From simple search to search intelligence: the evolution of search engines

Jian-Yun Nie University of Montreal Canada http://www.iro.umontreal.ca/~nie

Goals of this tutorial

- Importance of IR:
 - IR (search engine) is used for different tasks in our everyday life.
 - It is also used as a basic tool for other tasks (datamining, data analytics, QA, etc.)
- This tutorial:
 - Understand how IR works
 - Common methods used
 - Recent evolution to do more than search

Outline

- IR problem and basic processing
- Traditional models
- More recent models
 - Links between documents and queries
 - User feedback
- Understanding the user (user's intent)
- Remaining challenges

The problem of IR

- 1. A user is in need of some information
- 2. He formulates a query to an IR system
- 3. IR system evaluates the relevance of documents Info.
- 4. IR system returns a ranked list of documents

need

Basic problems in IR

- Document and query indexing
 - How to best represent their contents?
- Query evaluation (or retrieval process)
 - To what extent does a document correspond to a query?
 - A ranking/scoring function

Document indexing

- Goal
 - Identify the important content and create an internal representation for it
- What indexing units to use?
 - Words or Word stems (bag-of-words)
 - Phrases
 - Concepts
- How to weight?

Document indexing

- General process:
 - Input text
 - Processing of text format and structure
 - Word
 - index some fields and discard others
 - For each word form
 - Stopword?
 - Stemming
 - Term weighting

Stopwords / Stoplist

- Stopwords = words that do not bear useful information for IR
 - e.g. of, in, about, with, I, although, ...
- Stoplist: contain stopwords, excluded from index
 - Prepositions
 - Articles
 - Pronouns
 - Some adverbs and adjectives
 - Some frequent words (e.g. document)
- The removal of stopwords usually improves slightly IR effectiveness, or not
- A few "standard" stoplists are commonly used.

Stemming

- Why?
 - Different word forms may bear similar meaning e.g. search, searching
- Stemming:
 - Removing some endings of word
 computer
 computes
 computing
 computed
 computation

Porter algorithm

(Porter, M.F., 1980, An algorithm for suffix stripping, *Program*, **14**(3) :130-137)

Step 1: plurals and past participles

- SSES -> SS
 caresses -> caress
- (*v*) ING -> motoring -> motor
- Step 2: adj->n, n->v, n->adj, ...
 - (m>0) OUSNESS -> OUS callousness -> callous
 - (m>0) ATIONAL -> ATE relational -> relate
- Step 3:
 - (m>0) ICATE -> IC
 triplicate -> triplic
- Step 4:
 - (m>1) AL ->
 - (m>1) ANCE ->

revival -> reviv allowance -> allow

- Step 5:
 - (m>1) E ->

probate -> probat

(m > 1 and *d and *L) -> single letter

controll -> control

Lemmatization – an alternative

- transform to standard form according to syntactic category.
 - E.g. verb + $ing \rightarrow$ verb noun + $s \rightarrow$ noun
 - Need POS tagging
 - More accurate than stemming, but needs more resources
- crucial to choose stemming/lemmatization rules noise v.s. recognition rate
- compromise between precision and recall

Traditional tf*idf weighting schema

- tf = term frequency
 - frequency of a term/keyword in a document

The higher the tf, the higher the importance (weight) for the doc.

- df = document frequency
 - no. of documents containing the term
 - distribution of the term
- idf = inverse document frequency
 - the unevenness of term distribution in the corpus
 - the specificity of term to a document

The more the term is distributed evenly, the less it is specific to a document

weight(t,D) = tf(t,D) * idf(t)

Some common *tf*idf* schemes

- tf(t, D)=freq(t,D)
- tf(t, D)=log[freq(t,D)]
- tf(t, D)=log[freq(t,D)]+1
- tf(t, D)=freq(t,d)/Max[f(t,d)]

idf(t) = log(N/n)

- n = #docs containing t
- N = #docs in corpus

weight(t,D) = tf(t,D) * idf(t)

Normalization: Cosine normalization, /max, …

Result of indexing

Each document is represented by a set of weighted keywords (terms):

 $\mathsf{D}_1 \to \{(\mathsf{t}_1,\,\mathsf{w}_1),\,(\mathsf{t}_2,\!\mathsf{w}_2),\,\ldots\}$

e.g. $D_1 \rightarrow \{(\text{comput}, 0.2), (\text{architect}, 0.3), ...\}$ $D_2 \rightarrow \{(\text{comput}, 0.1), (\text{network}, 0.5), ...\}$

Inverted file:

comput $\rightarrow \{(D_1, 0.2), (D_2, 0.1), ...\}$

Inverted file is used during retrieval for higher efficiency.

