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i Goals of this tutorial

= Importance of IR:

= IR (search engine) is used for different tasks in
our everyday life.

= It is also used as a basic tool for other tasks
(datamining, data analytics, QA, etc.)

= This tutorial:
= Understand how IR works
= Common methods used
= Recent evolution to do more than search



i Outline

= IR problem and basic processing
= Traditional models

s More recent models
= Links between documents and queries
= User feedback

= Understanding the user (user’s intent)
= Remaining challenges



The problem of IR

1. A user is in need of some information
2. He formulates a query to an IR system

3. IR system evaluates the relevance of documents Info.

4. IR system returns a ranked list of documents | need
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i Indexing-based IR

Document Query
Indexing Indexing
] 1 (Query analysis)
Representation < » Representation
(keywords) Retrieval (keywords)

(Document ranking)



Basic problems in IR

= Document and query indexing
= How to best represent their contents?

= Query evaluation (or retrieval process)

= To what extent does a document correspond to
a query?
= A ranking/scoring function



i Document indexing

s Goal

= ldentify the important content and create an internal
representation for it

= What indexing units to use?
= Words or Word stems (bag-of-words)
= Phrases
= Concepts

= How to weight?



i Document indexing

= General process:
= Input text

= Processing of text format and structure
= Word
= Index some fields and discard others

= For each word form
= Stopword?
= Stemming

= Term weighting



i Stopwords / Stoplist

Stopwords = words that do not bear useful information
for IR

e.g. of, in, about, with, I, although, ...

= Stoplist: contain stopwords, excluded from index

Prepositions

Articles

Pronouns

Some adverbs and adjectives

Some frequent words (e.g. document)

= The removal of stopwords usually improves slightly IR
effectiveness, or not

= A few “standard” stoplists are commonly used.
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i Stemming

= Different word forms may bear similar meaning
e.g. search, searching

= Stemming:

= Removing some endings of word
computer )
compute
computes .
computing
computed
computation

comput

/



Porter algorithm

(Porter, M.F., 1980, An algorithm for suffix stripping,
Program, 14(3) :130-137)

Step 1: plurals and past participles
= SSES -> SS caresses -> caress
= (*v*) ING -> motoring -> motor
Step 2: adj->n, n->v, n->adj, ...
= (Mm>0) OUSNESS -> OUS callousness -> callous
= (Mm>0) ATIONAL -> ATE relational -> relate

Step 3:

= (m>0) ICATE -> IC triplicate -> triplic
Step 4:

= (Im>1) AL -> revival -> reviv

= (m>1) ANCE -> allowance -> allow
Step 5:

= (IMm>1E-> probate -> probat

= (m>1and*dand *L) -> single letter controll -> control
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L emmatization — an alternative

transform to standard form according to syntactic
category.
E.g. verb + /ng — verb
noun + s — Noun

= Need POS tagging
= More accurate than stemming, but needs more resources

crucial to choose stemming/lemmatization rules
noise v.s. recognition rate

compromise between precision and recall

light/no stemming 3 aggressive stemming
-recall +precision +recall -precision
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Traditional tf*idf weighting schema

= tf = term frequency
= frequency of a term/keyword in a document

The higher the tf, the higher the importance (weight) for the doc.

= df = document frequency
= Nno. of documents containing the term
= distribution of the term

= Idf = inverse document frequency
= the unevenness of term distribution in the corpus
= the specificity of term to a document

The more the term is distributed evenly, the less it is specific to a
document

weight(t,D) = tf(t,D) * idf(t)

14



i Some common tf*/df schemes

tf(t, D)=freq(t,D) 1df(t) = log(N/n)
tf(t, D)=log[freq(t,D)] n = #docs containing t
tf(t, D)=log[freq(t,D)]+1 N = #docs in corpus

tf(t, D)=freq(t,d)/Max[f(t,d)]

weight(t,D) = tf(t,D) * idf(t)

Normalization: Cosine normalization, /max, ...
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i Result of indexing

= Each document is represented by a set of weighted
keywords (terms):

e.g. D; — {(comput, 0.2), (architect, 0.3), ...}
D, — {(comput, 0.1), (network, 0.5), ...}

= Inverted file:
comput — {(D1,0.2), (D5,0.1), ...}
Inverted file is used during retrieval for higher efficiency.
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i Indexing-based IR

Document

v

Representation <

Indexing

Query

Indexing
1 (Query analysis)

(keywords)

Retrieval
(Document ranking)

» Representation
(keywords)
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i Retrieval

= The problems underlying retrieval

= Retrieval model

« What is the formal representation by the
extracted and weighted terms?

« How to match a query representation with a
document representation to estimate a score?

= Many models have been proposed in IR

18



!'_ Traditional Models
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Boolean model

= Document = Logical conjunction of keywords
= Query = Boolean expression of keywords
u R(D, Q) =D —)Q

e.g. D=t At,An .. AT

Q=({t, AL) Vv (t;A =ty
D —Q, thus R(D, Q) = 1.

