of the Royal Society of
LLondon in 1763




Bayes’ Rule Applied to Machine Learnlng

# Let D be a given data set; M be a model
p( ) prior probabﬂity of M

M)n(DIM p(D|M) likelihood of M on data
p(M ‘D) — p( 2)]()2()) | ) (M'D) posterior probabﬂity of M given D
(D) marginal likelihood or evidence

® Model Comparison: M = { M}

poaip) = "EVZRED o) = [ p(DLM MDRMIM)AM

# Prediction:

p(z|D, M) = _/p($|M,D,M)p(M|D,M)dM

‘ under some common assumptions

p(z|M) -




Common Questions

& Why be Bayesian?
# Where does the prior come from?

# How do we do these integrals?




Why be Bayesian?
# One of many answers

# Infinite Exchangeability:

Vn, Vo, p(z1,...,2n) = p(To@),-- > Ta(n))

# De Finetti’'s Theorem (1955): it (x1,22,...) are infinitely
exchangeable, then Vn

n

P, ... 1) = / (TIp(il0))ap (o)

i=1
for some random variable 9

N

P

0
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How to Choose Priors?

# Objective priors - noninformative priors that attempt to
capture ignorance and have good frequentist properties

# Subjective priors -- priors should capture our beliefs as well as

possible

# Hierarchical priors - multiple layers of priors

pM) = /(M|a da_// (Mla)p(a|B)p(B)dad = - - -

o the higher, the weaker

@ Empirical Priors -- Learn some of the parameters of the prior
from the data; known as “Empirical Bayes”

A

p(M|é&) & = argmax p(D|«)

-

o Pros: robust — overcomes some limitations of mis—specification

o Cons: double counting of evidence / overfitting




How to Choose Priors?

# Conjugate and Non-conjugate tradeoff

# Conjugate priors are relatively easier to compute, but they

might be limited

o Ex: Gaussian-Gaussian, Beta-Bernoulli, Dirichlet-Multinomial,

etc. (see next slide for an example)

# Non-conjugate priors are more flexible, but harder to

compute

o Ex: LogisticNormal-Multinomial




Example 1: Multinomial-Dirichlet Conjugacy

Posterior is in the same class as the prior

# Let
X ~ Multinomial(7), and w ~ Dirichlet(«)
# The posterior
p(m[X) o< p(X|m)p(T)
oc (mp - ) (A T )

S p et x1+tag1—1 T t+arg—1
= Dirichlet (] TR )

which is Dirichlet(a + x)




How do We Compute the Integrals?
# Recall that:

p(DIM) = [ p(DIM, M)p(MIB)aM

# This can be a very high dimensional integral

# If we consider latent variables, it leads to additional

dimensions to be integrated out

p(OM) = [ [ p(D, HIM,M)p(MIE) M

o This could be very complicated!




Approximate Bayesian Inference

# In many cases, we resort to approximation methods

# Common examples
a Variational approximations
a Markov chain Monte Carlo methods (MCMC)
o Expectation Propagation (EP)
o Laplace approximation

D e o o

& Developing advanced inference algorithms is an active area!




Basics of Variational Approximation

# We can lower bound the marginal likelihood

log p(DIM) = log / /p(D,H|M,M)p(M\M)deM

log// HM T M) dHdM

// (H, M) log DH'THN;%(M'M)deM

o Note: the lower bound is tight if no assumptions made
# Mean-field assumptions: a factorized approximation
q(H, M) = q(H)q(M)

0 optimizes the lower bound with the assumption leads to local

optimums




Basics of Monte Carlo Methods

# a class of computational algorithms that rely on repeated

random sampling to compute their results.

# tend to be used when it is infeasible to compute an exact

result with a deterministic algorithm

# was coined in the 1940s by John von Neumann, Stanislaw

Ulam and Nicholas Metropolis

Games of Chance
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Monte Carlo Methods to Calculate Pi

# Computer Simulation

m
T=4 X —
" N

o N: # points inside the square

om: H# points inside the circle

# Bufffon’s Needle Experiment| ‘

="
m

o m: # line crossings




Problems to be Solved
& Sampling

0 to generate a set of samples {2}/, from a given probability
distribution p(z)
o the distribution is called target distribution

o can be from statistical physics or data modeling

& Integral

0 To estimate expectations of functions under this distribution




# Draw a set of independent samples (a hard problem)
V1<l<L, zY~ p(z)

# Estimate the target distribution as count frequency

L
1 |
p(z) ~ + > 6,0(2) >
1=1 ] B

g
g

Histogram with Unique 1_'_‘

Points as the Bins - Irr
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Basic Procedure of Monte Carlo Methods

# Draw a set of independent samples ne f(2)
Vi<i<L, z ~ p(z)

# Approximate the expectation with

1 & _
fZEZf(Z(l)) -
[=1

L
a where is the distribution p? p(z) = % > b, (2) Histogram with Unique
=1

Points as the Bins

nY

0 Why this is good?
R A 1

E(f] =E[f] varlf] = 7EI(f —E[f)’]

o Accuracy of estimator does not depend on dimensionality of z

o High accuracy with few (10-20 independent) samples

a However, obtaining independent samples is often not easy!

/




Why Sampling Is Hard?

& Assumption

o The target distribution can be evaluated, at least to within a

multiplicative constant, i.e.,

p(z) =p*(z)/Z
a where p*(z) can be evaluated
# Two difficulties

o Normalizing constant is typically unknown

o Drawing samples in high—dimensional space is challenging




Many Sampling Methods

# Rejection sampling

4 Importance sampling

# Markov chain Monte Carlo (MCMC)




Basics of MCMC

# To draw samples from a desired distribution p(z|D)

# We define a Markov chain
rXg —> L1 —> Ty —> T3z —> -

o where

pi(z) = /pt—1($’)q($;x’)dx’
a g(x;2") is the transition kernel

# p(z|D) is an invariant (or stationary) distribution of
the Markov chain ¢ iff:

p(elD) = [ pla'|Da(asa’)ds’




Geometry of MCMC

& Proposal depends on current state
# Not necessarily similar to the target

# Can evaluate the un-normalized target

7 q(ay V)




Gibbs Sampling
# A special case of Metropolis—Hastings algorithm
# Consider the distribution p(x) = p(z1,...,2Mm)

# Gibbs sampling performs the follows
o Initialize {z; :¢=1,..., M}
a For 7=1,...,T

Sample ang_Fl) ~ p($1|$gr), xé‘r)’ SR ZCS\Z))

. T+1 T+1 T+1 B T
Sample §C§ ) Np(acj|ac§ ),...,iUg-_l ), g'_|_)1a---a$5\/_f))
Sample ng\Z_H) ~ p(acj |:E§T+1); $g+1), e axg\;tll))




Geometry of Gibbs Sampling

# The target distribution in 2 dimensional space

Lo




Geometry of Gibbs Sampling

xgtJrl)

# Starting from a state x(t)

pJ

)

is sampled from P (x4 |x§t))




Geometry of Gibbs Sampling

# A sample is drawn from P(z|z{"™)

L2

this finishes one single iteration.