Retrieval

The problems underlying retrieval

- Retrieval model
 - What is the formal representation by the extracted and weighted terms?
 - How to match a query representation with a document representation to estimate a score?
- Many models have been proposed in IR

Traditional Models

Boolean model

- Document = Logical conjunction of keywords
- Query = Boolean expression of keywords
- $R(D, Q) = D \rightarrow Q$

$$D = t_1 \wedge t_2 \wedge \dots \wedge t_n$$

$$Q = (t_1 \wedge t_2) \vee (t_3 \wedge \neg t_4)$$

$$D \rightarrow Q, \text{ thus } R(D, Q) = 1$$

Problems:

- R is either 1 or 0 No ranking
- Result in many documents or few documents
- Often used as a first filtering of result candidates in search engines

Vector space model

Vector space = all the keywords encountered $< t_1, t_2, t_3, ..., t_n >$

Document

 $D = \langle a_1, a_2, a_3, \dots, a_n \rangle$ $a_i = \text{weight of } t_i \text{ in } D$

Query

 $Q = \langle b_1, b_2, b_3, \dots, b_n \rangle$ $b_i = \text{weight of } t_i \text{ in } Q$

• R(D,Q) = Sim(D,Q)

Some formulas for Sim

Cosine

Dot product

Dice

Jaccard

$$Sim(D,Q) = D \bullet Q = \sum_{i} (a_{i} * b_{i})$$

$$Sim(D,Q) = \frac{\sum_{i} (a_{i} * b_{i})}{\sqrt{\sum_{i} a_{i}^{2} * \sum_{i} b_{i}^{2}}}$$

$$Sim(D,Q) = \frac{2\sum_{i} (a_{i} * b_{i})}{\sum_{i} a_{i}^{2} + \sum_{i} b_{i}^{2}}$$

$$Sim(D,Q) = \frac{\sum_{i} (a_{i} * b_{i})}{\sum_{i} a_{i}^{2} + \sum_{i} b_{i}^{2}}$$

$$Sim(D,Q) = \frac{\sum_{i} (a_{i} * b_{i})}{\sum_{i} a_{i}^{2} + \sum_{i} b_{i}^{2} - \sum_{i} (a_{i} * b_{i})}$$

Probabilistic model

- Given D and Q, estimate P(R|D,Q) and P(NR|D,Q) $P(R|Q,D) = \frac{P(D|R,Q)*P(R|Q)}{P(D|Q)}$
 - P(D|Q), P(R|Q) assumed constant

So, $P(R|Q,D) \propto P(D|R)$

Probabilistic model

Binary independent model $D = \{t_1 = x_1, t_2 = x_2, ...\} \qquad x_i = \begin{cases} 1 & present \\ 0 & absent \end{cases}$

$$P(D | R,Q) = \prod_{\substack{(t_i = x_i) \in D \\ t_i = x_i \in D}} P(t_i = x_i | R_Q) \qquad p = P(t_i = 1 | R_Q) \\ q = P(t_i = 0 | R_Q) \\ = \prod_{\substack{t_i \\ t_i}} p_i^{x_i} (1 - p_i)^{(1 - x_i)} \\ P(D | NR,Q) = \prod_{\substack{t_i \\ t_i}} P(t_i = 1 | NR_Q)^{x_i} P(t_i = 0 | NR_Q)^{(1 - x_i)} = \prod_{\substack{t_i \\ t_i}} q_i^{x_i} (1 - q_i)^{(1 - x_i)}$$

Prob. model (cont'd)

For document ranking $Odd(D) = \log \frac{P(D \mid R, Q)}{P(D \mid NR, Q)} = \log \frac{\prod_{t_i} p_i^{x_i} (1 - p_i)^{(1 - x_i)}}{\prod_{t_i} q_i^{x_i} (1 - q_i)^{(1 - x_i)}}$ $= \sum_{t_i} x_i \log \frac{p_i(1-q_i)}{q_i(1-p_i)} + \sum_{t_i} \log \frac{1-p_i}{1-q_i}$ $\propto \sum_{t_i} x_i \log \frac{p_i(1-q_i)}{q_i(1-p_i)}$ Constant for any document