Problems:
= R s either 1 or 0 — No ranking
= Result in many documents or few documents

s Often used as a first filtering of result candidates in

search engines
20



i Vector space model

= Vector space = all the keywords encountered
<t, t, t;,..,t>
= Document
D= <a,a,a;..,a>
a, = weight of t.in D
= Query
Q= < bl’ bz’ bs’ e bn>
b.= weight of t.in Q

= R(D,Q) = Sim(D,Q)
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i Some formulas for Sim

Dot product

Cosine

Dice

Jaccard

SIm(D,Q)=DeQ :Z(ai *b;)

R

Z(a- *y) D

Sim(D,Q) =
JZaZ*zbz °

2> (a;*by) t2

Sim(D,Q)—Za +Zb
Z(a *b;)

Sim(D,Q) =

Za, +Zb, —Z(a,*bi)
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i Probabilistic model

= Given D and Q, estimate P(R|D,Q) and
P(NR|D,Q)
P(R\Q,D):P(D|R’Q) P(R|Q)
P(D|Q)

= P(D]|Q), P(R|Q) assumed constant

So, P(R]|Q,D)x P(D|R)
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i Probabilistic model

= Binary independent model

1 present

D = {t,=X%,, L=X,, ... X, =
=Xy, =Xy, .} I{Oabsem
PD|RO)= [] P(t,=x|R)) p=Pt=1R,)
e q=P(,=0]R,)

=[1pra-p)*
l;

P(D | NR, Q) = HP(II_ =1 | NRQ )x,; P(fi =0 | NRQ )(l—xi-) — quxi (1 _qi )(l—xj)
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i Prob. model (cont'd)

For document ranking

Hp. (L-py) &

P(D|NR Q) qu (1- q)(l X;)

p(—q) 1-p
= | lo i
24100y 29 g

t;

of (1_ a;) ™ Constant for any document
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i Prob. model (cont'd)

= How to estimate p; and q;?

= A set of Mrelevant and
Irrelevant samples:

_ i q_ni_ri
P; n N-R

I Ni-I.
Rel. doc. [Irrel.doc.
witht; | with t
Ri-r; N-Ri—n-+r;
Rel. doc. [Irrel.doc.
without t; | without t,
R, N-R.

Rel. doc Irrel.doc.

n;
Doc.

with t,
N-n,

Doc.
without ti

N
Samples
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i Prob. model (cont'd)

Odd(D)="> x. logp,-(l—q,-) ~Yx 1og’7'(N‘Rf —n+r)
; qi(l_pi) 1, (Rl—l”;)(nl—l’;)

O Smoothing (Robertson-Sparck-Jones formula)

0dd (D) :in log (r;, +0.5) (N —R; —n; +1; +0.5) _ inwi

: (R —r; +0.5)(n; —r; +0.5) s

= When no sample is available:

n.
p=0.5, T L ’
G=(n+0.5)/(N+0.5)=n/N Wi =108— =log——(~1d)
" (1-05) ,-

= Use relevance feedback to get more samples for
more precise estimation
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BM?25
— one of the best performing models

Score(D, Q) =Zw(k1+1)tf (k, +1)qtf 4k, |Q| avdl —dI
o K+tf  k,+qtf avdl +dI

dl ~__ X
K=k ((1-b)+b Doc. length
(A=) +b a7 factors normalization

= k1, k2, k3, d: parameters

= Qtf: query term frequency

= dl: document length

= avdl: average document length

28



Statistical Language models

!'_ for IR
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Basics:
i Prob. of a sequence of words

P(S) = P(W1’W2""Wn)
=P(wW)P(w, |w)...P(W, | W, )

= H P(Wi | hi)
=1
Elements to be estimated:
P(w ) =)
P(h)

- If hi Is too long, one cannot observe (hi, wi) Iin the
training corpus, and (4, w) IS hard generalize

- Solution: limit the length of hi

30



i N-grams

= Limit A to n-1 preceding words
Most used cases

= Uni-gram: P(S)=ﬁP(Wi)
= Bi-gram: P(S)=ﬁP(Wi |Wiy)

= Tri-gram: P(s)=] | P(w, | w_,w,_,)
=1

31



Smoothing

= Problem of data sparsity:
= An n-gram may not be observed from a training data
= This does not mean that the n-gram is impossible in the
language
= Smoothing = assign a small probability to unobserved
words or n-grams

A
P MLE
_/

!

smoothed

AN

word 32



i Smoothing methods

n-gram: o
= Change the freq. of occurrences
= Laplace smoothing (add-one):

freq(a)+1
OS5 Geqta)

o, eV

add one

= Does not work well

= A large part of probability mass is assigned due to
smoothing

33



‘_L Smoothing (cont’d)

= Combine a model with a lower-order model
= Interpolation (Jelinek-Mercer)

PJM (Wi | Wi—l) = ﬂ’wi_l I:)ML (Wi | Wi—l) + (1_ )z’wi_l)PJM (WI)

= In IR, combine doc. with corpus

= Interpolation
P(w; | D) = AP, (w, | D)+ (@-2)R,. (w; |C)

= Dirichlet
tf (w,, D)+ uP, (W, |C
P (0 D) = £} LA L)

34



i Using LM In IR: Query generation

= Rank document D according to its model’s
capacity to generate the query Q, 1.e. P(Q|D)

= But we want to rank according to P(D]|Q)?
= PO[Q)=P(Q|D) * P(D) / P(Q)
= P(Q) is the same for all documents, so ignore

= P(D) [the prior] is often treated as the same for all D
= But we could use criteria like authority, length, genre

= S0, P(D|Q) ~ P(QID)

35



i Query generation

= Another explanation:

= Before submitting a query, the user imagines
some ideal document D,,.,, he would like to find,
and the words that would appear in the document

= Q Is formed using these words
= S0 the user Is generating Q from D,

= Submit D to the same generation process
= If P(Q|D) is high, then D is close to D,y

36



Using LM In IR: Divergence between
models

Question: Is the document likelihood increased
when a query Is submitted?

LR(D,Q) = P(D|Q) _ P(Q|D)
P(D) P(Q)
(Is the query likelihood increased when D is
retrieved?)

