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Overview 

Part I (120 m): Basic theory, models, and algorithms 

 Basics of Bayesian methods 

 Regularized Bayesian inference and examples 

 

Part II (60 m): Scalable Bayesian methods 

 Online learning 

 Large-scale topic graph learning and visualization 

 

Part III (20 m): Q&A 

 



Readings 

 

Big Learning with Bayesian Methods, J. Zhu, J. Chen, & W. 

Hu, arXiv 1411.6370, preprint, 2014 

 



Basic Rules of Probability 

Concepts 

                           probability of X 

                           conditional probability of X given   

                           joint probability of X and  
 

Joint probability – product rule 
 

 

Marginal probability – sum/integral rule 

 

 



Bayes’ Rule 

Combining the definition of conditional prob. with the product 
and sum rules, we have Bayes‟ rule or Bayes‟ theorem 

 

 

 

 

 

 

 

“An Essay towards Solving a Problem in the Doctrine of Chances”  
published at Philosophical Transactions of the Royal Society of 
London in 1763 

 

 

Thomas Bayes (1702 – 1761)  



Bayes’ Rule Applied to Machine Learning 

Let      be a given data set;      be a model 
 

 

 

 

Model Comparison: 

 

 

Prediction: 

prior probability of  

likelihood of         on data  

posterior probability of         given 

marginal likelihood or evidence  

under some common assumptions 



Common Questions 

 

Why be Bayesian? 

 

Where does the prior come from? 

 

How do we do these integrals? 



Why be Bayesian? 

One of many answers 

Infinite Exchangeability: 
 

 

De Finetti‟s Theorem (1955): if                     are infinitely 

exchangeable, then 
 

 

   for some random variable     

x1 x2 xn

x1 x2 xn



How to Choose Priors? 

Objective priors -- noninformative priors that attempt to 
capture ignorance and have good frequentist properties 

Subjective priors -- priors should capture our beliefs as well as 
possible 

Hierarchical priors  -- multiple layers of priors 
 

 

 the higher, the weaker 

Empirical priors -- Learn some of the parameters of the prior 
from the data; known as “Empirical Bayes” 

 

 

 Pros: robust – overcomes some limitations of mis-specification 

 Cons: double counting of evidence / overfitting 



How to Choose Priors? 

Conjugate and Non-conjugate tradeoff 

 

Conjugate priors are relatively easier to compute, but they 

might be limited 

 Ex: Gaussian-Gaussian, Beta-Bernoulli, Dirichlet-Multinomial, 

etc. (see next slide for an example) 

 

Non-conjugate priors are more flexible, but harder to 

compute 

 Ex: LogisticNormal-Multinomial  



Example 1: Multinomial-Dirichlet Conjugacy 

 

Let 

 

The posterior  

 

 

 

 

which is 

Posterior is in the same class as the prior 



How do We Compute the Integrals? 

Recall that: 

 

 

This can be a very high dimensional integral 

 

If we consider latent variables, it leads to additional 

dimensions to be integrated out 

 

 

 This could be very complicated! 



Approximate Bayesian Inference 

In many cases, we resort to approximation methods 

 

Common examples 

 Variational approximations 

 Markov chain Monte Carlo methods (MCMC) 

 Expectation Propagation (EP) 

 Laplace approximation 

 … 

 

Developing advanced inference algorithms is an active area! 



Basics of Variational Approximation 

We can lower bound the marginal likelihood 

 

 

 

 

 

 Note: the lower bound is tight if no assumptions made 

Mean-field assumptions: a factorized approximation 

 

 optimizes the lower bound with the assumption leads to local 

optimums 



Basics of Monte Carlo Methods 

a class of computational algorithms that rely on repeated 

random sampling to compute their results. 

tend to be used when it is infeasible to compute an exact 

result with a deterministic algorithm 

was coined in the 1940s by John von Neumann, Stanislaw 

Ulam and Nicholas Metropolis 

Games of Chance 



Monte Carlo Methods to Calculate Pi 

Computer Simulation 

 

 

 N: # points inside the square 

 m: # points inside the circle 

 

Bufffon‟s Needle Experiment 

 

 

 m: # line crossings 



Problems to be Solved  

Sampling 

 to generate a set of samples                 from a given probability 

distribution 

 the distribution is called target distribution 

 can be from statistical physics or data modeling 

Integral 

 To estimate expectations of functions under this distribution 



Use Sample to Estimate the Target Dist. 

Draw a set of independent samples (a hard problem) 

 

 

Estimate the target distribution as count frequency 

Histogram with Unique 

Points as the Bins 



Basic Procedure of Monte Carlo Methods 

Draw a set of independent samples 

 

Approximate the expectation with 

 

 

 where is the distribution p? 

 why this is good? 

 

 

 Accuracy of estimator does not depend on dimensionality of z 

 High accuracy with few (10-20 independent) samples 

 However, obtaining independent samples is often not easy! 

 

Histogram with Unique 

Points as the Bins 



Why Sampling is Hard? 