Prob. model (cont'd)

- How to estimate p_i and q_i?
- A set of *N* relevant and irrelevant samples:

$$p_i = \frac{r_i}{R_i} \quad q_i = \frac{n_i - r_i}{N - R_i}$$

r _i Rel. doc. with t _i	n _i -r _i Irrel.doc. with t _i	n _i Doc. with t _i
R _i -r _i	$N-R_i-n+r_i$	N-n _i
Rel. doc.	Irrel.doc.	Doc.
without t _i	without t _i	without ti
R _i	N-R _i	Ν
Rel. doc	Irrel.doc.	Samples

Prob. model (cont'd)

$$Odd(D) = \sum_{t_i} x_i \log \frac{p_i(1-q_i)}{q_i(1-p_i)} = \sum_{t_i} x_i \log \frac{r_i(N-R_i-n_i+r_i)}{(R_i-r_i)(n_i-r_i)}$$

Smoothing (Robertson-Sparck-Jones formula)

$$Odd(D) = \sum_{t_i} x_i \log \frac{(r_i + 0.5)(N - R_i - n_i + r_i + 0.5)}{(R_i - r_i + 0.5)(n_i - r_i + 0.5)} = \sum_{t_i \in D} x_i w_i$$

- When no sample is available: $p_i = 0.5,$ $q_i = (n_i + 0.5)/(N + 0.5) \approx n_i/N$ $w_i = \log \frac{0.5(1 - \frac{n_i}{N})}{\frac{n_i}{N}(1 - 0.5)} = \log \frac{N - n_i}{n_i}$ (~idf)
- Use relevance feedback to get more samples for more precise estimation

BM25 – one of the best performing models

- k1, k2, k3, d: parameters
- qtf: query term frequency
- dl: document length
- avdl: average document length

Statistical Language models for IR

Basics: Prob. of a sequence of words

$$P(s) = P(w_1, w_2, ..., w_n)$$

= $P(w_1)P(w_2 | w_1)...P(w_n | w_{1,n-1})$
= $\prod_{i=1}^n P(w_i | h_i)$

Elements to be estimated: $P(w_i \mid h_i) = \frac{P(h_i w_i)}{P(h_i)}$

- If *hi* is too long, one cannot observe (*hi, wi*) in the training corpus, and (*hi, wi*) is hard generalize

- Solution: limit the length of hi

N-grams

Limit *hi* to n-1 preceding words
 Most used cases

• Uni-gram:
$$P(s) = \prod_{i=1}^{n} P(w_i)$$

• Bi-gram: $P(s) = \prod_{i=1}^{n} P(w_i | w_{i-1})$

• Tri-gram:
$$P(s) = \prod_{i=1}^{n} P(w_i \mid w_{i-2} w_{i-1})$$

Smoothing

- Problem of data sparsity:
 - An n-gram may not be observed from a training data
 - This does not mean that the n-gram is impossible in the language
- Smoothing = assign a small probability to unobserved words or n-grams

Smoothing methods

n-gram: α

- Change the freq. of occurrences
 - Laplace smoothing (add-one):

$$P_{add_one}(\alpha \mid C) = \frac{freq(\alpha) + 1}{\sum_{\alpha_i \in V} (freq(\alpha_i) + 1)}$$

- Does not work well
 - A large part of probability mass is assigned due to smoothing

Smoothing (cont'd)

Combine a model with a lower-order model
 Interpolation (Jelinek-Mercer)

$$P_{JM}(w_i \mid w_{i-1}) = \lambda_{w_{i-1}} P_{ML}(w_i \mid w_{i-1}) + (1 - \lambda_{w_{i-1}}) P_{JM}(w_i)$$

- In IR, combine doc. with corpus
 - Interpolation $P(w_i \mid D) = \lambda P_{ML}(w_i \mid D) + (1 - \lambda)P_{ML}(w_i \mid C)$
 - Dirichlet $P_{Dir}(w_i \mid D) = \frac{tf(w_i, D) + \mu P_{ML}(w_i \mid C)}{\mid D \mid + \mu}$