- P(Q|D) calculated with P(Q|M,)
- P(Q) estimated as P(Q|M,)

Score(Q, D) = log I;Eg || kAAD;

37



Divergence between Mb and Mg

PQIMy)= P(q.| M)
Assume Q follows a Hg‘(qi,g)gg
multinomial distribution : 70

9] 7(4.0)
P(O|M,)= M. Q)IEQP(% | M,)

g;€Q

P(q; |[Mp)
P(q; [M¢)

D Plg, | M) *log L)
Plg, M)

N P(g. |M N P(g |M
:Zp(qi | M,)*log (g, Mp) _ZP(% | M,)* log (q,1M.)
i=1

Score(Q,D) = Zn:tf (g;,Q)*log

P(qa:'|MQ) i=1 P(g, |MQ)

= ZP(% | M ,)* log P(q; | M)+ Constant
i=1

oc—KL(MQ,MD)
Negative Kullback-Leibler divergence: larger KL-divergence = lower rank 3g



Another view of model divergence

0.4

+

Query >
06 o) °-(')
0.4 "
. .
|l 2 3 4 5 6 7 0.4

T

I 2 3 4 5 6 7

3 o

I 2 3 4 5 6 7

Score(Q, D)= _P(q,|6,)*log P(q,|6,)

oA

Query model

\

Document model
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Comparaison: LM v.s. tf*idf

P(QID)=]]P(a D)

)

tf (9., D) tf (g.,C) tf (qj ,C)
= A ' 1-4 ' 1-4
L e g re-a= g He-2=

: / 1-4 :
|C]| ) qjgg( : |C|

ﬂdtf(q”D)_'_(l_ﬂ)tf(q,yC) tf(ql’D)
=const ] ( D] C)|C| )=const [ ( A J’D‘|\+l)

0;€QND (1_/1) tf (ql 9;€QND 1- tf (qI’C)
IC| |C|
idf
e Log P(Q|D) ~ VSM with tf*idf and document length
normalization

)

- 1 o222
q;€Q

0;€QnD | | | |

«Smoothing ~ idf + length normalization 40



!'_ Common extensions
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Some common techniques to
i Improve IR effectiveness

= Interaction with user (relevance feedback)
- Keywords only cover part of the contents

- User can help determining relevant/irrelevant
document

s he use of relevance feedback
= TO Improve guery expression:
Qrew = 0*Q,q + B*Rel_d - y*Nrel_d

where Rel d = centroid of relevant documents
NRel d = centroid of non-relevant documents

42



* Effect of RF

2nd retrieval

1st retrieval
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Modified relevance feedback

= Users usually do not cooperate (e.g. AltaVista
In early years)

= Pseudo-relevance feedback (Blind RF)

= Using the top-ranked documents as if they are
relevant (e.g. 20 documents)
= Select m terms from n top-ranked documents

= One can usually obtain about 5-10% improvement in MAP In
TREC experiments

44



Query expansion

= A query contains part of the important words

= Add new (related) terms into the query
= Manually constructed knowledge base/thesaurus (e.g.

Wordnet)
= Q = information retrieval
= Q" = (information + data + knowledge + ...)

(retrieval + search + seeking + ...)

= Co-occurrence analysis:
= two terms that often co-occur are related (Mutual information)

= Two terms that co-occur with the same words are related (e.qg.
T-shirt and coat with wear, ...)

45



Global vs. local context analysis
[Xu and Croft]

= Global analysis: use the whole document collection to
calculate term relationships

= Local analysis: use the query to retrieve a subset of
documents, then calculate term relationships

= Combine pseudo-relevance feedback and term co-
occurrences

= More effective than global analysis

46



Query Expansion Approach (1)

Wordnet [Voorheers 1994]:
= Using synonyms, hypernyms and hyponyms to expand query
= Problems:
= Coverage is low, only contains linguistically motivated relationships
= Ambiguity: e.q. “computer: machine or human expert’
» Lack of strength measure for relationships: weighting of expanded terms

= Can not improve retrieval effectiveness

Co-occurrence [Qiu 1993]:
= Two words that often co-occur are related
= Capable of extracting: e.qg. “Java = programming”
= Some improvements

= Problems:
« Introduce noise: frequent co-occurring terms are not necessarily related

= No context information for term relationships: possible to expand “Java
travel” by “programming”

47



i Query Expansion Approach (2)

= Pseudo-relevant feedback [Zhai 2001]:
= Retrieve some documents with query
= Top nfeedback documents are assumed to be relevant
= Extract expansion terms from feedback documents
= Most effective method so far
= Problem: two retrieval processes == longer retrieval time

48



!’_ Inference In LM?
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i IR as an inference process

= Key: inference — infer query from
document

= D: Tsunami

= Q: natural disaster
=« D>Q?

50



Inference In traditional models?

1.

Traditional bag-of-words approach:
Matching words, no inference

. Language model?

P(QID) ~ P(D=2Q)

Smoothing:
P(t |D)=4R, (t [D)+(1-4)Ry (% |C)
teD:P, (t|D)=0
changeto P(t. |D)>0

E.g. D=Tsunami, P, (natural disaster|D)=0

change to P(natural disaster|D)>0

Inference by accident
= P(computer|D)>0 ~ P(natural disaster|D)>0

51



i Effect of smoothing?

s Doc: Tsunami, ocean, Asia, ...

Tsunami ocean Asia computer nat.disaster ...

= Smoothing #inference

= Redistribution uniformly/according to
collection (also to unrelated terms)

52



i Expected effect

Tsunami ocean Asia computer nat.disaster ...

= Using Tsunami - natural disaster
= Knowledge-based smoothing

93



Inference — incorporating some
i knowledge in document model

= Translation model [Berger and Lafferty, 1999]
P(qi | D) :Zp(qi |dj)P(dj | D)

PQID)=]]2_P(q 1d;)P(d;| D)
D

m
dj’ d” o
NV

Qi

QE— Q€ S

~.