Assumption 

 The target distribution can be evaluated, at least to within a 

multiplicative constant, i.e.,  

 

 where           can be evaluated  

Two difficulties 

 Normalizing constant is typically unknown 

 Drawing samples in high-dimensional space is challenging 



Many Sampling Methods 

Rejection sampling 

 

 

Importance sampling 

 

 

 

 

Markov chain Monte Carlo (MCMC) 



Basics of MCMC 

To draw samples from a desired distribution 
 

We define a Markov chain 

 

 where 

 

                is the transition kernel 

             is an invariant (or stationary) distribution of 

the Markov chain      iff: 



Geometry of MCMC 

Proposal depends on current state 

Not necessarily similar to the target 

Can evaluate the un-normalized target  



Gibbs Sampling 

A special case of Metropolis-Hastings algorithm 

Consider the distribution 

 

Gibbs sampling performs the follows 

 Initialize 

 For  

 Sample 

 

 Sample 

 

 Sample 

 



Geometry of Gibbs Sampling 

The target distribution in 2 dimensional space 



Geometry of Gibbs Sampling 

Starting from a state        ,            is sampled from 



Geometry of Gibbs Sampling 

A sample is drawn from  

this finishes one single iteration. 



Geometry of Gibbs Sampling 

After a few iterations 



Bayes' Theorem in the 21st Century 

This year marks the 250th Anniversary of Bayes‟ theorem 

 Events at: http://bayesian.org/ 

Bradley Efron, Science 7 June 2013:  Vol. 340 no. 6137 pp. 1177-

1178  

 

“There are two potent arrows 

in the statistician‟s quiver 

 

there is no need to go hunting 

armed with only one.” 

http://bayesian.org/meetings/Bayes250-meetings


Parametric Bayesian Inference 

 

 

A parametric likelihood:  

Prior on θ : 

Posterior distribution 

       is represented as a finite set of parameters      

Examples:  
• Gaussian distribution prior + 2D Gaussian likelihood         → Gaussian posterior distribution  

• Dirichilet distribution prior + 2D Multinomial likelihood → Dirichlet posterior distribution  

• Sparsity-inducing priors + some likelihood models            → Sparse Bayesian inference 



Nonparametric Bayesian Inference 

 

 

A nonparametric likelihood:  

Prior on     : 

Posterior distribution 

Examples:  
      → see next slide 

       is a richer model, e.g., with an infinite set of parameters 



Nonparametric Bayesian Inference 

probability measure binary matrix 

function 

Dirichlet Process Prior [Antoniak, 1974] 

+ Multinomial/Gaussian/Softmax likelihood 

Indian Buffet Process Prior [Griffiths & Gharamani, 2005] 

+ Gaussian/Sigmoid/Softmax likelihood 

Gaussian Process Prior [Doob, 1944; Rasmussen & Williams, 2006] 

+ Gaussian/Sigmoid/Softmax likelihood 



Why Be Bayesian Nonparametrics? 

Bypass the model selection problem 

 let data determine model complexity (e.g., the number of 
components in mixture models) 

 allow model complexity to grow as more data observed 

 

 

 

 

 

 

 

 

Let the data speak for themselves 



Related Tutorials and Materials 

Tutorial talks: 

 Z. Gharamani, ICML 2004. “Bayesian Methods for Machine Learning” 

 M.I. Jordan, NIPS 2005. “Nonparametric Bayesian Methods: Dirichlet 

Processes, Chinese Restaurant Processes and All That” 

 P. Orbanz, 20009. “Foundations of Nonparametric Bayesian Methods” 

 Y. W. Teh, 2011. “Modern Bayesian Nonparametrics”  

 J. Zhu, ACML 2013. “Recent Advances in Bayesian Methods” 

 

Tutorial articles: 

 Gershman & Blei. A Tutorial on Bayesian Nonparametric Models. 

Journal of Mathematical Psychology, 56 (2012) 1-12 

 



Example 2: A Bayesian Ranking Model 

Rank a set of items, e.g., A, B, C, D 

 A uniform permutation model 

 

 

P([A;C;B;D]) = P([A;D;C;B]) = ¢ ¢ ¢ =
1

4!



Example 2: A Bayesian Ranking Model 

Rank a set of items 

 With a preferred list 

 Users offer a concentration center 

 A generalized Mallows‟ model is defined 

 

 

 

¼0 = [C;B;A;D]

[Fligner & Verducci. Distance based Ranking Models. J. R. Statist. Soc. B, 1986] 



Example 2: A Bayesian Ranking Model 

Rank a set of items 

 Prior knowledge 

 conjugate prior exists for generalized Mallows‟ models (a member of 

exponential family) 

 Bayesian updates can be done with Bayes‟ rule 

 

 Can be incorporated into a hierarchical Bayesian model, e.g., 

topic models 

 

[Chen, Branavan, et al., Global models of document structure using latent permutations. ACL, 2009] 



Example 3: Latent Dirichlet Allocation  

 -- a generative story for documents 

A Bayesian mixture model with topical bases 

Each document is a random mixture over topics; Each word is 
generated by ONE topic 
 

 

image, jpg, gif, file, 

color, file, images, 

files, format 

 

ground, wire, power, 
wiring, current, circuit,  

Topic #1 

Topic #2 

Document #1:  gif jpg image current  file 

color images ground power file current format 

file formats circuit gif images 

Document #2:  wire currents file format 

ground power image format wire circuit 

current wiring ground circuit images files… 

Mixing Proportions 

Bayesian Approach 

Dirichlet Prior LDA Mixture Components 



Example 3: Bayesian Inference for LDA 

Given a set of documents, infer the posterior distribution 

 

 

 

 

mixing  

proportion topics 

topic  

assignment words 



Example 3: Approximate Inference 

Variational Inference (Blei et al., 2003; Teh et al., 2006) 

 

 

 

 

 

 

 

 

Monte Carlo Markov Chains (Griffiths & Steyvers, 2004) 

 Collapsed Gibbs samplers iteratively draw samples from the 
local conditionals 

p(£;©;ZjW;®;¯)

q¤ = min
q2some family

KL(qkp)



 

 

 

Bayesian Methods and Big Data 



Overfitting in Big Data 

“with more data overfitting is becoming less of a concern”? 