Geometry of Gibbs Sampling

# After a few iterations

L2




Bayes' Theorem in the 21st Century

# This year marks the 250t Anniversary of Bayes’ theorem

o Events at: http: // bayesian.org/

® Bradley Efron, Science 7 June 2013: Vol. 340 no. 6137 pp- 1177-
1178

“There are two potent arrows

in the statistician’s quiver

there is no need to g0 hunting

armed with only one.”



http://bayesian.org/meetings/Bayes250-meetings

Parametric Bayesian Inference

M is represented as a finite set of parameters §

# A parametric likelihood: x ~ p(+|0)
# Prior on 8: 7(0)

# Posterior distribution

p(x|6)m(0)
flx) = x p(x|0)m (0
P61 = 2T o p(xl0) ()
Examples:
* Gaussian distribution prior + 2D Gaussian likelihood —> Gaussian posterior distribution

* Dirichilet distribution prior + 2D Multinomial likelihood = Dirichlet posterior distribution

. Sparsity—inducing priors + some likelihood models - Sparse Bayesian inference




Nonparametric Bayesian Inference

M is aricher model, e.g., with an infinite set of parameters

# A nonparametric likelihood: x ~ p(:|M)
# Prior on M : (M)

# Posterior distribution

(M) = p(x|M)m(M

)
= Toe M) rdm X PEAMTM)

Examples:

— see next slide




Nonparametric Bayesian Inference

binary matrix |z

probability measure

Indian Buffet Process Prior [Griffiths & Gharamani, 2005]
+ Gaussian/ Sigmoid/Softmax likelihood

Dirichlet Process Prior [Antoniak, 1974]
+ Multinomial/ Gaussian/ Softmax likelihood

function

-2

0 05 1
input, x

Gaussian Process Prior [Doob, 1944; Rasmussen & Williams, 2006]
+ Gaussian/ Sigmoid/Softmax likelihood




Why Be Bayesian Nonparametrics?

Let the data speak for themselves

# Bypass the model selection problem

o let data determine model complexity (e.g., the number of
components in mixture models)

o allow model complexity to grow as more data observed

2

1.5

1+




Related Tutorials and Materials

# Tutorial talks:
o Z. Gharamani, ICML 2004. “Bayesian Methods for Machine Learning”
o M.L Jordan, NIPS 2005. “Nonparametric Bayesian Methods: Dirichlet

Processes, Chinese Restaurant Processes and All That”
a P. Orbanz, 20009. “Foundations of Nonparametric Bayesian Methods”
a Y. W.Teh, 2011. “Modern Bayesian Nonparametrics”
a J. Zhu, ACML 2013. “Recent Advances in Bayesian Methods”

# Tutorial articles:

o Gershman & Blei. A Tutorial on Bayesian Nonparametric Models.

Journal of Mathematical Psychology, 56 (2012) 1-12
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Example 2: A Bayesian Ranking Model

# Rank a set of items, e.g., A, B, C, D

o A uniform permutation model

e

P([A,C,B, D)) = P({A,D,C,B]) = --- = —




Example 2: A Bayesian Ranking Mod

# Rank a set of items
o With a preferred list

Users offer a concentration center 79 = [C, B, A, D]

A generalized Mallows’ model is defined

1.6 .

1.4} A=0.5

1.2} — A=l

1.0 A=15 ]
P(7m) ox exp ( — Ad(, WO)) P(ﬂ'r)ﬂ.a—

0.6}

0.4

0.2} ¥

09 1 2 3 4 5

d(m, )

[Fligner & Verducci. Distance based Ranking Models. J. R. Statist. Soc. B, 1986] /




# Rank a set of items

o Prior knowledge

conjugate prior exists for generalized Mallows’ models (a member of

exponential family)

o Bayesian updates can be done with Bayes’ rule

o Can be incorporated into a hierarchical Bayesian model, e.g.,

topic models

k [Chen, Branavan, et al., Global models of document structure using latent permutations. ACL, 2009] /




Example 3: Latent Dirichlet Alloc

-- a generative story for documents

# A Bayesian mixture model with topical bases

4 Each document is a random mixture over topics; Each word is

generated by ONE topic

0.8 Document #1: gif jpg image current file

iImage, jpg, gif, file, color images ground power file current format
color, file, images,

- files format 0.2

\Topic #2 A Document #2: wire currents file format

ground power image format wire circuit

file formats circuit gif images

ground, wire, power 0.7 current wiring ground circuit images files. ..
wiring, current, circuit,

N~ R

Bayesian Approach
A T y pp

> LDA

Mixture Components Mixing Proportions Dirichlet Prior




Example 3: Bayesian

mixing topic

Inference for LD

proportion assignment words topics

ot b @B

D

p(@7 2, Z, W|Oz, B) — H p<q)k‘5) H p(0d|a)( H p(zdn‘ed)p(wdn‘zdnv (I)))
k=1 d=1 n=1

# Given a set of documents, infer the posterior distribution

p(©,®,Z|W, o, B) =

p(®7 ¢7 Z7 W’a7 /B)
p(Wla, 8)




Example 3: Approximate Inference

# Variational Inference (Blei et al., 2003; Teh et al., 2006)

p(@7 ®7 Z|W7 a? /B)

= min _ KL(q||p)

qE€some family

# Monte Carlo Markov Chains (Griffiths & Steyvers, 2004)

a Collapsed Gibbs samplers iteratively draw samples from the
local conditionals

p(zh, =11Z-)




Bayesian Methods and Big Data
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Overfitting in Big Data

# “with more data overfitting is becoming less of a concern”?

2,000,000,000 — DussCore harim 2 @ 8 CHsd Do asbom Tkl
1200
1,000,000,000 — ategs V770
asuern 3 with BAIE cacha @ .' 4
Cawn 3 Chuaadl .JIHI:
e T ;.-’15;:" =u.
100,000,000 — oy
poe’ T waom
E . ’-"ﬂ-m
=S urel shows “Moorne's Lavw' .
3 10,000,000 — transistor count doubling A - bt
o Every two years o e
ig » W Portum
m s
& 1,000,000 — e
- .
ol 64 W
e
100,000 — i
o boss
10,000 —
kL
2,300 — 2004 g4 boce

1971 1980 1990 2000 2008




One layer

1 9 layers sparse autoencoder with:
Input to another layer above -local receptive fields to scale up;
(image with 8 channels) - local L2 pooling and local contrast normalization for
Number of output . . f
channels = 8 Invariant reatures
- 1B parameters (connections)
- 10M 200x200 irnages
- train with 1K machines (16K cores) for 3 days
Number
; of maps =8 -able to build high-level concepts, e.g., cat faces and
" \ Number of input human bodies

Overfitting in Big Data
“Big Model + Big Data + Big/ Super Cluster”

Big Learning

channels = 3 -15.8% accuracy in recognizing 22K objects (70%

Image Size = 200 relative improvements) /




Overfitting in Big Data

# Predictive information grows slower than the amount of

Shannon entropy (Bialek et al., 2001)

T 0= fixed J
-& - variable J, short range interactions
Al & yariable J's, long range decaying interactions |
— fits
i S,=const +const, N
4t
o
3 -
S,=const,+1/2 log N
2_
1L/ S1=c0nsl

20 25
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Overfitting in Big Data

# Predictive information grows slower than the amount of

Shannon entropy (Bialek et al., 2001)

VOLUME
VARIETY
VELOCITY
VALUE

DATA SIZE

A
®
o

Model capacity grows faster than the amount of
predictive information!




Overfitting in Big Data

# Surprisingly, regularization to prevent overfitting is

increasingly important, rather than increasingly irrelevant!

# Increasing research attention, e.g., dropout training (Hinton,

2012)

r =m.xa(Wv)

# More theoretical understanding and extensions

o MCEF (van der Maaten et al., 2013); Logistic-loss (Wager et al.,
2013); Dropout SVM (Chen, Zhu et al., 2014)




Michael I. Jordan
UC Berkeley
Pehong Chen Distinguished Professor
NAS, NAE, NAAS Fellow
ACM, IEEE, IMS, ASA, AAAI Fellow

# When you have large amounts of data, your appetite for hypotheses
tends to get even larger

# If it’s growing faster than the statistical strength of the data, then many
of your inferences are likely to be false. They are likely to be white
noise.