Using LM in IR: Query generation

- Rank document D according to its model's capacity to generate the query Q, i.e. P(Q|D)
- But we want to rank according to P(D|Q)?
- P(D | Q) = P(Q | D) * P(D) / P(Q)
 - P(Q) is the same for all documents, so ignore
 - P(D) [the prior] is often treated as the same for all D
 - But we could use criteria like authority, length, genre
 - So, P(D|Q) ~ P(Q|D)

Query generation

- Another explanation:
 - Before submitting a query, the user imagines some ideal document D_{ideal} he would like to find, and the words that would appear in the document
 - Q is formed using these words
 - So the user is generating Q from D_{ideal}
 - Submit D to the same generation process
 - If P(Q|D) is high, then D is close to D_{ideal}
Using LM in IR: Divergence between models

Question: Is the document likelihood increased when a query is submitted?

$$LR(D,Q) = \frac{P(D \mid Q)}{P(D)} = \frac{P(Q \mid D)}{P(Q)}$$

(Is the query likelihood increased when D is retrieved?)

- P(Q|D) calculated with $P(Q|M_D)$

- P(Q) estimated as P(Q|M_c)

$$Score(Q, D) = \log \frac{P(Q \mid M_D)}{P(Q \mid M_C)}$$

Divergence between Mp and Mo

 $P(Q | M_D) = \frac{|Q|!}{\prod tf(q_i, Q)!} \prod_{q \in Q} P(q_i | M_D)^{tf(q_i, Q)}$ Assume Q follows a multinomial distribution : $P(Q \mid M_{c}) = \frac{|Q|!}{\prod tf(q_{i}, Q)!} \prod P(q_{i} \mid M_{c})^{tf(q_{i}, Q)}$ $q_i \in Q$ $Score(Q,D) = \sum_{i=1}^{n} tf(q_i,Q) * \log \frac{P(q_i \mid M_D)}{P(q_i \mid M_D)}$ $\propto \sum_{i=1}^{n} P(q_i \mid M_Q) * \log \frac{P(q_i \mid M_D)}{P(q_i \mid M_D)}$ $=\sum_{i=1}^{n} P(q_i \mid M_Q) * \log \frac{P(q_i \mid M_D)}{P(q_i \mid M_Q)} - \sum_{i=1}^{n} P(q_i \mid M_Q) * \log \frac{P(q_i \mid M_C)}{P(q_i \mid M_Q)}$ $= \sum P(q_i | M_o) * \log P(q_i | M_D) + \text{Constant}$ $\propto -KL(M_O, M_D)$

Negative Kullback-Leibler divergence: larger KL-divergence = lower rank 38

Another view of model divergence

Comparaison: LM v.s. tf*idf

$$\begin{split} P(Q \mid D) &= \prod_{i} P(q_{i} \mid D) \\ &= \prod_{q_{i} \in Q \cap D} \left(\lambda \frac{tf(q_{i}, D)}{\mid D \mid} + (1 - \lambda) \frac{tf(q_{i}, C)}{\mid C \mid} \right) \prod_{q_{j} \in Q - D} ((1 - \lambda) \frac{tf(q_{j}, C)}{\mid C \mid}) \\ &= \prod_{q_{i} \in Q \cap D} \left(\lambda \frac{tf(q_{i}, D)}{\mid D \mid} + (1 - \lambda) \frac{tf(q_{i}, C)}{\mid C \mid} \right) \prod_{q_{j} \in Q} ((1 - \lambda) \frac{tf(q_{j}, C)}{\mid C \mid}) / \prod_{q_{j} \in Q \cap D} ((1 - \lambda) \frac{tf(q_{j}, C)}{\mid C \mid}) \\ &= const \prod_{q_{i} \in Q \cap D} \left(\frac{\lambda \frac{tf(q_{i}, D)}{\mid D \mid} + (1 - \lambda) \frac{tf(q_{i}, C)}{\mid C \mid}}{(1 - \lambda) \frac{tf(q_{i}, C)}{\mid C \mid}} \right) = const \prod_{q_{i} \in Q \cap D} \left(\frac{\lambda \frac{tf(q_{i}, D)}{\mid D \mid} + 1}{(1 - \lambda) \frac{tf(q_{i}, C)}{\mid C \mid}} \right) \\ &= const \prod_{q_{i} \in Q \cap D} \left(\frac{\lambda \frac{tf(q_{i}, D)}{\mid D \mid} + (1 - \lambda) \frac{tf(q_{i}, C)}{\mid C \mid}}{(1 - \lambda) \frac{tf(q_{i}, C)}{\mid C \mid}} \right) = const \prod_{q_{i} \in Q \cap D} \left(\frac{\lambda \frac{tf(q_{i}, D)}{\mid D \mid} + 1}{(1 - \lambda) \frac{tf(q_{i}, C)}{\mid C \mid}} \right) \\ &= tf(q_{i}, C) \\ &= tf(q_{i},$$