 

 



Overfitting in Big Data 

 “Big Model + Big Data + Big/Super Cluster” 

Big Learning 

9 layers sparse autoencoder with: 

-local receptive fields to scale up;  

- local L2 pooling and local contrast normalization for 

invariant features 
 - 1B parameters (connections) 

- 10M 200x200 images 

- train with 1K machines (16K cores) for 3 days 

 

-able to build high-level concepts, e.g., cat faces and 

human bodies 

-15.8% accuracy in recognizing 22K objects (70% 

relative improvements) 



Overfitting in Big Data 

Predictive information grows slower than the amount of 

Shannon entropy (Bialek et al., 2001) 



Overfitting in Big Data 

Predictive information grows slower than the amount of 

Shannon entropy (Bialek et al., 2001) 

Model capacity grows faster than the amount of  

predictive information! 



Overfitting in Big Data 

Surprisingly, regularization to prevent overfitting is 

increasingly important, rather than increasingly irrelevant! 
 

Increasing research attention, e.g., dropout training (Hinton, 

2012) 

 

 

 

 

More theoretical understanding and extensions 

 MCF (van der Maaten et al., 2013); Logistic-loss (Wager et al., 

2013); Dropout SVM (Chen, Zhu et al., 2014) 



Why Big Data could be a Big Fail? 

When you have large amounts of data, your appetite for hypotheses 
tends to get even larger 

If it‟s growing faster than the statistical strength of the data, then many 
of your inferences are likely to be false. They are likely to be white 
noise. 

Too much hype: “The whole big-data thing came and went. It died. It 
was wrong” 

Michael I. Jordan 

UC Berkeley 

Pehong Chen Distinguished Professor 

NAS, NAE, NAAS Fellow 

ACM, IEEE, IMS, ASA, AAAI Fellow 



Therefore … 

 

 

Computationally efficient Bayesian models are becoming 

increasingly relevant in Big data era 

 Relevant: high capacity models need a protection 

 

 Efficient: need to deal with large data volumes 

 



Challenges of Bayesian Methods 

Theory 
 Improve the classic Bayes theorem 

 

Modeling 
 scientific and engineering data 
 rich side information 

 

Inference/learning 
 discriminative learning 
 large-scale inference algorithms for Big Data 

 

Applications 
 social media, NLP, computer vision 

Building an Automated Statistician 



Theory 

 

 

 

Regularized Bayesian Inference 



Example 2 Revisit:  

               A Bayesian Ranking Model 

Arrange a set of invited talks 

 Side constraints 

 Mike Jordan can only spend 2 days at ICML 

 Eric Horvitz can only spend 1 day at ICML 

 院士X必须放在第一天 

 Vision 排在 learning前面 

 …… 

 

How can we consider them in Bayesian methods? 



Domain Knowledge 

Represented in logic form： 

 

 

 

 

 

 

 

How to incorporate such information in Bayesian inference? 



Regularized Bayesian Inference? 

How to consider side constraints?  

 

likelihood model prior 
posterior 

Not obvious! 

hard constraints 
(A single feasible space) 

soft constraints 
(many feasible subspaces with different  

complexities/penalties) 



Bayesian Inference as an Opt. Problem 

 

 

 

 

 

 

 

Bayes’ rule is equivalent to solving: 

 

direct but trivial constraints on posterior distribution 

Wisdom never forgets that all things have two sides 



Regularized Bayesian Inference 

Bayesian inference with posterior regularization: 

 

 

 

 

 

 

 Consider both hard and soft constraints 

 Convex optimization problem with nice properties  

 Can be effectively solved with convex duality theory 

posterior regularization 

[Zhu, Chen, & Xing, JMLR, 2014] 

Constraints can encode rich structures/knowledge 

„unconstrained‟ equivalence: 



A High-Level Comparison 

prior 
distribution 

likelihood 
model 

posterior 
distribution 

prior 
distribution 

likelihood 
model 

posterior 
distribution 

posterior 
regularization 

Bayes’ Rule 

Optimization 

RegBayes: 

Bayes: 



More Properties 

Representation Theorem:  

 the optimum distribution is: 

 

 

 where      is the solution of the convex dual problem 
 

Putting constraints on priors is a special case 

 constraints on priors are special cases of posterior regularization 
 

RegBayes is more flexible than Bayes’ rule 

 exist some RegBayes distribution: no implicit prior and 
likelihood that give back it by Bayes‟ rule 

[Zhu, Chen, & Xing, JMLR, 2014] 



Ways to Derive Posterior Regularization 

From learning objectives 

 Performance of posterior distribution can be evaluated when 
applying it to a learning task 

 Learning objective can be formulated as Pos. Reg.  

 

From domain knowledge 

 Elicit expert knowledge 

 E.g., first-order logic rules  

 

Others … 

 E.g., decision making, cognitive constraints, etc. 