4 Too much hype: “The whole big-data thing came and went. It died. It

was Wrong”




Therefore ...

@ Computationally efficient Bayesian models are becoming

increasingly relevant in Big data era

o Relevant: high capacity models need a protection

o Efficient: need to deal with large data volumes




Challenges of Bayesian Methods

Building an Automated Statistician

& Theory

o Improve the classic Bayes theorem

@ Modeling
o scientific and engineering data

o rich side information

# Inference/ learning
o discriminative learning

= large—scale inference algorithrns for Big Data

& Applications

a social media, NLP, computer vision




Theory

Regularized Bayesian Inference




e

Example 2 Revisit:

A Bayesian Ranking Model

# Arrange a set of invited talks

o Side constraints
Mike Jordan can only spend 2 days at ICML
Eric Horvitz can only spend 1 day at ICML

Bt XA DU AE 5 — K
Vision FE1E learningﬁﬁﬁ

# How can we consider them in Bayesian methods?




Domain Knowledge

# Represented in logic form:

seed-rules:
Vi(w(i) = “monkey” ) — (z(i) = T)

cannot-link rules:

must-link rules:
Vivj(w(i) = “monkey” ) A(w(j) = “gorilla”) — z(i) =

Vivj(w(i) = “monkey”) A(w(j) = “apple”) — z(i) # z(j)

z(J)

@ How to incorporate such 1‘nformat1’on in Bayesian 1'nfe1’ence?




Regularized Bayesian Inference?

posterior likelihood model A/prior
\
e = M)
| p(x|M)T(M)dM

# How to consider side constraints?

Not obvious!

soft constraints

hard constraints (many feasible subspaces with different

(A single feasible space)

complexities/penalties)




Bayesian Inference as an Opt. Problem

Wisdom never forgets that all things have two sides

 p(x[M)T(M)
PIMIX) = T M) (M) dM

& Bayes’ rule 1s equivalent to solving:

min KL(g(M)||7(M)) = Eq(rr) [log p(x| M)]

s.t.: g(M) € Pprob,

/

direct but trivial constraints on posterior distribution




Regularized Bayesian Inference

Constraints can encode rich structures/ knowledge

& Bayesian inference with posterior regularization:

¢ . b .
unconstrained equlvalence:

min - KL((M) [7(M)) ~ Eyaq) o5 plx| M)] + Q(g(M)

s.t. 1 g(M) € Pprob, /

posterior regularization

o Consider both hard and soft constraints
a Convex optimization problem with nice properties

o Can be effectively solved with convex duality theory

[Zhu, Chen, & Xing, JMLR, 2014] /




A High-Level Comparison

prior likelihood
distribution model

Bayes:
Bayes’ Rule
posterior
distribution
RegBayes:

likelihood posterior
model regularization

a

prior
distribution

Optimization

posterior
distribution




More Properties

& Representation Theorem:

o the optimum distribution is:

45(M) = p(M, D) exp (3. %(M, D)) — A,

o where ¢ is the solution of the convex dual problem

& Putting constraints on priors 1S a special case

o constraints on priors are special cases of posterior regularization

# RegBayes 1s more flexible than Bayes’ rule

o exist some RegBayes distribution: no implicit prior and

likelihood that give back it by Bayes’ rule

[Zhu, Chen, & Xing, JMLR, 2014]

/




Ways to Derive Posterior Regularization

# From learning objectives
o Performance of posterior distribution can be evaluated when
applying it to a learning task

a0 Learning objective can be formulated as Pos. Reg.

# From domain knowledge
o Elicit expert knowledge

a E.g., first-order logic rules

4 Others ...

o E.g, decision making, cognitive constraints, etc.




Modeling + Algorithms

Adaptive, Discriminative, Scalable
Representation Learning




Input Data

Ideal paradigm that
computers help solve
big data problems

Inference, Decision, Reasoning
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Feature Representation

35
5 1§
- »
-
L
.
-

Computer Algorithms

-

2 R ]
x});§ ol r:rQJ o
% X
%
= =
%X
B
£
X %
= *
x
L %, .
2 -2 1 0 1 2 3 4

& L oM X o = m

&

VI

0 2 4 & 8 1012 14 16 16 20




e

Tsinghua University

Representation Learning

Lovely welcomming staff, good rooms that give a good

nights sleep, downtown location Axis's of a semantic representation space:

Meramees Hostel

. 8 oot T1 T2 T3 T4 T5 T6 T7

¥ 2ul 7, 2009 | Trip type: Friends getaway told place hotel hotel beach beach great
This hotel is just of the side streets of Talat Harh, one of the main .
arteries to downtown Cairo, It is walking distance ta the Nile, dlrty hOtel fOOd area P001 resort gOOd
riverfront thgIs, Egvntigm_ Museumn, and there are many ea_teries in .
the area at night when it is still bustling. Only a short cab ride away room room bar staff resort pOOl nice
from the Qld Fatimid Caira,
The staff are young and very friendly and able to sort out things like Learning fI‘OIlt days day POOI fOOd ocean lovely
mohile chargers, internet, and they have skype installed on their . . . .
computers which is briliant. The rooms are nicer then the Luna —9 1 h —é asked time POOI breakfast island island beautiful
(nearby) and much guieter as well, A . o o .
orithms hotel da time da kids kids excellent
My ratings for this hotel g . y . y .
Value Service bad night service view trip good wonderful
Rooms . . g
Location . small people hohday location service restaurants comfortable
08066 Cleminess E.g., Topic Models . . 1 o bench
WOors sta room i a enjoye eacl
Date of stay February 2009 y SCIVIES y J y
Visit was for Leisure poor water people walk staff loved friendly

Traveled with With Friends called rooms mght time me trip fresh

rude food ¢ ’ ﬁ.- )* amazing
', . :\. ' -
.. .‘T“‘H
B )= ‘ud

Member since July 03, 200
‘Would you recommend thi

Learning
—>
Algorithrns

E.g., Deep Networks

[Figures from (Lee et al. ICML2009)] /




Some Key Challenges

# Discriminative Ability

o Are the representations good at solving a task, e.g., distinguishing

different concepts?
o Can they generalize well to unseen data?

o Can the learning process effectively incorporates domain knowledge?

# Model Complexity
o How many dimensions are sufficient to fit a given data set?
o Can the models adapt when environments change?
# Sparsity/Interpretability
o Are the representations compact or casy to interpret?
# Scalability
o Can the algorithms scale up to Big Data applications?




LDA has been widely extended ...

# LDA can be embedded in more complicated models,
capturing rich structures of the texts

# Extensions are either on

o Priors: e.g., Markov process prior for dynamic topic models, logistic-
normal prior for corrected topic models, etc

o Likelihood models: e.g., relational topic models, multi-view topic
models, etc.

o e o
(0 (8 (8 o
I/‘_“\
' ] 7 I [ 7 )
e Ve VN oY oz N OGN oz A
X T Y \_J Pk
AN N | Zam Wan Aw o Aw
|\ ) .‘\.T Ly A P I\Efii./
— 4
p = K O O K
Ber — [ B " | B B
P |r "\ Py NC K
L o L
81 St S

# Tutorials were provide by D. Blei at ICML, SIGKDD, etc.

S )



http://www.cs.princeton.edu/~blei/topicmodeling.html
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Supervised LDA with Rich Likelihood

# Following the standard Bayes’ way of thinking, SLDA defines a
richer likelihood model

R o O

p(y, WI|Z,®,n,a,5) = p(y|Z,n)p(W|Z, P, o, 5)
o per-document likelihood ¥Yq € {0,1}

N
{exp(n—rid)}yd T 1 H( k __
Plyalza:n) = T 7) N ;

a both variational and Monte Carlo methods can be developed

(Blei & McAuliffe, NIPS’07; Wang et al., CVPR’09 ; Zhu et al., ACL 2013)




Imbalance Issue with sLDA
# A document has hundreds of

e s

& ... but only one class label

# Imbalanced likelihood 075 - . . . i

combination _ 1’ _,i:-iu_f,-\,i_,_;

p(y, WI|Z,®,n) = p(y|Z,n)p(W|Z, D)

Accuracy
o
[s]
a1
T
-~
'~
i el
~ e
. IH_'\' =
e M
N

# Too weak influence from oE
. 'S
. d - =+= Gibbs-sLDA
supervision - Gibbssl
= = = GibbsLDA+SVM
0'5520 40 60 80 100

# Topics
(Halpern et al., ICML 2012; Zhu et al., ACL 2013) %




Max-margin Supervised Topic Models

e

B

# Can we learn supervised topic models in a max-margin way?

# How to perform posterior inference?

o Can we do variational inference?

o Can we do Monte Carlo?