(D—>d)nd; = q,)|=(D—q,)
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(Cao et al. 05)

i Using multiple knowledge sources

= Different ways to satisfy a query (term)
= Directly though unigram model

= Indirectly (by inference) through Wordnet
relations

= Indirectly trough Co-occurrence relations

= D>t if D>t or D>yt or D>t

P(,| D)= A1, | D)+ 20 3 Py (1, 1)1, | D)+ 2 Y oo 1| 1)PG, | D)
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Inference using different types
* of knowledge (Cao et al. 05)

Pywn(Qilwy)
AN
1 Wy ..o W, Vi Wy .. W




Incorporating knowledge In

i Query expansion

= Kledivi = %"P(t |Q)log P(t, | D)
t.eQ
Query model Smoothed doc. model
= With no query expansion, equivalent to generative
model

~-KL(Q||D)~ Y P(t,|Q)log P(t,| D)
teQ

7 (1:,09)

~ D 1 (t,0)log P(t,| D)= D log P(t,| D)
t;eQ LeQ
~ P(Q| D)
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Extension for inference: Query
(relevance) model [Lavrenko & Croft 2001]

= Using pseudo feedback documents
Pt 1Q) =) Pt IDIP(D )P (t; |Q)
J.k

N

D, D, D,

N~

t /

Fot >t Pl

= Some Inference (—~co-occurrence) through
pseudo-feedback documents
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i Expanding query model

P(q; Q) = AR (a4 [Q) + (1 - 4)P:(q; |Q)
Pu (t; |Q) : Max.Likelihood unigram model (not smoothed)

P.(t. |Q) : Relational model

Score(Q,D) = > P(q; |Q) xlog P(q; | D)
= Z[lPML(Qi |Q) +(1—1)P:(q; |Q)]xlog P(q; | D)

= AZPML(qi |Q) xlogP(q; | D) +(1_/1)ZPR(qi |Q) xlogP(q; | D)
g;Q gV

— _ — _
'l 'l

Classical LM Relation model
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i How to estimate P, (t. | Q) ?

= Using co-occurrence information

= Using an external knowledge base (e.g.
Wordnet)

s Pseudo-rel. feedback
= Other term relationships
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Using co-occurrence relation

= Use term co-occurrence relationship
= Terms that often co-occur in the same windows are related
= Window size: 10 words

= Unigram relationship (w; 2 w;)

c(w;, wj)

Z:c(wI ,Wj)

W
= Query expansion

Pr(w; [w;) =

PR(Wi |Q): ZPR(Wi’qj |Q):ZPR(Wi |qj)XPMLE(qj |Q)
q;ev q;€Q
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i Problems In co-occurrence relations

Ambiguity

Term relationship between two single words

e.qg. “Java =2 programming’

No information to determine the appropriate context

e.qg. “Java travel” by “programming”

Solution: add some context information into term
relationship

62



Context-dependent expansion
(Bai et al. 06)

m Use (11, 12, 13, ...) > € Instead of t:> ¢
= e.g. “(Java, computer, language) - programming’

= Problem:
= Complexity with many words in condition part
= Difficult to obtain reliable relations

= A solution:
= Limit condition part to 2 words
e.g. “(Java, computer) - programming’
“(Java, travel) = island”
= One word specifies the context to the other
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i Context-dependent co-occurrences

c(w;, Wi, Wy )

Zc(w|,wj,wk)

s Bi-term relation model

Pr (W; [ w;wy ) =

Pe(w; [Q) = ZPR(Wi |quK)XP(qjqk |1Q) = ZPR(Wi |qjqk)xp(qjqk Q)

;.9 €V q;.9¢ €Q

P(q;q, | Q) :uniform

64



Example

= Compare expansion terms by UQE and BQE:
e.g. Query #55: “/Insider trading”

= Unigram relationships (UQE): A(*/insider) or P(*[trading)

stock:0.014177 market:0.0113156 US:0.0112784 year:0.010224
exchang:0.0101797 trade:0.00922486 report:0.00825644 price:0.00764028
dollar:0.00714267 1:0.00691906 govern:0.00669295 state:0.00659957
futur:0.00619518 million:0.00614666 dai:0.00605674 offici:0.00597034
peopl:0.0059315 york:0.00579298  issu:0.00571347  nation:0.00563911
= Bi-term relationships (BQE): P(*/insider, trading)

secur:0.0161779 charg:0.0158751  stock:0.0137123  scandal:0.0128471
boeski:0.0125011 inform:0.011982  street:0.0113332 wall:0.0112034
case:0.0106411 year:0.00908383  million:0.00869452 investig:0.00826196
exchang:0.00804568 govern:0.00778614 sec:0.00778614 drexel:0.00756986
fraud:0.00718055 law:0.00631543 ivan:0.00609914  profit:0.00566658
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Dependence Models for Information

!’_ Retrieval

-- Dependency = the meaning of a word depends on
another word

-- "computer architecture" # computer + architecture

66



Dealing with dependencies in IR

s Quoted queries
— “black Monday”: OK

— “computer architecture’: ?

~_ “HEAZEFH: No

— How can a user decide with little knowledge on IR and

data!?

m Phrases

— Automatically detect phrases
= Dictionary

= Statistical analysis

— Integration into an IR model

67



i A typical integration method

m Detect phrases in the query and the
documents
= Train a phrase model and a word model
Score(D,Q)=aScore,,, . (D,0)+(1—a)Score,,, ,(D,Q)
= Limited impact

— [Fagan 88]: syntactic phrases have less impact
than statistical phrases

— More recent work tends to confirm
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i Why?