Modeling + Algorithms 

 

 

 

Adaptive, Discriminative, Scalable 

Representation Learning 



Input Data 

Inference, Decision, Reasoning 

Ideal paradigm that 

computers help solve 

big data problems 



A Conventional Data Analysis Pipeline 

Input Data 

Feature Representation 

Computer Algorithms 

Arabian 
negotiations 

against peace 
Israel 

Arabs 
blaming 



Representation Learning 

 

 

 

 
Learning  

Algorithms 

T1 T2 T3 T4 T5 T6 T7 

told 

dirty 

room 

front 

asked 

hotel 

bad 

small 

worst 

poor 

called 

rude 

place 

hotel 

room 

days 

time 

day 

night 

people 

stay 

water 

rooms 

food 

hotel 

food 

bar 

day 

pool 

time 

service 

holiday 

room 

people 

night 

water 

hotel 

area 

staff 

pool 

breakfast 

day 

view 

location 

service 

walk 

time 

food 

beach 

pool 

resort 

food 

island 

kids 

trip 

service 

day 

staff 

time 

view 

beach 

resort 

pool 

ocean 

island 

kids 

good 

restaurants 

enjoyed 

loved 

trip 

area 

great 

good 

nice 

lovely 

beautiful 

excellent 

wonderful 

comfortable 

beach 

friendly 

fresh 

amazing 

Axis's of a semantic representation space: 

E.g., Topic Models 

Learning  

Algorithms 

[Figures from (Lee et al., ICML2009)] 

E.g., Deep Networks 



Some Key Challenges 

Discriminative Ability 

 Are the representations good at solving a task, e.g., distinguishing 

different concepts? 

 Can they generalize well to unseen data? 

 Can the learning process effectively incorporates domain knowledge? 

Model Complexity 

 How many dimensions are sufficient to fit a given data set? 

 Can the models adapt when environments change? 

Sparsity/Interpretability 

 Are the representations compact or easy to interpret? 

Scalability 

 Can the algorithms scale up to Big Data applications? 

 



LDA has been widely extended … 

LDA can be embedded in more complicated models,  
    capturing rich structures of the texts 

Extensions are either on 
 Priors: e.g., Markov process prior for dynamic topic models, logistic-

normal prior for corrected topic models, etc 
 Likelihood models: e.g., relational topic models, multi-view topic 

models, etc. 
 
 
 
 
 
 
 

Tutorials were provide by D. Blei at ICML, SIGKDD, etc. 
(http://www.cs.princeton.edu/~blei/topicmodeling.html)  

http://www.cs.princeton.edu/~blei/topicmodeling.html


Supervised LDA with Rich Likelihood 

Following the standard Bayes‟ way of thinking, sLDA defines a 
richer likelihood model 

 

 

 

 

 

 per-document likelihood 

 

 

 

 both variational and Monte Carlo methods can be developed 

(Blei & McAuliffe, NIPS‟07; Wang et al., CVPR‟09 ; Zhu et al., ACL 2013) 



Imbalance Issue with sLDA 

A document has hundreds of 

words  

… but only one class label 

 

Imbalanced likelihood 

combination 

 

 

Too weak influence from 

supervision 

(Halpern et al., ICML 2012; Zhu et al., ACL 2013) 



Max-margin Supervised Topic Models 

Can we learn supervised topic models in a max-margin way? 

How to perform posterior inference? 

 Can we do variational inference? 

 Can we do Monte Carlo? 

How to generalize to nonparametric models?  



MedLDA: 

Max-margin Supervised Topic Models 

Two components 
 An LDA likelihood model for describing word counts 
 An max-margin classifier for considering supervising signal  

 

Challenges 
 How to consider uncertainty of latent variables in defining the classifier? 

Nice work that has inspired our design 
 Bayes classifiers (McAllester, 2003; Langford & Shawe-Taylor, 2003) 
 Maximum entropy discrimination (MED) (Jaakkola, Marina & Jebara, 

1999; Jebara‟s Ph.D thesis and book) 
 



MedLDA: 

Max-margin Supervised Topic Models 

The averaging classifier 
 The hypothesis space is characterized by (η, Z) 
 Infer the posterior distribution 

 
 

 q-weighted averaging classifier (                           ) 
 
 

 where 

Note: Multi-class classification can be done in many ways, 1-vs-1, 1-vs-all, Crammer & Singer‟s method 



MedLDA: 

Max-margin Supervised Topic Models 

Bayesian inference with max-margin posterior constraints 

 

 

 objective for Bayesian inference in LDA 

 

 

 posterior regularization is the hinge loss 



Inference Algorithms 

Regularized Bayesian Inference 

 

 

 

An iterative procedure with 

 
A SVM problem  

with a normal prior 

Variational approximation 

or Monte Carlo methods 



Empirical Results on 20Newsgroups 

Topic representations 



Empirical Results on 20Newsgroups 

 



Sparser and More Salient Representations 

Comp.graphics: 
comp.graphics 

politics.mideast 

MedLDA LDA 



Multi-class Classification with  

Crammer & Singer’s Approach 

Observations: 

 Inference algorithms affect the performance; 

 Max-margin learning improves a lot 



Gibbs MedLDA 

The Gibbs classifier 
 The hypothesis space is characterized by (η, Z) 
 Infer the posterior distribution 

 
 

 A Gibbs classifier 
 
 

 where 

(Zhu, Chen, Perkins, Zhang, JMLR 2014) 



Gibbs MedLDA 

Let‟s consider the “pseudo-observed” classifier if           are 

given 

 

 The empirical training error 

 

 

 A good convex surrogate loss is the hinge loss (an upper bound) 

 

 

 

Now the question is how to consider the uncertainty?  