# How to generalize to nonparametric models?




MedLDA:
Max-margin Supervised Topic Models

@«@J

\‘FQK

a An LDA likelihood model for describing word counts

& Two components

o An max-margin classifier for considering supervising signai

& Challenges
a How to consider uncertainty of latent variables in defining the classifier?
4 Nice work that has inspired our design

o Bayes classifiers (McAllester, 2003; Langford & Shawe-Taylor, 2003)

o Maximum entropy discrimination (MED) (Jaakkola, Marina & Jebara,
1999; Jebara’s Ph.D thesis and book)

/




MedLDA:
Max-margin Supervised Topic I\/Iodels

@«@J
\‘0~ D)

a The hypothesis space is characterized by (1], Z)

# The averaging classifier

o Infer the posterior distribution

q(n, Zly, W)
o g-weighted averaging classifier (Yqg € {—1, 1} )

y = signf(w) = signly[f(n, z; w)|

1
fnzzw)=n'z 2= ﬁ;H(Zﬁ =

Q\Iote: Multi-class classification can be done in many ways, 1-vs-1, 1-vs-all, Crammer & Singer’s rnethod/

o where




MedLDA:

Max-margin Supervised Topic I\/Iodels

o SR s

D=

4 Bayesian inference with max-margin posterior constraints

i Vs 0.7Z. ) + 2R
P . (¢(n,©,Z,®)) + 2c- R(q)

a objective for Bayesian inference in LDA

L(q) = KL(q||po(n,©,Z, ®)) — E,[logp(W|Z, D)]

0 posterior regularization is the hinge loss

— Z max (0,1 — yaf(Wq))




Inference Algorithms

& Regularized Bayesian Inference

i L(q(n,©,Z,®)) +2¢-R
o un (q(n )) +2¢-R(q)

# An iterative procedure with ¢(n,0,Z,®) = ¢(n)q(©, Z, D)

min  KL(q(n)[po(n)) + cz 3
q(n),¢ A SVM problem

Vd, st. . yg, [77] E, Zg] > 1 — fd- with a normal prior

min  L(q(©,Z,P)) +c
(dun, LaO.2.0) e Y

Variational approximation

or Monte Carlo methods

Vd, s.t.: yqu[n]TEq[Zd] >1—¢&,.

/
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Sparser and More Salient Representations
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Multi-class Classification with
Crammer & Singer’s Approach

© o o
g =~ 00

Accuracy

©
o

0.4

=i=iMedLDA ||
——gMedLDA
——=fMedLDA |

gLDA
——fLDA

20

# Observations:

40

60 80 100 120
# Topics

a Inference algorithms affect the performance;

0 Max—margin learning improves a lot




Gibbs MedLDA

b

N K

N0 )
# The Gibbs classifier

a The hypothesis space is characterized by (1], Z)

o Infer the posterior distribution

q(n, Z]y, W)
a A Gibbs classifier

Ylnz = signf(n,z; w), where (n,2z) ~ q(n, Z|y, W)

o where

N
1
f.zzw) =n'z 2z = ﬁ;ﬂzﬁ = 1)

(Zhu, Chen, Perkins, Zhang, JMLR 2014)




Gibbs MedLDA

# Let’s consider the “pseudo-observed” classifier if (n,z) are
given
Ul = signf(n,z; w) Y
o The empirical training error

. = Z4
R(n,2) =) Wialyzq # ya)
d=1

o A good convex surrogate loss is the hinge loss (an upper bound)

D
R(n, Z) — Zmax((), Cd)a where (g =1 — ydnTZd
d=1

# Now the question is how to consider the uncertainty?

o A Gibbs classifier takes the expectation!




Gibbs MedLDA

b

N K

N X5 )

# Bayesian inference with max-margin posterior constraints

' L ©.7Z ¢ 2¢ 1R’
. (q(n,©,Z,P)) + Cm

a an upper bound of the expected training error (empirical risk)

R'(q) = Eqmax(0,¢a)] = > Ey[l(da # ya))
d=1 d




Gibbs MedLDA vs. MedLDA
# The MedLDA problem

i L 0.7Z.®)) + 2R
i (¢(n,©,Z,®)) + 2c-R(q)

R(q) = Z max (0, 1 — yqf(Wq))
d
# Applying Jensen’s Inequality, we have

R'(q) > R(q)

o Gibbs MedLDA can be seen as a relaxation of MedLDA




Gibbs MedLDA
# The problem

in £ 0.7Z.3)) +2-R
. (¢(n,©,Z,®)) +2c-R(q)

# Solve with Lagrangian methods

Po(ﬁa 67 Z7 (I))p(W|Z, (I))¢(Y|Za 77)
Yy, W)

q(n,0,Z,P) =

a The pseudo-likelihood ¢(y|Z,n) = H d(yaln, zq)
d

O(yq|zq,n) = exp{—2cmax(0,(y)}




Gibbs MedLDA

4 Lemma [Scale Mixture Rep.] (Polson & Scott, 2011):
a The pseudo-likelihood can be expressed as

o oC 1 ()\d -+ CCd)Q
¢(yd|zd7 77) — /O \/m exXp ( _ 2)\d )d)\d

# What does the lemma mean?

o It means:

4(1,0,7, &) = / a(1, )\, ©, Z, B)dA

po(n,©,Z,®)p(W|Z,P)p(y, A\ Z,n)

where ¢q(n,\,0,Z,®) = Y (y, W)

oy, MZ,n) =]] L exp (— a ch)Q)
d

vV 27T/\d 2)\d




A Gibbs Sampling Algorithm

# Infer the joint distribution

p()(na @7 Z7 (I))p(W|Z, (I))Qb(y, >‘|Z7 77)
Y(y, W)
# A Gibbs sampling algorithm iterates over:
a Sample n'! ~ g(n|\', O, Z", ") o po(n)d(y, A'|ZF,n)

a Gaussian distribution when the prior is Gaussian

O Sample /\t—l-l ~ q()\lnt—l—l’@tjzt’(pt) X Qb(y,)\|zt,7]t+l)

a generalized inverse Gaussian distribution, i.e., AL follows inverse

Q(n7 >\7 @7 Z? ¢) —

Gaussian
o Sample (0, Z, @) ~ p(©,Z, d|n' T AT
x po(©,Z, ®)p(W|Z, ®)p(y, X Z,n'*)

a supervised LDA model with closed-form local conditionals by exploring

data independency.