= Not all phrases are fixed expressions
— “Black Monday” is

— but not “desktop computer” and “HD movie”
« desktop computer = desktop

= HD movie = movie in HD = HD...movie

= Many user queries are not grammatical
— Bag of words
— # strict and unique expression of query intent

— Assuming them to be fixed expressions hurts IR
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i How to tackle flexible dependencies?

Consider n-grams, not phrases [Bai et al. WWW’08]
Dependency model [Gao et al. 04]

Term proximity [Tao and Zhai 07] [Zhao and Yun, 09]

Consider adjacent terms or all terms in a query [Metzler
and Croft 05]
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i Matching N-grams

= Given a long query abcdefg
m Extract n-grams: abc, bcd, cde, def, efg

= An extra score for a document according to its
matches to the n-grams

Score(D, Q)= aScore,,,..(D,0)+(1-a)Score,,,..(D,Q)

= Not all n-grams are meaningful and useful

= Limited impact
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Dependence Model

= Dependence LM (Gao et al. 04)

Capture more distant dependencies within a sentence
= Syntactic analysis

= Statistical analysis
= Only retain the most probable dependencies in the query

M

(how) (has) affirmative action affected (the) construction industry
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i Estimate the prob. of links (EM)

For a corpus C:
1. Initialization: link each pair of words with a window
of 3 words

>, For each sentence in C:

Apply the link prob. to select the strongest links that cover
the sentence

3. Re-estimate link prob.
2. Repeat 2 and 3
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i Calculation of P(Q|D)

. Determine the links in Q (the required links)
L=argmaxP(L|Q)=argmax [ | P.(R|q;,q;)
L

L (i,])eL
2. Calculate the likelihood of Q (words and links)

P(Q|D)=P(L|D)P(Q]|L,D)
P(LID)=]]P(I|D) b links

leL

P(Q|L,D)=P(q,|D) | ] P(q;lq;,L,D)=..

(1,))eL
P(g,.q;|L, D)
- TTP(q|D j
i!;.[n (@1 )(i,I;!L P(q; | D)P(qj |D)
S N - P

Requirement on words and bi-terms
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Term proximity

= If two query term appear closely in document,
then higher score

— Calculate a span of query terms [Tao and Zhai]

— Increase the score if span is small

— Smooth the document model by term centrality [Zhao
and Yun]

B c(wi; D) + AProxg (w;) + uP(w;|C)
4
D[+ X;_, AProxg(w;) + p

N B
GD,E

P_SumProx(q;) = Z f(Dis(qi,qj;D))
q;€Q.q;#4q;

f(x) = para™>
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i Markov Random Field
m For a graph G, the joint probability:

|
P()(laaXn ):_ H l//c(Xc)
ZceC(G)

X,..., X : random variables
.(X,):potential function on a set of variables X

C(G): setof cliques
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Markov Random Field for IR
(Metzler and Croft, 2005)

+

= Two graphs for IR

S oy

Sequential dependence Full dependence

Score(D,0)=P.(0.D)=~ [] wc:A)

Z ceC(@G)
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i Markov Random Field for IR
Score(D,Q)zPA@,D)— [ wiea)

ceC(G)
2 af(o)- Z/’tTfT(c)+Zﬂofo(aniUfU(c)
ceC(G) el f(o=
= 3 components:
— Term-T fr(c)=logP(q,|D)

— Ordered term clique - O Jo(c)=log P(#1(q;,....q.+) | D)
~ Unordered term clique — U fi(¢)=1log P(#uw(q,,....q.;) | D)

m A, Ao Ay fixed parameters
— Typical good values (0.8, 0.1, 0.1) or (0.85, 0.1, 0.05)
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Weighted MRF-SD
(Bendersky, Croft and Metzler, 10)

= Make the parameters A, A,, A, dependent on
the pair of terms
kuni . .
A(ql) — Z Wj?"'mg}mr,(qi)

j=1

kpi o
A(QE;QEH) = Y Wfl?lg?L(Qi;q”l)

kun
rank

i ki
POIO) S Y W™ Y g @fr(@ D)+ ) WY g8 (@i ) fo@enns D) + fo(0udisn, D)

j=1 qi€Q j=1 qiqi+1€Q

= Learn to weight A;, A, A, based on features
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Variable Dependency Model
(Shi & Nie 2010)

m Discriminative model

P(Rel|Q,D) =§exp(izi fL(Q, D)j

P(Rel [Q,D) e > 4,(q; Q) f, (q;, D)
q;€Q

+ > (9,9, 1Q) f5(9,9;.,, D)

qiqi+1€Q

+> > A (9,.9;1Q) fc (g;,9;,D)

weW g;q;€Q,i= ]
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Variable Dependency Model
(Shi & Nie 2010)

P(Rel|Q,D)ec > 2,(q,|O)f:(q,. D)

g, €9

+ D 25(0n4n 1 OV f3(9,9,0, D)

491 €0

+2, D A (4.9,10)f: (.9, D)

welW q,q;€0Q.i#j

Unigram: Juo=1,(q, | Q) og (g, | D)
Ordered bigrams: J5 = Pp(q,9,, | Q)N0g Py(q,4,., | D)
Unordered co-occurrence dependency within

distance w (2 4 8): Jfe =P (149,9,} | O)og - (19,,9;},, | D)

A, Ag @and Ao, are the importance of a particular term or
dependency for the query

Learning these parameters based on features



05 r
AVRI
195
09
185
g
7e
7 F
185

Death

death cancer

cancer — only unigrams

MRF-SD DLM Ideal
weights | .90U .08B .02Cg; | .98U .02B 1.0U
MAP 0.0088 0.0104 0.0105
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Drug approval — Use Co-occ. but not
bigram

drug approval

0.14
0135 F =g
013
0125
012
0115 F
011
0105

01
0.095 |
0.09

MRF-SD DLM Ideal

weights | .9U .08B .02C4 | .71U .29B | .40U .32B .28C,
MAP 0.0016 0.0034 0.0059




Black Monday — Co-occ and
bigram

black Monday

MRF-SD DLM Ideal
weights | .9U .08B .02C,| . 95U .02B |.28U .24C, .24C, .24C,
MAP [0.1035 0.0977 0.1505
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!'_ Challenges

85



i What has been achieved?