- Log P(Q|D) ~ VSM with tf*idf and document length normalization
- •Smoothing ~ idf + length normalization

Common extensions

Some common techniques to improve IR effectiveness

- Interaction with user (relevance feedback)
 - Keywords only cover part of the contents
 - User can help determining relevant/irrelevant document
- The use of relevance feedback
 - To improve query expression:

$$Q_{new} = \alpha^* Q_{old} + \beta^* Rel_d - \gamma^* Nrel_d$$

where Rel_d = centroid of relevant documents NRel_d = centroid of non-relevant documents

Modified relevance feedback

- Users usually do not cooperate (e.g. AltaVista in early years)
- Pseudo-relevance feedback (Blind RF)
 - Using the top-ranked documents as if they are relevant (e.g. 20 documents)
 - Select m terms from n top-ranked documents
 - One can usually obtain about 5-10% improvement in MAP in TREC experiments

Query expansion

- A query contains part of the important words
- Add new (related) terms into the query
 - Manually constructed knowledge base/thesaurus (e.g. Wordnet)
 - Q = information retrieval
 - Q' = (information + data + knowledge + ...)

(retrieval + search + seeking + ...)

- Co-occurrence analysis:
 - two terms that often co-occur are related (Mutual information)
 - Two terms that co-occur with the same words are related (e.g. T-shirt and coat with wear, ...)

Global vs. local context analysis [Xu and Croft]

- Global analysis: use the whole document collection to calculate term relationships
- Local analysis: use the query to retrieve a subset of documents, then calculate term relationships
 - Combine pseudo-relevance feedback and term cooccurrences
 - More effective than global analysis

Query Expansion Approach (1)

- Wordnet [Voorheers 1994]:
 - Using synonyms, hypernyms and hyponyms to expand query
 - Problems:
 - Coverage is low, only contains linguistically motivated relationships
 - Ambiguity: e.g. "computer: machine or human expert"
 - Lack of strength measure for relationships: weighting of expanded terms
 - Can not improve retrieval effectiveness
- Co-occurrence [Qiu 1993]:
 - Two words that often co-occur are related
 - Capable of extracting: e.g. "Java → programming"
 - Some improvements
 - Problems:
 - Introduce noise: frequent co-occurring terms are not necessarily related
 - No context information for term relationships: possible to expand "Java travel" by "programming"

Query Expansion Approach (2)

- Pseudo-relevant feedback [Zhai 2001]:
 - Retrieve some documents with query
 - Top n feedback documents are assumed to be relevant
 - Extract expansion terms from feedback documents
 - Most effective method so far
 - Problem: two retrieval processes => longer retrieval time

Inference in LM?

IR as an inference process

- Key: inference infer query from document
 - D: Tsunami
 - Q: natural disaster
 - D→Q?

Inference in traditional models?

- 1. Traditional bag-of-words approach: Matching words, no inference
- 2. Language model?
- $P(Q|D) \sim P(D \rightarrow Q)$
- Smoothing:

 $P(t_i \mid D) = \lambda P_{ML}(t_i \mid D) + (1 - \lambda)P_{ML}(t_i \mid C)$

 $t_i \notin D: P_{ML}(t_i \mid D) = 0$

change to $P(t_i | D) > 0$

- E.g. D=Tsunami, P_{ML}(natural disaster|D)=0 change to P(natural disaster|D)>0
- Inference by accident
 - P(computer|D)>0 ~ P(natural disaster|D)>0

- Smoothing ≠inference
- Redistribution uniformly/according to collection (also to unrelated terms)