A Collapsed Gibbs Sampling Algorithm

# The collapsed joint distribution
(A Z) = / 4(1, 1, 0,7, 0)dOdd

# A Gibbs sampling algorithm iterates over:
o Sample '™ ~ q(n|\, Z") o po(n)¢(y. \'|Z*, )

a Gaussian distribution when the prior is Gaussian
t+1 t+1 t t t+1
o Sample X7~ q(Aln" T, Z) oc (y, AZE, 0T
a generalized inverse Gaussian distribution, i.e., A1 follows inverse

(Gaussian

a Sample Z ~ Q(Z|77t+1a)\t+l)
X / po(©,Z, ®)p(W|Z, ®)p(y, N Z, 01 dOdd
closed-form local conditionals

Q(an — 1|Z—'7779 )\fwd’n — t)




The Collapsed Gibbs Sampling Algorithm

Algorithm 1 Collapsed Gibbs Sampling Algorithm

1. Inmitialization: set A = 1 and randomly draw z;; from
a uniform distribution.

2: form =1to M do

3 draw the classifier from the normal distribution (11)

4 ford=1to D do

5 for each word n 1n document d do

6: draw the topic using distribution (12)

7

3

9

0:

end for
draw A;l (and thus \,) from distribution (13).
end for

10: end for

Easy to Parallelize




Some Analysis

# The Markov chain is guaranteed to converge

# Per-iteration time complexity
O(K3 + NtotalK)

a Nyytq the total number of words
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Experiments

# 20Newsgroups binary classification
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Accuracy

Experiments

& Sensitivity to burn-in: binary classification
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F-Measure

0.6

0.55
0.57
045}
0471
0.35;
0.37
0.25F
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0.1

Experiments

# Leverage big clusters

IV

[singhua University

# Allow learning big models that can’t fit on a single machine

= # = MT-GibbsMedLDA (M=20, P=240) |

' m@m 1 MT-GibbsMedLDA (M=1, P=12)
LDA+SVM (M=20, P=240)
SVM (M=20, P=240)

300 400 500
# Topics

100 200

600

Training—-Time(seconds)

107}

—_
L)

10

i

= # = MT-GibbsMedLDA (M=20, P=240
' == MT-GibbsMedLDA (M=1, P=12)
LDA+SVM (M=20, P=240)
SVM (M=20, P=240)

200 400 600 800

# Topics

[Zhu, Zheng, Zhou, & Zhang, KDD2013]

1000

_ e -~ *20 machines;

* 240 CPU cores

* 1.1M multi-labeled
Wiki pages
* 20 categories (scale to

hundreds/thousands of

categories)
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# of images per cluster
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RegBayes with Max-margin

ek i i STRD-TEVY
BN o4 iRy

(B2 S o
T Ca

~ Cluster )

Infinite SVMs

(Zhu etal., ICML'11)

Infinite Latent SVMs
(Zhu, et al., JMLR‘14)

Posterior Regularization

7
-
-~
b A

D e |
A \—4 Py
AE=—2

Nonparametric Max-margin Relational

Models for Social Link Prediction
(Zhu, ICML’12)

Ny

Max-margin Topics and Fast Inference

(Zhu, et al., JMLR’12; Zhu et al., JMLR’14)

k * Works from other groups are not included.

V)

Ul X (=] Y

Nonparametric Max—margin Matrix

Factorization
(Xu, Zhu, & Zhang, NIPS’12, ICML’13)

Multimodal Representation Learning
(Chen, Zhu, et al, PAMI'12)

/
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Link Prediction

# But network structures are usually unclear, unobserved, or

corrupted with noise




Link Prediction — task

# Dynamic networks
t=1 t =2 t=1T t=T+1

* £ % [ L R P
@« & & & & & 88

# Static networks

We treat it as a supervised

learning task with 1/-1 labels

/




Link Prediction as Supervised Learning

& Building classifiers with manually designed features from
networks

= Topological features

Shortest distance, number of common neighbors, Jaccard’s coefficient,

etc.
o Attributes about individual entities
E.g., the papers an authors has published
o Proximity features

E.g., two authors are close, if their research work evolves around a large

set of identical keywords

[Hasan et al., 2006] /




Link Prediction as Supervised Learning

# Latent feature relational models

o . . . K.
o Each entity is associated with a point Hi € R™ in a latent feature space

e

p(Yij = 1 Xij, pi, prj) = ‘I’(,u +8' Xij + @/)(Mz',,uj)) /

o Then, a link likelihood is generally defined

Latent distance model (Hoff et al., ) /Latent eigenmodel (Hoff, 2007)\
2002) generalize -
(i, ) = —d(pe, p5) < V(s 1y) = pi Dy
= — | — pyl| Y, D s diagonal )

NG
generali;e\ A'eneralize

Nonparametric latent feature relational model (LFRM)
(Miller, Griffiths, & Jordan, 2009) More at

ICML 2012
(i, pg) = i Wy, where p; € {0,1}%

/




Discriminant Function with Latent Features

F(Zi,Z;;W) = ZW Z;

Z; %4

Strength to get linked
if both entities have the

o

same feature 2

%
oy




Zi %4

H BN B m=

Latent Features

Xij = [9(Xi); 9(X;); h(Xi, X;))]
Ex: [red, table; gray, ball; neighbors. . ]

Observable Features

o e
® !L /




Infinite Latent Feature Matrix

# N entities — a latent feature matrix /Z

Z1
Zo

zy [ IR N

# How many columns (i.e., features) are sufficient?

— a stochastic process to infer from data - Indian buffet
process (IBP) (Griffiths & Ghahramani, 2006)

# What learning principle is good?
—> max-margin learning - (Vapnik, 1995; Taskar et al., 2003)

m) MedLFRM (max-margin latent feature relational model)

/




Bayesian MedLFRM MedLFRM

# One problem with MedLFRM is the gzj e N
tuning of C, e.g., using CV ﬁ: /
# Hierarchical Bayesian ideas to infer 2:; /
it from data zzz - |
g c S o o Cé _ N

# The Normal-Gamma hyper—prior:

o Prior of model parameters with common mean and variance

po(®lp, 7) = [[N (. H [N, 7!
d

kk’

o The hyper—prior
po(pl™) = N (1o, (not) ™), po(r) = G(

1/02

55

a weak hyper-prior suffices, e.g., o =0, no =1, vg =2, So =1




Bayesian MedLFRM
# Learning problem

min  KL(p(v, Z, u, 7,0)|lpo(v, Z, i, 7,0)) + Re(p(Z, ©))

p(v,Z,pu,7,0)
st.: p(v,Z,u,71,0) €P.

# Inference — similar iterative procedure (outline)

a The step of inferring p(v, Z) doesn’t change

a For p(©), we solve a binary SVM

a For p(l,T), we have closed-form rule

0.99
0.97 +
0.95 -
0.93 -
0.91 -
0.89 -
0.87 -

BayesMedLFRM

0.85

0.05




Datasets & Classification Setups

# Countries
a 14 countries, 56 relations
2 90 observable attributes about countries
a predict the existence/non-existence (1/-1
classification) of each relation for each pair of country
& Kinship
a 104 people, 26 kinship relations
a predict the existence/non-existence (1/-1
classification) of each relation for each pair of people
@ Coauthor Networks:
o 234 authors
2 80% pairs for training; 20% for testing
a Positive — author pairs that published papers together
In train years;
o Negative — author pairs that didn’t publish any papers
together in train years




N EZ S
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Results on Multi-relation Data T

# AUC — area under ROC curve (higher, better) a a
# Two evaluation settings \_/‘
o Single — learn separate models for different relations, and average the AUC
scores;

o Global — learn one common model (i.e., features) for all relations

0.95 0.95
0.9 0.9
m MMSB u MMSB
0.85 B IRM 0.85 - B IRM
B LFRM rand B LFRM rand
0.8 - 0.8 -
B LFRM w/ IRM B LFRM w/ IRM
0.75 - B MedLFRM 0.75 - B MedLFRM
M BayesMedLFRM M BayesMedLFRM
0.7 - 0.7 -
0.65 - 0.65 -