 A Gibbs classifier takes the expectation! 



Gibbs MedLDA 

Bayesian inference with max-margin posterior constraints 
 

 

 

 an upper bound of the expected training error (empirical risk) 

 



Gibbs MedLDA vs. MedLDA 

The MedLDA problem 

 

 

 

 

Applying Jensen‟s Inequality, we have 
 

 

 

 Gibbs MedLDA can be seen as a relaxation of MedLDA 



Gibbs MedLDA 

The problem 

 

 

Solve with Lagrangian methods 

 

 

 

 The pseudo-likelihood 



Gibbs MedLDA 

Lemma [Scale Mixture Rep.] (Polson & Scott, 2011): 

 The pseudo-likelihood can be expressed as 

 

 

What does the lemma mean? 

 It means:  



A Gibbs Sampling Algorithm 

Infer the joint distribution 

 

 

A Gibbs sampling algorithm iterates over: 

 Sample  

 a Gaussian distribution when the prior is Gaussian 

 Sample  

 a generalized inverse Gaussian distribution, i.e.,          follows inverse 

Gaussian 

 Sample  

 

 a supervised LDA model with closed-form local conditionals by exploring 

data independency. 



A Collapsed Gibbs Sampling Algorithm 

The collapsed joint distribution 

 

 

A Gibbs sampling algorithm iterates over: 

 Sample  

 a Gaussian distribution when the prior is Gaussian 

 Sample  

 a generalized inverse Gaussian distribution, i.e.,          follows inverse 

Gaussian 

 Sample  

 

 closed-form local conditionals 

 



The Collapsed Gibbs Sampling Algorithm 

 

Easy to Parallelize 



Some Analysis 

 

The Markov chain is guaranteed to converge 

 

Per-iteration time complexity 

 

 

             the total number of words 



Experiments 

20Newsgroups binary classification 



Experiments 

Sensitivity to burn-in: binary classification 

 



Experiments 

Leverage big clusters 

Allow learning big models that can‟t fit on a single machine 

[Zhu, Zheng, Zhou, & Zhang, KDD2013] 

• 20 machines;  

• 240 CPU cores 

 

• 1.1M multi-labeled   

    Wiki pages 

• 20 categories (scale to  

   hundreds/thousands of  

   categories) 

 



RegBayes with Max-margin  

                           Posterior Regularization  

Max-margin Topics and Fast Inference 

 (Zhu, et al., JMLR‟12; Zhu et al., JMLR‟14) 

Nonparametric Max-margin Relational  

Models for Social Link Prediction 
(Zhu, ICML‟12) 

U 

 V‟ 

X Y 

Nonparametric Max-margin Matrix  

Factorization  
(Xu, Zhu, & Zhang, NIPS‟12, ICML‟13) 

Multimodal  Representation Learning 
(Chen, Zhu, et al, PAMI‟12) 

Infinite SVMs 

 (Zhu et al., ICML‟11) 

Infinite Latent SVMs 

 (Zhu, et al., JMLR„14) 

* Works from other groups are not included. 



Link Prediction 

But network structures are usually unclear, unobserved, or 

corrupted with noise 



Link Prediction – task  

Dynamic networks 

 

 

 

 

Static networks 

We treat it as a supervised  

learning task with 1/-1 labels 



Link Prediction as Supervised Learning 

Building classifiers with manually designed features from 

networks 

 Topological features 

 Shortest distance, number of common neighbors, Jaccard‟s coefficient, 

etc. 

 Attributes about individual entities 

 E.g., the papers an authors has published 

 Proximity features 

 E.g., two authors are close, if their research work evolves around a large 

set of identical keywords 

 … 

[Hasan et al., 2006] 



Link Prediction as Supervised Learning 

Latent feature relational models 

 Each entity is associated with a point              in a latent feature space 

 Then, a link likelihood is generally defined 

 

Nonparametric latent feature relational model (LFRM) 

(Miller, Griffiths, & Jordan, 2009) 

Latent eigenmodel (Hoff, 2007) Latent distance model (Hoff et al., 

2002) generalize 

generalize generalize 

More at  

ICML 2012 



Discriminant Function with Latent Features 

Strength to get linked  

if both entities have the  

same feature 2 



Discriminant Function with Latent Features 

Latent Features Observable Features 

Ex: [red, table; gray, ball; neighbors…] 



Infinite Latent Feature Matrix 

N entities   →   a latent feature matrix Z 

 

 

 

 

 

How many columns (i.e., features) are sufficient? 

    → a stochastic process to infer from data – Indian buffet 
process (IBP) (Griffiths & Ghahramani, 2006) 

What learning principle is good? 