= Bag of words

= Implemented as a vector space model,
probabilistic model or language model

= Achieve descent effectiveness

= Extensions
= Term relations (programming->computer)

= Relevance feedback
= | hesauri
= Co-occurrences in a corpus

= Query logs (talk of Jianfeng Gao)
= Dependency (computer — architecture)
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i Remaining problems

= We only considered the relevance between
an isolated document-query pair

= Reality:
= Documents can be connected (hyperlinks)
= Queries can be related (query session)

= Users may have typical behavior (interpret a query
In similar ways)

s Recent efforts aim to consider these factors
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From search to search

!'_ Intelligence
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i Information retrieval

= — Search engine

= FInding relevant information from a
arge set of documents

= User submits a query -> search results
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A review of generations of IR
i techniques

s Generation 1: basic models

s Generation 2: relations between
documents, terms

= Generation 3: Learning from users
= Generation 4: Understanding users
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i Basic IR — Generation 1

s 1950s-1990s
= Extract keywords from documents

= Match query words against document
keywords

= Document score using a manually
defined function
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Examples

= Document:
e.g. “The area of information retrieval started in 1950s.”
= Keywords: area, information, retrieval, started, 1950s
= Some word processing: area, inform, retriev, start, 1950

= Query:
= Information retrieval
= Inform, retriev

= Score: cosine similarity, BM25, language model
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i Characteristics of G1

Selection of meaningful words (stopword
removal)

Term weighting (tf*idf)

Only content words (title, body, ...)
Isolated documents

Limited structure of documents

Manually defined score functions

= Cosine, BM25, probabilistic models, language
models, ...
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i IR — Generation 2

Started form —1995
Web search

Connected documents (hyperlinks)
= Anchor texts as additional description

= Links as votes (popularity)
= PageRank, HITS

Links between terms (proximity)
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i PageRank — Basic idea

= Can view It as a process of PageRank
“flowing” from pages to the pages they cite.

08
>: 1 e AT
| I
_—— 105
03
— .081/

.09_/
R .03

e

\
03—
‘\;
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i PageRank Algorithm

Let S be the total set of pages.

Let Vpe S: E(p) = o/| S/ (for some O<a<1, e.g. 0.15)

Initialize Ype S: R(p) = 1/|S/

until convergence (values do not change much) do
For each pe S:

R(p)= Y %w(p)

q:q—p q

For each pe S: R(p) = cR(p) (normalize)
c=1/ Z R'(p)

pesS
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i Search engine — Generation 3

= Considering user interactions

= Click-through: clicked documents are more
relevant than unclicked ones
= Noisy relevance judgments

= Query sessions: queries of similar search intents
= Relations between queries in the same session
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i Some ideas commonly used

= For a query, iIf many users clicked on a
document, the document is likely relevant.

D1
D2
q D3
D4
D5
q D6
D7
D8
D9
. D10



i Some ideas commonly used

= A later query in the same session may be an
alternative expression of the same intent

= Used to suggest query rewriting

= pdf reader
= acrobat reader
= free acrobat reader

User preference
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Some ideas commonly used

= Terms in a query are related to terms in the
clicked documents (titles)

= Query expansion

msn web  0.6675749

Webmensseger 06621253

msn online  0.6403270

windows web messanger (0.6321326

talking to friends on msn  0.6130790
school msn  0.3994550 Clicked Title:
msn anywhere EII 155?5?1
web message msn com HE30
mMsn messager ﬂ ":-3 13351
eb chat 03231608
messenger web version  0.5013624
imstant messager msn 0.4 50409
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An example of query expansion

Images for Beijing air pollution Report images

S -

Maore images for Beijing air pollution

Beijing Air Pollution: Real-time PM2.5 Air Quality Index (AQI)
agicn.org/ ~

Beijing AQI: Beijing Real-time Air Quality Index (AQI). ... Beijing PM25 (fine
particulate matter) measured by Beijing Environmental Protection Monitoring Center { ...
Beijing Air Pollution - Map - Shanghai - Central, Singapore Air Pollution

News for Beijing air pollution
China's Hurriﬂrumpts Its
Government to ...

VICE News - 6 days ago
The policy probably won't do much to improve China's abysmal air
quality, ... Highly polluted regions like the Beijing-Tianjin-Hebei
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But may be wrong

Paper Cost

Web Images News Videos More « Search tools

About 770,000,000 results (0.32 seconds)

Staples® Multipurpose Paper, 8 1/2" x 11", Ream | Make ...
www_staples.com » Paper & Stationery » Copy & Multipurpose Paper ™

Shop Staples® for Staples® Multipurpose Paper, 8 1/2" x 11", Ream and enjoy
everyday low prices, plus FREE shipping on orders over $29.99. Get everything ...

Copy Paper / Printer Paper | Staples®
www.staples.calen/Copy-Paper...Paper/cat CG2567_2-CA_1_20001 ~

Whatever the project, having the right paper is key - whether you're looking for cost-
effective general printer paper for basic print jobs or high quality color copy ...