Country Relationships
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> Tsinghua University

Results on Multi-relation Data T

# AUC — area under ROC curve (higher, better) 8 a
# Two evaluation settings \_/‘
o Single — learn separate models for different relations, and average the AUC
scores;

o Global — learn one common model (i.e., features) for all relations

0.97 1
0.96
0.95
0.95
0.94 B MMSB 0.9 B MMSB
0.93 - B IRM B IRM
0.85 -
0.92 - W LFRM rand ® LFRM rand
091 - B LFRM w/ IRM 08 - B LFRM w/ IRM
0.9 - B MedLFRM B MedLFRM
0.89 - B BayesMedLFRM 0.75 - B BayesMedLFRM
0.88 -
0.7 -
0.87 -
0.86 - 0.65 -

Kinship Relationships




Results on Coauthor Networks
# Two model settings: 8 | 8

0 Symmetric — W is a symmetric matrix:

ZWZ =zZ,WZz

0 Asymmetric — no above constraint

MMSB 0.8705 + 0.0130

IRM 0.8906 + —

LFRM rand 0.9466 + —

LFRM w/ IRM 0.9509 + —
Med LFRM 0.9642 + 0.0026
BayesMed LFRM 0.9636 + 0.0036
Asymmetric MedLFRM 0.9140 £ 0.0130
Asymmetric BayesMedLFRM | 0.9146 4+ 0.0047




Collaborative Filtering in Our Life
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Tsinghua University
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Latent Factor Methods

# Characterize both items & users on say 20 to 100 factors inferred
from the rating patterns

Serious
1 Braveheart

The Color Purple Amadeus

L Saly 4

6

Lethal Weapon

Sense and
Geared Sensibility Qsaiiel) h : Geared
toward < T — toward
females males
The Lion King Dijisibasd
-a7a] Dumber
The Princess Independence| |«>=2¢"
Diaries Day )
Gus
Escapist

[Y. Koren, R. Bell & C. Volinsky, IEEE, 2009]




Matrix Factorization

# Some of the most successful latent factor models are based

on matrix factorization

item

Y

1 2 3 4
user
1 N
2 2 | 7

User-Movie

Ratings

U

VT

User

Features

Movie

Features




Two Key Issues

Y U v’

Movie

User-Movie User Features

Ratings Features

# How many columns (i.e., features) are sufficient?
— a stochastic process to infer it from data
# What learning principle is good?
— large-margin principle to learn classifiers

Nonparametric Max-margin Matrix Factorization for Collaborative Prediction

[Xu, Zhu, & Zhang, NIPS 2012] %




Experiments

# Data sets:
o MovieLens: 1M anonymous ratings of 3,952 movies made by 6,040

Uusers

o EachMovie: 2.8M ratings of 1,628 movies made by 72,916 users

# Overall results on Normalized Mean Absolute Error
(NMAE) (the lower, the better)

Table 1: NMAE performance of different models on MovieLens and EachMovie.

MovieLens EachMovie

Algorithm weak strong weak strong

M F[11] A156 £.0037 4203 £ .0138 | .4397 £ .0006  .4341 4 .0025
PMF [13] 4332 +£.0033 4413 +£.0074 | .4466 + .0016  .4579 4+ .0016
BPMEF [12] | .4235 4 .0023  .4450 £ .0085 | .4352 4 .0014  .4445 + .0005

M’F* A176 £.0016 4227 +£.0072 | 4348 £ .0023  .4301 4 .0034
iPM°F 4031 £ .0030 4135 £ .0109 | 4211 £ .0019 .4224 + .0051
iBPM’F 4050 £.0029 4089 £+ .0146 | .4268 £ .0029  .4403 £ .0040

/




Prediction Performance during lterations
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Objective Value during Iterations
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Fast Sampling Algorithms

# See our paper [Xu, Zhu, & Zhang, ICML2013] for details

MovieLens EachMovie

Algorithm weak strong weak strong
M°F 4156 £ .0037 .4203 £ .0138 | .4397 £ .0006 .4341 £ .0025
bed M3F 4176 £ .0016 4227 4+ .0072 | .4348 + .0023 .4301 £ .0034
Gibbs M3F 4037 £.0005 .4040 £ .0055 | .4134 £+ .0017 .4142 4+ .0059
iPM°F 4031 £.0030 .4135 4+ .0109 | .4211 & .0019 .4224 + .0051
Gibbs iPM3F | .4080 £ .0013 .4201 & .0053 | .4220 4 .0003 .4331 £ .0057

Algorithm | MovieLens | EachMovie | Iters

M°F 5h 15h 100

bed MPF 4h 10h 50 30 times faster!

Gibbs M?*F 0.11h 0.35h 50

iPM°F 4.6h 5.5h 50 .

Gibbs iPM°F | 0.63h 0.70h 50| 8 times faster!

/




Part 11

Scalable Bayesian Methods




Existing Methods & Systems

# Stochastic/ Online Methods
o Variational, MCMC

# Distributed Methods
a Variational, MCMC

Kafka
Flume
HDFS/S3

Kinesis

Spork
Streaming

Dashboards

Twitter

Data-Parallel

Graph—Parallel

Model-Parallel

master

slave

2

server

client

—map = reduce
| S PETUUM
i@hadmmp Spr”(Y Fro gell <\ 000000000
N R Tt




Online Bayesian Updating
# Sequential Bayesian updating

o Bayes’ rule
p(© | C1) =p(C1)~" p(C1 | ©) p(©)
a Suppose we have processed b-1 collections, i.e., mini-batches

a Given p(©|Cy,...,Cp_1), we have

p(O|Cp,....Ch) xp(Cy | O) p(® | Cq,y. .., Cy_q)

0 i.e.: we treat the posterior after b-1 mini-batches as the new

prior for incoming data

# Itis truly online (or streaming) gf we can save the posteriors and

calculate the normalizing constant




Online Variational Bayes

# However, it is often infeasible to calculate the posterior

exactly

# Therefore, approximation must be used

# Online (Streaming) Variational Bayes:

o An algorithm A that calculates an approximate posterior
q(©) = A(C,p(O))

where C is the mini-batch data; p(©) is the given prior

o Recursively calculate an approximation to the posterior

p(O©|C,....C ) = qp(©) = A(Ch,qp_1(0))
o where ¢o(©) = p(©)




Distributed Bayesian Updating

# Bayesian theorem yields

p(© | Cy,...,0p) x Hp b | ©)
b=1

p(©)

B
x [[[p@©1Cy) p(e)"

L h=1

p(©)

# Therefore, we can calculate the individual mini-batch
posteriors p(© | (%) in parallel; then combine them to
find the tull posterior




Distributed Variational Bayes

# Given an approximating algorithm_/il
# The approximate update is

B

H A(Cy, p(O)) p(@)—l

b=1

p(O]Cy,...,Cp) =~ q(O) x p(©)

# Ex: for exponential family distributions
o Assume the prior p(0©) o< exp{& - 1'(©)}
o Assume the approximating algorithm

q(©) o< exp{&, - T(©)} for q,(O) = A(Ch, p(O))

a Then. we have
- T(@)}
/

B
p(® | Cy,...,Cp) = q(©) x exp { o+ (& — )
b=1




Some Empirical Results
# Datasets: Wikipedia (3.6M); Nature (0.35M)

Wikipedia
32-SDA  1-SDA  SVI

Logpredprob  —7.31  —7.43 —7.32
Time (hours) 209  43.93 787

Nature
32-SDA  1-SDA SVI

—7.11 —-7.19 —-7.08
0.55 10.02 1.22

# SVI is faster than single—thread SDA-Bayes in the single—pass
setting




Online Bayesian Passive—Aggressive Learning




Why Online Learning?