    → max-margin learning – (Vapnik, 1995; Taskar et al., 2003) 

     MedLFRM (max-margin latent feature relational model) 



Bayesian MedLFRM 

The Normal-Gamma hyper-prior: 

 Prior of model parameters with common mean and variance 

 

 

 The hyper-prior 

 
 

 a weak hyper-prior suffices, e.g.,  
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One problem with MedLFRM is the 

tuning of C, e.g., using CV 

Hierarchical Bayesian ideas to infer 

it from data 

 C 



Bayesian MedLFRM 

Learning problem 

 

 

 

Inference – similar iterative procedure (outline) 

 The step of inferring p(ν, Z) doesn‟t change 

 For p(Ө), we solve a binary SVM 

 For p(μ,τ), we have closed-form rule 
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Datasets & Classification Setups 

Countries 
 14 countries, 56 relations 
 90 observable attributes about countries 
 predict the existence/non-existence (1/-1 

classification) of each relation for each pair of country 

Kinship 
 104 people, 26 kinship relations 
 predict the existence/non-existence (1/-1 

classification) of each relation for each pair of people 

Coauthor Networks: 
 234 authors 
 80% pairs for training; 20% for testing 
 Positive – author pairs that published papers together 

in train years;  
 Negative – author pairs that didn‟t publish any papers 

together in train years 

 



Results on Multi-relation Data 
AUC – area under ROC curve (higher, better) 

Two evaluation settings 
 Single – learn separate models for different relations, and average the AUC   

                    scores; 

 Global – learn one common model (i.e., features) for all relations 

Country Relationships 



Results on Multi-relation Data 
AUC – area under ROC curve (higher, better) 

Two evaluation settings 
 Single – learn separate models for different relations, and average the AUC  

                    scores; 

 Global – learn one common model (i.e., features) for all relations 

Kinship Relationships 



Results on Coauthor Networks 

Two model settings: 
 Symmetric –      is a symmetric matrix: 

 
 

 Asymmetric – no above constraint 

 



Collaborative Filtering in Our Life 

 



Latent Factor Methods 

Characterize both items & users on say 20 to 100 factors inferred 
from the rating patterns 

[Y. Koren, R. Bell & C. Volinsky, IEEE, 2009] 



Matrix Factorization 

Some of the most successful latent factor models are based 

on matrix factorization 

    item 
 

 user 
1 2 3 4 

1 ? 

2 ? ? 

3 ? ? 

… 

…
 

User-Movie 

Ratings 

User 

Features 

Movie 

Features 



Two Key Issues 

 

 

 

 

 

 

How many columns (i.e., features) are sufficient? 

        → a stochastic process to infer it from data 

What learning principle is good?  

        → large-margin principle to learn classifiers 

Nonparametric Max-margin Matrix Factorization for Collaborative Prediction  

User-Movie 

Ratings 

User 

Features 

Movie 

Features 

[Xu, Zhu, & Zhang,  NIPS 2012] 



Experiments 

Data sets: 

 MovieLens: 1M anonymous ratings of 3,952 movies made by 6,040 

users 

 EachMovie: 2.8M ratings of 1,628 movies made by 72,916 users 

Overall results on Normalized Mean Absolute Error 

(NMAE) (the lower, the better) 



Prediction Performance during Iterations 

 



Objective Value during Iterations 

 



Expected Number of Features per User 

 



Fast Sampling Algorithms 

See our paper [Xu, Zhu, & Zhang, ICML2013] for details 

30 times faster! 

8 times faster! 



 

 

Part II  

 

Scalable Bayesian Methods 



Existing Methods & Systems 

Stochastic/Online Methods 

 Variational, MCMC 

 

Distributed Methods 

 Variational, MCMC 

master 

slave 

map reduce 

server 

client 

Data-Parallel Graph-Parallel Model-Parallel 



Online Bayesian Updating 

Sequential Bayesian updating 

 Bayes‟ rule 

 

 Suppose we have processed b-1 collections, i.e., mini-batches 

 Given                                , we have  

 

 

 i.e.: we treat the posterior after b-1 mini-batches as the new 

prior for incoming data 

 

It is truly online (or streaming) if we can save the posteriors and 

calculate the normalizing constant  



Online Variational Bayes 

However, it is often infeasible to calculate the posterior 
exactly 

Therefore, approximation must be used 
 

Online (Streaming) Variational Bayes: 

 An algorithm      that calculates an approximate posterior 

 

 

   where C is the mini-batch data;           is the given prior 

 Recursively calculate an approximation to the posterior 

 

 

 where 



Distributed Bayesian Updating 

Bayesian theorem yields 

 

 

 

 

 

Therefore, we can calculate the individual mini-batch 

posteriors                      in parallel; then combine them to 

find the full posterior 



Distributed Variational Bayes 

Given an approximating algorithm  

The approximate update is 

 

 

 

Ex: for exponential family distributions 

 Assume the prior 

 Assume the approximating algorithm 

 

 Then, we have 

 

 

 



Some Empirical Results 

Datasets: Wikipedia (3.6M); Nature (0.35M) 

 

 

 

 

 

 

 

 

SVI is faster than single-thread SDA-Bayes in the single-pass 

setting 



 

 

Online Bayesian Passive-Aggressive Learning 



Why Online Learning? 

Streaming data: 

 Data come in streams 

 “Infinite” size 

 Processed data thrown away 

 Real-time response 

 

Fixed, large-scale data: 

 Statistic redundancy 

 “online learning” by sub-sampling 

 Stochastic learning/optimization 

 Fast convergence to satisfactory 

results  



Online Learning for Classification 

Learning 

Algorithm 
Loss  

Model 

Prediction 
(Supervised Case) 

instantaneous Loss 

Update 

Data 

… 



Perceptron --- a simplest example 

Set               and t=1; scale all examples to have length 1 

(doesn‟t affect which side of the plane they are on) 

Given example x, predict positive iff  

 

If a mistake, update as follows 

 Mistake on positive: 

 Mistake on negative: 

 

w1 = 0

w>
t x > 0

wt+1 Ã wt + x

wt+1 Ãwt¡x

t Ã t + 1

wt
wt wt+1



Mistake Bound 

Theorem: 

 Let     be a sequence of labeled examples consistent with a linear 

threshold function                   , where       is a unit-length vector.   