Paper Cost Calculator - CS Professional Suite from ...
https://ce.thomsonreuters.com/FileCabinetCS/worksheet.aspx ™

Paper Cost Calculator. A paperless software solution that saves you money. We' ve
estimated that a typical firm with 500 clients could easily be spending more ...
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i Learning to rank — a major move

= It is difficult to define a ranking (score)
function manually

= Learn the ranking function from users

= Editorial judgments (relevance judgments by
annotators)
= Perfect(4), Very good (3), Good (2), Fair(1) Bad(0)
= User clicks

= Less accurate than editorial data, but there are much
more

= May reflect real user’s true intent
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Principles of learning-to-rank

= Regression (pointwise L2R): define a score
function to fit the editorial judgments
= E.g. Gradient Boosting Regression Trees
« Editorial judgments for Q-D pairs

« Extract features (F1, ...): e.qg. tfidf, in-title?, clicked?, ...
= Train a set of decision trees to fit the true scores

F1<0.2 F3<0.01

depth

F2<13 F6<0.5

Number of trees
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i Principles of learning-to-rank

= Absolute relevance judgments are difficult to
make

= Inconsistency between annotators

s Easier to rank to documents
= D1 is better than D2, i.e. D1 > D2

= The goal of a search engine is to rank, not to
produce absolute relevance score

s Learn to rank documents
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i Principles of learning-to-rank

= Transform a set of editorial judgments to a set of
preferences

(Q,D))~(0,D,)
- Good pairs (D,,D,) vs. Bad pairs (D,,D,)
= 2-class classification problem
= RankSVM, ...
= Classify document pairs correctly
= Pairwise L2R
= Or consider the whole order in a list of document
= Listwise L2R

*see (Li 2011) and (Liu 2011) for detalls
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i Characteristics of generation 3

= No longer a manually defined ranking
function

s Learn from users

= Flexible to incorporate various types of
features on
= Query
= Document
= Document-query pair
= User’s search space / user profile

. LI B ]
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i Search engine — Generation 4

= Trend: search engines are evolving
towards:

= Understanding user’s search intent

= Java: programming language, Java island or
coffee?

= Result diversification: mix up results for several
possible intents in the first page
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Query Intent

s Query intent = a full specification of the documents the
user wants to find

m A search query is partial specification of the information
need and is not unique

m  Often underspecified or ambiguous
- B
= A general presentation?

= A map or itinerary to go there!
= A book?

— Java transportation

= Ambiguous query

= Intent mining: often based on query logs 109
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How to do It?

Add a diversity criterion to relevance in
document ranking

At each iteration, select a document that is both
relevant to the query and different from the
documents already selected

MMR(Q) =argmax|[ ASim (D, Q)—(1- A1) max Sim,(D,, D,)]

D.eR\S

111



i Some Extensions

= Try to cover the subtopics of the query as
much as possible

= XQuad (Santos et al. 2010, ...)

= Expand the initial query so as to have a more
diversified pool

= Diversified query expansion (Bouchoucha et al.
2012, 2013)

= Intent mining
= NTCIR intent
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Answer user’s questions rather search
= Question answering and personalization
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How to do It?

m Extract facts from reliable sources (Wikipedia, Baidu
Zhidao, Baidu Baike, ...)

= Build a knowledge graph
= Typical approach - IBM Watson Deep QA system

— Given a question:
= Can be answered by facts stored in knowledge graph?
= Look for answers in free texts (passage retrieval + answer
identification)
= Remaining issues
= Non-factoid questions

= More complex questions
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i Data analytics — Big data

= Answers to guestions may be opinions
(Baidu):
» BWZZIRAEA BEAR?
» BUARETBERZ 7KHM?

= Extract opinions from user answers

= Clustering opinions and display
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i Big data — the microblog case

= A huge amount of user generated
contents

= 4V: Volume, Velocity, Variety, Veracity

= Noisy (many irrelevant and useless
POStS)

s But contain useful information, If
correctly mined
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i Event monitoring

= Manually define a profile for a kind of
events (e.g. a set of keywords)

« 2, JLSE, &y, Ui, REE, H1K,
= Or construct a profile using a set of
training data

= Monitor microblogs for significant
Increases of posts relating to the profile

= = a possible event of this kind
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i An example of World Cup

40000

350000
30000

250000
20000

15000

10000

500+
DD'GI BRSNS TS TS T s S s T T~ B e
PSS ST FTS s

Figure 1. Twitter volume graph for the 2010 World Cup
game of US vs. Slovenia. The x-axis is time and the y-axis
is volume as measured in tweets/minute.
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arthquake
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Figure 4: Number of tweets related to earthquakes.
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* Event detection — Earthquake

Determine
where

the earthquake
IS according to
the locations of
tweets:

- Twitter users
as sensors



‘L Monitoring the mood of people

Percentage of the twees

Anger —I— Sadness e

oy —+-—  Surprise —+—
0.25 | . =
+r_:JcF|=I+J°=t_
0.2 | .
_I_
0.15 | - _ f +++

u':; @? Whl' | ﬂq* W:

Tweets with emotion per day

123



i Some limitations

= Collect microblog posts using keywords?
= Data analytics

= Are the selected posts (data) really relevant?

= There is room for improvements:

= => use more sophisticated IR techniques to select
relevant information

= => consider data reliability in data analysis
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i Final remarks

= Several generations of IR and search engines

Generation 1: Basic techniques
Generation 2: Link structure
Generation 3: User interactions

Generation 4: Understand users, diverse applications, including in
Big data

= How far can we go?

Can we answer complex questions?
Can we do complex inference?

Can we satisfy diverse user needs (relevance -> user
satisfaction)?