# Streaming data:
o Data come in streams
a “Infinite” size
a Processed data thrown away

o Real-time response

# Fixed, large-scale data:
a Statistic redundancy
0 “online learning” by sub-sampling
a Stochastic learning/ optimization

o Fast convergence to satisfactory

results

¢ Tsinghua University




Online Learning for Classification
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Perceptron --- a simplest example

# Set wi = 0 and t=1; scale all examples to have length 1
(doesn’t affect which side of the plane they are on)

# Given example x, predict positive iff

w, x>0

# If a mistake, update as follows
o Mistake on positive: Wy 1 «— W; + X

o Mistake on negative: Wyy1 <— Wy —X

t—t+1
W; B Wiy |B
Wi, tA +A
N N - N N A
<~ =
N B ] ) A




Mistake Bound
# Theorem:

o Let S be a sequence cyf labeled examples consistent with a linear

threshold function WIX > (), where W, is a unit-length vector.

o The number cyf mistakes M made b)/ the Perceptron algon’thm is at

most (1/”}/)2, where
xXeS HXH

a i.e.:if we scale examples to have length 1, then 7 is the minimum

distance @Fan] example to the plane WIX = (

WTX

*

a 7Y is often called the “margin”of Wi ; the quantity is the cosine

of the angle between X and W, Ix]]




Generalization of Perceptron

# Discriminative Training of HMMs or Markov networks

(Collins, 2002)

y— ) — sy
@) @ @

a For each input X, predict the structured label (e.g., sequence) y,
o Update the parameters via the rule, if ¥ # y;

Wil = Wy + ¢(Xta Yt) — lb(Xta S’t)

0 i.e., moving toward the truth.

K [M. Collins. Discriminative Training Methods for HMMs: Theory and Experiments with Perceptron Algorithms. EMNLP, 2002] /




Loss for Binary Classification

# Loss (or constraint) at time ¢ for a simple linear model:

(Xt & Rna Yt € {—131})




Online Passive-Aggressive Updates

# Model at time ¢: W; ; When seeing a new data point:

feasible zone

feasible zone

[Crammer et al., 2006]/




Bayesian Passive-Aggressive Learning

# Basic setup: we learn a distribution over models, rather

than a single model

20 40 60 80

[Shi & Zhu, ICML 2014; invited to JMLR]




New Passive-Aggressive Updates

# Distribution at time t: ¢:(W) ; When seeing a new data point

feasib]e zone. g.(w) feasjb]e zone.

o Note: Bayes update is optional.

[Shi & Zhu, ICML 2014; invited to JMLR]




Two Choices to Define “Feasible Zone”

# Share a common goalz learn a posterior distribution over

models

q(w)

# Difterent strategies in making predictions:

0 Averaging classifier: takes an average of the discriminant

function and predicts
Yt = sign( E,[w'x] )
o Gibbs classifier: randomly draws a model and predicts

W, ~ q(w)

Yy = sign (WIXt)
[Shi & Zhu, ICML 2014; invited to JMLR]




The Learning Problem

# Hard constraint version:

q(ﬂf}l)iélft KL [Q(W)H%(IU)} - Eq(w)[logp(mﬂw)}

s.t.: £, (q(w);:ct,yt) = 0, r\

optional

# Soft constraint version:

grr1(w) = 2:(1“5;22 E(f}(’fﬂ)) +2¢- L, (q(ﬂ»’); T, yt)




Some Properties

# Theorem 1: non-Bayesian PA is a special case.

# One significance of Bayesian models is to learn latent
structures

global variables

. H
local variables O

[Shi & Zhu, ICML 2014; invited to JMLR]




Some Properties

# Theorem 1: non-Bayesian PA is a special case.

# One significance of Bayesian models is to learn latent

structures

sampling analysis model update

draw a mini- infer the hidden update distribution of

batch structure global yariables
(X,.Y,) 7 (H,) 7 v M)

[Shi & Zhu, ICML 2014; invited to JMLR] /




Some Properties

# Theorem 2: under certain conditions, the regret of BayesPA is
bounded as

| 1
> Relgr(w): @, ye) < 7 2 Relp(w)i @i, ye) + KL[p(w)]|go(w)] + const.

T

# Remarks:
o Holds for any choice of p(W) ; including the best by batch

learning
o Holds for both averaging and Gibbs classifiers

a0 As T' — o0 , the asymptotic regret is at most worse by a

constant

[Shi & Zhu, ICML 2014; invited to JMLR] /




Isinghua University

Applications to Topic Modeling

# Discover semantic topic representations

v 4 +

Lovely welcomming staff, good rooms that give a good O O
nights sleep, downtown location
Meramees Hostel

% ©6080 O
. SheikhSahib & 10 contributions O
London
Jul 7, 2009 | Trip type: Friends getaway O O
This hat Lovely welcomming staff, good rooms that give a good J—
if;;‘i’sr nights sleep, downtown location

the are: Meramees Hostel
from the C

L 7 ©9060
The stal (S sheikhSahib & 10 contributions
mobile ¢ London
computs Jul 7, 2009 | Trip type: Friends getaway

(nearby . . . . ’_
This hotel is just of the side streets of Talat Harb, one of the main

My ratit  arteries to downtown Cairo, It is walking distance ta the Nile, 0 x

riverfront hotels, Egyptian Museum, and there are many eateries in :

e the area at night when it is still bustling. Only a short cab ride away

from the Old Fatimid Cairo.

CEEEE

eeee The staff are young and very friendly and able to sort out things like

Date of Mobile chargers, internet, and they have skype installed on their

i hich is brilliant, Th then the L
isitwe (noarby) and much quister as welle T1 T2 T3 T4 T5 T6 T7

Travele My ratings for this hotel

Membe, value Service told place hotel hotel beach beach great
viould 1 Lovatan dirty hotel food area pool resort good
Cleanliness .
room room bar staff resort pool nice
Date of stay February 2009
Visit was for Loisurs . front days day pool food ocean lovely
Traveled with With Friends AXIS Of a asked time pOOl breakfast island island beautiful
Member since July 03, 2005 . hotel day time day kids kids excellent
would d this hotel to a friend? .
Suie you Tecomment T Rotel o o friend T2 semantic bad night service view trip good wonderful
SP ace: small people holiday location service restaurants comfortable
worst stay room service day enjoyed beach
poor water people walk staff loved friendly
called rooms night time time trip fresh

k rude food water food view area amazing /




Empirical Results on Large-scale Wiki Data
# Wikipedia Webpages with multi-labels:

o 1.1 million documents; 0.9 million unique terms
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Large—scale Topic Graph Learning

and Visualization




Logistic-Normal Topic Models

# Bayesian topic models

mixing topic
proportion assignment words topics
\1/ \i/ \i/
@)l — )< B
D

# Dirichlet priors are conjugate to the multinomial likelihood

# However, it doesn’t capture the correlation among topics




Logistic-Normal Topic Models
& Logistic—normal prior distribution (Aitchison & Shen, 1980)
Nd ~ N(M? Z)

exp (1})

D _; €XP (772)

0 =

o Logisitc—normal prior can capture the correlationships

o But it is non-conjugate to a multinomial likelihood !

a Variational approximation not scalable (Blei & Lafterty, 2007)