 The number of mistakes M made by the Perceptron algorithm is at 

most             , where 

 

 

 i.e.: if we scale examples to have length 1, then     is the minimum 

distance of any example to the plane  
 

    is often called the “margin” of        ; the quantity             is the cosine 

of the angle between     and      

w>
¤ x > 0

S
w¤

(1=°)2

° = min
x2S

jw>
¤ xj

kxk

°

w>
¤ x = 0

° w¤
w>
¤ x

kxkw¤x



Generalization of Perceptron 

Discriminative Training of HMMs or Markov networks 

(Collins, 2002) 

 

 

 

 

 For each input      , predict the structured label (e.g., sequence) 

 Update the parameters via the rule, if                 : 

 

 

 i.e., moving toward the truth. 

 [M. Collins. Discriminative Training Methods for HMMs: Theory and Experiments with Perceptron Algorithms. EMNLP, 2002] 

x1 x2 x3 x4

y1 y2 y3 y4

xt ŷt

ŷt 6= yt

wt+1 = wt + Ã(xt;yt)¡ Ã(xt; ŷt)



Loss for Binary Classification 

Loss (or constraint) at time t for a simple linear model: 



Online Passive-Aggressive Updates 

Model at time t:       ; When seeing a new data point: 

feasible zone feasible zone 

[Crammer et al., 2006] 



Bayesian Passive-Aggressive Learning 

Basic setup: we learn a distribution over models, rather 

than a single model 

[Shi & Zhu, ICML 2014; invited to JMLR] 



New Passive-Aggressive Updates 

Distribution at time t:           ; When seeing a new data point 

 

 

 

 

 

 

 

 

 Note: Bayes update is optional.  

feasible zone. 

qt (w)

qt+1(w)

qt (w)

qt+1(w)

feasible zone. 

[Shi & Zhu, ICML 2014; invited to JMLR] 



Two Choices to Define “Feasible Zone” 

Share a common goal: learn a posterior distribution over 

models 

 

Different strategies in making predictions: 

 Averaging classifier: takes an average of the discriminant 

function and predicts 

 

 

 Gibbs classifier: randomly draws a model and predicts 

 

[Shi & Zhu, ICML 2014; invited to JMLR] 



The Learning Problem 

Hard constraint version: 

 

 

 

 

Soft constraint version: 

optional 



Some Properties 

Theorem 1: non-Bayesian PA is a special case. 

 

One significance of Bayesian models is to learn latent 

structures 

[Shi & Zhu, ICML 2014; invited to JMLR] 



Some Properties 

Theorem 1: non-Bayesian PA is a special case. 

 

One significance of Bayesian models is to learn latent 

structures 

[Shi & Zhu, ICML 2014; invited to JMLR] 



Some Properties 

Theorem 2: under certain conditions, the regret of BayesPA  is 

bounded as 

 

 

 

Remarks: 

 Holds for any choice of            ; including the best by batch 

learning 

 Holds for both averaging and Gibbs classifiers 

 As                  , the asymptotic regret is at most worse by a 

constant 

 
[Shi & Zhu, ICML 2014; invited to JMLR] 



Applications to Topic Modeling 

Discover semantic topic representations 

T1 T2 T3 T4 T5 T6 T7 
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view 
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island 

kids 

trip 
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day 
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time 

view 
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island 
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trip 
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great 

good 

nice 

lovely 

beautiful 
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comfortable 
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friendly 

fresh 

amazing 

Axis of a 

semantic 

space: 



Empirical Results on Large-scale Wiki Data 

Wikipedia webpages with multi-labels: 

 1.1 million documents; 0.9 million unique terms 

 

 

 

 

 

 

 

 

 



 

 

Large-scale Topic Graph Learning  

and Visualization 



Logistic-Normal Topic Models 

Bayesian topic models 

 

 

 

 

 

Dirichlet priors are conjugate to the multinomial likelihood 

However, it doesn‟t capture the correlation among topics 

mixing  

proportion topics 

topic  

assignment words 



Logistic-Normal Topic Models 

Logistic-normal prior distribution (Aitchison & Shen, 1980) 

 

 

 

 

 Logisitc-normal prior can capture the correlationships 

 

 

 

 But it is non-conjugate to a multinomial likelihood！ 

 Variational approximation not scalable (Blei & Lafferty, 2007) 
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A Scalable Gibbs Sampler 

 

 

 

 

 

Collapse out the topics by conjugacy 

Sample Z: (standard) 

mixing  

proportion topics 

topic  

assignment words 

´d¹;§



A Scalable Gibbs Sampler 

 

 

 

 

 

Collapse out the topics by conjugacy 

Sample    : (challenging) 

mixing  

proportion topics 

topic  

assignment words 

´d¹;§

´



A Scalable Gibbs Sampler 

 

 

 

 

 

Data augmentation saves! 