Can we determine relevant information in Big data?
125



Thanks
and
Questions
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Traditional models

s Books:

= Gerard Salton, Michael McGill, Introduction to modern
information retrieval, McGraw-Hill, 1983 (classic)

= Christopher D. Manning, Prabhakar Raghavan and Hinrich
Schitze, Introduction to Information Retrieval, Cambridge
University Press. 2008.

= Stefan Buettcher, Charles L. A. Clarke and Gordon V.
Cormack, Information retrieval - Implementing and
Evaluating Search Engines, MIT Press, 2010

= W. Bruce Croft, Donald Metzler, Trevor Strohman, Search
Engines: Information Retrieval in Practice, Pearson
Education, 2009
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Language modeling for IR

. Ponte and W.B. Croft. 1998. A language modeling approach to information retrieval. In
SIGIR 21.

D. Hiemstra. 1998. A linguistically motivated probabilistic model of information retrieval. ECDL
2, pp. 569-584.

A. Berger and J. Lafferty. 1999. Information retrieval as statistical translation. S/GIR 22, pp.
222-229.

Lavrenko, V. and Croft, W.B. Relevance-Based Language Models. In Proceedings of SIGIR Conf.,
pp. 120-127, 2001.

D.R.H. Miller, T. Leek, and R.M. Schwartz. 1999. A hidden Markov model information retrieval
system. SIGIR 22, pp. 214-221.

Chengxiang Zhai, Statistical language models for information retrieval, in the series of Synthesis
Lectures on Human Language Technologies, Morgan & Claypool, 2009

[Several relevant newer papers at S/G/R 2000-now. ]
Workshop on Language Modeling and Information Retrieval, CMU 2001.
http://la.lti.cs.cmu.edu/callan/Workshops/Imir0O1/ .

The Lemur Toolkit for Language Modeling and Information Retrieval. http://www-
2.cs.cmu.edu/~lemur/ . CMU/Umass LM and IR system in C(++), currently actively
developed.
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Query/Doc. expansion

= Qiu, Y., and Frei, H.P. (1993). Concept query expansion. In
Proceedings of SIGIR Conf., pp. 160-169.

= Voorhees, E.M. (1994). Query Expansion Using Lexical-Semantic
Relations In Proceedings of SIGIR Conf., pp. 61-69.

= Cao, G., Nie, J.Y., and Bai, J. (2005). Integrating word relationships
into language modeling. In Proceedings of SIGIR Conf., pp. 298-305

= Bali, J. Nie, J., Bouchard, H. and Cao, G. (2007). Using query contexts
In information retrieval. In Proceedings of SIGIR Conf., pp. 15-22.
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Dependence models

= Gao, J., Nie, J.-Y., Wu, G., and Cao, G. (2004). Dependence
Language Model for Information Retrieval. In Proceedings of the
2004 SIGIR Conf., pp. 170-177.

= Metzler, D. and Croft, W. B. (2005). A Markov random field
model for term dependencies. In Proceedings of SIGIR Conf.,
pp. 472-479

= M. Bendersky, D. Metzler and W. B. Croft: "Learning Concept
Importance Using a Weighted Dependence Model" In
Proceedings of WSDM 2010

= Lixin Shi, Jian-Yun Nie. Modeling Variable Dependencies
between Characters in Chinese Information Retrieval, AIRS
2010
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Learning to rank

= Fuhr, Norbert (1992), Probabilistic Models in Information Retrieval,
Computer Journal 35 (3): 243-255, do0i:10.1093/com|nl/35.3.243
(predecessor of L2R)

m Test data: Letorhttp://research.microsoft.com/en-
us/um/beijing/projects/letor/

= Tie-Yan Liu (2009), Learning to Rank for Information Retrieval,
Foundations and Trends® in Information Retrieval, Foundations and
Trends in Information Retrieval: Vol. 3: No 3 3 (3): 225-331

= Hang Li (2011), Learning to Rank for Information Retrieval and Natural
Language Processing, Synthesis Lectures on Human Language
Technologies, Morgan & Claypool, April 2011, 113 pages,
(doi:10.2200/S00348ED1V01Y201104HLT012)
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Result diversification and query
Intent mining

Agrawal, R.; Gollapudi, S.; Halverson, A.; and leong, S. 2009. Diversifying search results. In
Proc. of WSDM , 5-14.

Carbonell, J., and Goldstein, J. 1998. The use of mmr, diversity-based reranking for
reordering documents and producing summaries. In Proc. of SIGIR , 335-336.

Bouchoucha, A.; Liu, X.; and Nie, J.-Y. 2014. Integrating multiple resources for diversified
query expansion. In Proc. of ECIR , 98-103.

Dang, V., and Croft, W. B. 2012. Diversity by proportionality: An election-based approach to
search result diversification. In Proc. of SIGIR, 65-74.

Dang, V., and Croft, B. W. 2013. Term level search result diversification. In Proc. of SIGIR,
603-612.

Xiaohua Liu, Arbi Bouchoucha, Alessandro Sordoni and Jian-Yun Nie, Compact Aspect
Embedding For Diversified Query Expansions, AAAI, 2014

Santos, R. L.; Macdonald, C.; and Ounis, I. 2010. Exploiting query reformulations for web
search result diversification. In Proc. of WWW, 881-890.

X Li, YY Wang, A Acero, Learning query intent from regularized click graphs, SIGIR’08, pp.
339-346

J Hu, G Wang, F Lochovsky, J Sun, Z Chen, Understanding user's query intent with
wikipedia, WWW’09, pp. 471-480

F Radlinski, M Szummer, N Craswell, Inferring query intent from reformulations and clicks,
WWW'10, pp. 1171-1172 132
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