A Scalable Gibbs Sampler

mixing topic

proportion assighment words
1

I

I

:
4

Lot l—

D
# Collapse out the topics by conjugacy
# Sample Z: (standard)
k C;::i";} + JBwriﬂ :qﬁ

p(zdn — 1‘Z—|n:wdnaw—-dn:n) X vV : Vv €
Zj:l Cfc,—-n —l_ Z_j:l /83




A Scalable Gibbs Sampler

mixing topic

proportion assighment words
1

b —

D

# Collapse out the topics by conjugacy
# Sample 7 : (challenging)

p(nlZ, W) o< T (TIn%: =5 )N (nalie. )

n=1 "
Z_J;'{zl e J




A Scalable Gibbs Sampler

mixing topic

proportion assighment words
1

b —

D

# Data augmentation saves!

# For each dimension k:
p(nd|nd®, Z, W) oc £(nima" )N (nd|pd, or)
(era)Ca

(1 + ePid)Na

(i n™) =




Data Augmentation

# A scale-location mixture representation
k Gk
(efd)™d 1

(1+eti)Na ~ 2Na

ke [0 aE(pk)?
Eﬁ'dpd/ e 2" p(\5| Ny, 0)d\E
0

o where

kE=Ck — Ny/2  p(A\E|Ng,0)=PG(Ng,0)

# Then, we iteratively draw samples

o Draw Id Gaussian:

p(nkn %, Z, W, 2E) = N (%, (75)?)

a Draw Id Polya-Gamma:
p(N§|1Z, W, n) = PG(A\g; Na, py)




Fast Approximation by CLT

# Using a few samples to approximate:

4

25110
m=1
m=2
2r m=
m=
%“ 15} « m=n (exact)|
1]
=
8
£
0.5
?20 130 140 150 160 170

z~PG(z; m,p)

180




Fast Approximation by CLT

# Using a few samples to approximate:

10000 -
< m=1
x m=2
8000} < m=4
m=8
é" 6000} < m=n (exact)};
S
3
= 4000¢
2000}
ﬁ L T
-1 0 1 2 3

k k —.
ny~Pm; | ng"% Z, W)




perplexity

Experimental Results

# Leverage big clusters

# Allow learning big models that can’t fit on a single machine

4500 AgCTM (M=1, P=12) 10
-*-gCTM (M=40, P=480) g
400(%_"0"Y!LDA (M=40, P=480) ; m-
% . 10%” 1
“% < e = - - =" o
3500¢ h“. . QEJ UL
ieaia'-i.-.._ = 10; PSTINY SRS CRREE AR ¢
3000; *‘;tlh“‘t'z:'a‘ A gCTM (M=1, P=12)
-*=gCTM (M=40, P=480)
ol YILDA (M=40, P=480)
2500 10 .

200 400 600 800 1000
K

K

200 400 600 800 1000

[Chen, Zhu, Wang, Zheng, & Zhang, NIPS 201 3]

* 40 machines;

* 480 CPU cores

®*(0.285M NYTimes pages
* K =200~ 1000




Experimental Results

# Leverage big clusters

# Allow learning big models that can’t fit on a single machine

data set D K vCTM  gCTM

NIPS 12K 100 | 1.9hr 8.9 min
20NG 11K 200 16 hr 9 min
NYTimes 285K 400 | N/A* 0.5 hr
Wiki 6M 1000 | N/A* 17 hr

*not finished within 1 week.

[Chen, Zhu, Wang, Zheng, & Zhang, NIPS 201 3]




Scalable Graph Visualization

[Joint with Dr. Shixia Liu from MSRA. IEEE VAST 2014]




sSummary

& Computationally efficient Bayesian models are becoming

increasingly relevant in Big data era

# RegBayes:
0 bridges Bayesian methods, learning and optimization

o offers an extra freedom to incorporate rich side information

# Many scalable algorithms have been developed
o online/stochastic algorithms (e.g., online BayesPA)

a distributed inference algorithms (e.g., scalable CTM)




Future Work

& Dealing with weak supervision and other forms of side

information
# RegBayes algorithms for network models
# Learning with dynamic and spatial structures
# Fast and scalable inference architectures

# Generalization bounds




Further Readings
# Stochastic MCMC Algorithms:

o Bayesian Learning via Stochastic Gradient Langevin Dynamics, M.

Welling and Y. W. Teh, ICML 2011;

o Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring, S.

Ahn, A. Korattikara, and M. Welling, ICML 2012 (best paper);

o Stochastic Gradient Riemannian Langevin Dynamics on the
Probability Simplex, S. Patterson and Y. W.'Teh, NIPS 2013;

# Distributed MCMC Algorithms:

o Asymptotically Exact, Embarrassingly Parallel MCMC, N., Willie, C.
Wang, and E. Xing, UAI 2014;

o Distributed Stochastic Gradient MCMC, S. Ahn, B. Shahbaba and M.
Welling, ICML 2014;




Further Readings

# Stochastic Variational Algorithms:

o Hoffman, M., Bach, F.R., and Blei, D.M. Online learning for latent
Dirichlet allocation. NIPS, 2010.

o Mimno, D., Hoffman, M., and Blei, D.M. Sparse stochastic inference
for latent dirichlet allocation. ICML, 2012.

# Distributed Algorithms for Topic Models:

o A.Ahmed, M. Aly, ]J. Gonzalez, S. Narayanamurthy, and A. Smola.
Scalable inference in latent variable models. WSDM, 2012;

o A. Smolaand S. Narayanamurthy. An architecture for parallel topic

models. VLDB, 3(1-2):703—710, 2010;

o D. Newman, A. Asuncion, P. Smyth, and M. Welling, Distributed
algorithms for topic models. Journal of Machine Learning Research

(JMLRY), (10):1801—1828, 2009.




o Tsinghua University

Further Readings

# Related Publications in My Group:
a J. Chen, ]J. Zhu, Z. Wang, X. Zheng, and B. Zhang. Scalable Inference for
Logistic-Normal Topic Models, NIPS, 2013;
o J. Zhu, X. Zheng, L. Zhou, and B. Zhang. Scalable Inference in Max-margin
Supervised Topic Models, KDD, 201 3;

a J. Zhu, X. Zheng, and B. Zhang. Bayesian Logistic Supervised Topic Models with
Data Augmentation, ACL, 2013;

o J. Zhu, N. Chen, and E.P. Xing. Bayesian Inference with Posterior Regularization

and applications to Infinite Latent SVMs, JMLR, 15(May):1799-1847, 2014

o J. Zhu, A. Ahmed, and E.P. Xing. MedLDA: maximum margin supervised topic
models. JMLR, 13:2237-2278, 2012;

a J. Zhu, N. Chen, H. Perkins, and B. Zhang. Gibbs Max-margin Topic Models with
Data Augmentation, JMLR, 15(Mar):1073-1110, 2014

o T. Shi, and J. Zhu. Online Bayesian Passive Aggressive Learning, ICML, Beijing,
China, 2014,
o S. Mei, J. Zhu, and ]. Zhu. Robust RegBayes: Selectively Incorporating First-

Order Logic Domain Knowledge into Bayesian Models, ICML, Beijing, China,
2014,

a S. Liu, Xi. Wang, ]. Chen, J. Zhu, and B. Guo. TopicPanaroma: a Full Picture of
Relevant Topics, To Appear in Proc. of IEEE VAST, Paris, France, 2014;




Further Readings

# Tutorials on Big Learning

o ICML 2014: Bayesian Posterior Inference in the Big Data Arena,
Max Welling;

o ICML 2014: Emerging Systems for Large—Scale Machine

Learning, Joseph Gonzalez;

o AAAI 2014: Scalable Machine Learning, Alex Smola;

# Workshops on Big Learning:

a NIPS Workshop 2011, 2012, 2013
(http://www.biglearn.org)
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Thanks!

Some code available at:

http:// bigml.cs.tsinghua.edu.cn/ ~jun