For each dimension k: 

mixing  

proportion topics 

topic  

assignment words 

´d¹;§



Data Augmentation 

A scale-location mixture representation 

 

 

 where 
 

 

Then, we iteratively draw samples 

 Draw 1d Gaussian:  

 

 

 Draw 1d Polya-Gamma: 

= 



Fast Approximation by CLT 

Using a few samples to approximate: 



Fast Approximation by CLT 

Using a few samples to approximate: 



Experimental Results 

Leverage big clusters 

Allow learning big models that can‟t fit on a single machine 

 

• 40 machines;  

• 480 CPU cores 

 

• 0.285M NYTimes pages 

• K = 200 ~ 1000 

 

[Chen, Zhu, Wang, Zheng, & Zhang, NIPS 2013] 



Experimental Results 

Leverage big clusters 

Allow learning big models that can‟t fit on a single machine 

 

[Chen, Zhu, Wang, Zheng, & Zhang, NIPS 2013] 



Scalable Graph Visualization 

[Joint with Dr. Shixia Liu from MSRA. IEEE VAST 2014] 



Summary 

Computationally efficient Bayesian models are becoming 

increasingly relevant in Big data era 

 

RegBayes:  

 bridges Bayesian methods, learning and optimization 

 offers an extra freedom to incorporate rich side information 

 

Many scalable algorithms have been developed 

 online/stochastic algorithms (e.g., online BayesPA) 

 distributed inference algorithms (e.g., scalable CTM) 

 

 



Future Work 

Dealing with weak supervision and other forms of side 

information 

 

RegBayes algorithms for network models 

 

Learning with dynamic and spatial structures 

 

Fast and scalable inference architectures 

 

Generalization bounds 

 

 



Further Readings 

Stochastic MCMC Algorithms: 

 Bayesian Learning via Stochastic Gradient Langevin Dynamics, M. 
Welling and Y. W. Teh, ICML 2011; 

 Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring, S. 
Ahn, A. Korattikara, and M. Welling, ICML 2012 (best paper); 

 Stochastic Gradient Riemannian Langevin Dynamics on the 
Probability Simplex, S. Patterson and Y.W. Teh, NIPS 2013; 

 

Distributed MCMC Algorithms: 

 Asymptotically Exact, Embarrassingly Parallel MCMC, N., Willie, C. 
Wang, and E. Xing, UAI 2014; 

 Distributed Stochastic Gradient MCMC, S. Ahn, B. Shahbaba and M. 
Welling, ICML 2014; 

 

 



Further Readings 

Stochastic Variational Algorithms: 
 Hoffman, M., Bach, F.R., and Blei, D.M. Online learning for latent 

Dirichlet allocation. NIPS, 2010.  
 Mimno, D., Hoffman, M., and Blei, D.M. Sparse stochastic inference 

for latent dirichlet allocation. ICML, 2012. 
 

Distributed Algorithms for Topic Models: 
 A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. Smola. 

Scalable inference in latent variable models. WSDM, 2012; 
 A. Smola and S. Narayanamurthy. An architecture for parallel topic 

models. VLDB, 3(1-2):703–710, 2010; 
 D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed 

algorithms for topic models. Journal of Machine Learning Research 
(JMLR), (10):1801–1828, 2009. 
 
 



Further Readings 
Related Publications in My Group: 
 J. Chen, J. Zhu, Z. Wang, X. Zheng, and B. Zhang. Scalable Inference for 

Logistic-Normal Topic Models, NIPS, 2013; 

 J. Zhu, X. Zheng, L. Zhou, and B. Zhang. Scalable Inference in Max-margin 
Supervised Topic Models,  KDD, 2013; 

 J. Zhu, X. Zheng, and B. Zhang. Bayesian Logistic Supervised Topic Models with 
Data Augmentation,  ACL, 2013; 

 J. Zhu, N. Chen, and E.P. Xing. Bayesian Inference with Posterior Regularization 
and applications to Infinite Latent SVMs, JMLR, 15(May):1799-1847, 2014 

 J. Zhu,  A. Ahmed,  and E.P.  Xing. MedLDA: maximum margin supervised topic 
models. JMLR, 13:2237–2278, 2012; 

 J. Zhu, N. Chen, H. Perkins, and B. Zhang. Gibbs Max-margin Topic Models with 
Data Augmentation, JMLR, 15(Mar):1073-1110, 2014  

 T. Shi, and J. Zhu. Online Bayesian Passive Aggressive Learning,  ICML, Beijing, 
China, 2014; 

 S. Mei, J. Zhu, and J. Zhu. Robust RegBayes: Selectively Incorporating First-
Order Logic Domain Knowledge into Bayesian Models, ICML, Beijing, China, 
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 S. Liu, Xi. Wang, J. Chen, J. Zhu, and B. Guo. TopicPanaroma: a Full Picture of 
Relevant Topics, To Appear in Proc. of IEEE VAST, Paris, France, 2014; 

 



Further Readings 

Tutorials on Big Learning 

 ICML 2014: Bayesian Posterior Inference in the Big Data Arena, 

Max Welling; 

 ICML 2014: Emerging Systems for Large-Scale Machine 

Learning, Joseph Gonzalez; 

 AAAI 2014: Scalable Machine Learning, Alex Smola; 

 

Workshops on Big Learning: 

 NIPS Workshop 2011, 2012, 2013 

(http://www.biglearn.org)  
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Thanks! 
 

Some code available at: 

http://bigml.cs.tsinghua.edu.cn/~jun 