Knowledge-based smoothing

Inference – incorporating some knowledge in document model

Translation model [Berger and Lafferty, 1999] $P(q_i | D) = \sum_{d_j} P(q_i | d_j) P(d_j | D)$ $P(Q | D) = \prod \sum P(q_i | d_j) P(d_j | D)$

$$Q \mid D) = \prod_{q_i} \sum_{d_j} P(q_i \mid d_j) P(d_j \mid D)$$

$$D$$

$$D$$

$$d_j, \quad d_j, \quad d_j, \quad d_j, \quad \dots \quad d_j$$

$$Q \mid D) = \prod_{q_i} \sum_{d_j} P(q_i \mid d_j) P(d_j \mid D)$$

$$Q \mid D) = \prod_{q_i} \sum_{d_j} P(q_i \mid d_j) P(d_j \mid D)$$

 $(D \rightarrow d_j) \land (d_j \rightarrow q_i) | \neg (D \rightarrow q_i)$

Using multiple knowledge sources (Cao et al. 05)

- Different ways to satisfy a query (term)
 - Directly though unigram model

. . .

- Indirectly (by inference) through Wordnet relations
- Indirectly trough Co-occurrence relations

• $D \rightarrow t_i$ if $D \rightarrow_{UG} t_i$ or $D \rightarrow_{WN} t_i$ or $D \rightarrow_{CO} t_i$

 $P(t_i | D) = \lambda_1 P_{UG}(t_i | D) + \lambda_2 \sum_j P_{WN}(t_i | t_j) P(t_j | D) + \lambda_3 \sum_j P_{CO}(t_i | t_j) P(t_j | D)$

Inference using different types of knowledge (Cao et al. 05)

Incorporating knowledge in **Query** expansion

KL-div: ~ $\sum P(t_i | Q) \log P(t_i | D)$ $t_i \in Q$

Query model Smoothed doc. model

With no query expansion, equivalent to generative model

$$-KL(Q || D) \sim \sum_{t_i \in Q} P(t_i | Q) \log P(t_i | D)$$

$$\sim \sum_{t_i \in Q} tf(t_i, Q) \log P(t_i | D) = \sum_{t_i \in Q} \log P(t_i | D)^{tf(t_i, Q)}$$

$$\sim P(Q | D)$$

Extension for inference: Query (relevance) model [Lavrenko & Croft 2001] Using pseudo feedback documents $P(t_i | Q) = \sum P(t_i | D_k) P(D_k | t_j) P_{ML}(t_j | Q)$ j,k $t_i \rightarrow t_{i'}$ P(t_i|t_i)

 Some inference (~co-occurrence) through pseudo-feedback documents

Expanding query model

 $P(q_i | Q) = \lambda P_{ML}(q_i | Q) + (1 - \lambda) P_R(q_i | Q)$ $P_{ML}(t_j | Q) : \text{Max.Likelihood unigram model (not smoothed)}$ $P_R(t_i | Q) : \text{Relational model}$

How to estimate $P_R(t_i | Q)$?

- Using co-occurrence information
- Using an external knowledge base (e.g. Wordnet)
- Pseudo-rel. feedback
- Other term relationships

•••

Using co-occurrence relation

- Use term co-occurrence relationship
 - Terms that often co-occur in the same windows are related
 - Window size: 10 words
- Unigram relationship $(W_i \rightarrow W_i)$

$$P_{R}(w_{i} | w_{j}) = \frac{c(w_{i}, w_{j})}{\sum_{w} c(w_{l}, w_{j})}$$

Query expansion

$$P_{R}(w_{i} | Q) = \sum_{q_{j} \in V} P_{R}(w_{i}, q_{j} | Q) = \sum_{q_{j} \in Q} P_{R}(w_{i} | q_{j}) \times P_{MLE}(q_{j} | Q)$$

Problems in co-occurrence relations

- Ambiguity
- Term relationship between two single words
 e.g. "Java → programming"
- No information to determine the appropriate context
 e.g. "Java travel" by "programming"
- Solution: add some context information into term relationship

Context-dependent expansion (Bai et al. 06)

- Use $(t_1, t_2, t_3, ...) \rightarrow t$ instead of $t_1 \rightarrow t$
 - e.g. " (Java, computer, language) → programming"
- Problem:
 - Complexity with many words in condition part
 - Difficult to obtain reliable relations
- A solution:
 - Limit condition part to 2 words
 e.g. " (Java, computer) → programming"
 " (Java, travel) → island"
 - One word specifies the context to the other

Context-dependent co-occurrences

$$\bullet W_{i}W_{j} \rightarrow W_{k}$$

$$P_{R}(w_{i} | w_{j}w_{k}) = \frac{c(w_{i}, w_{j}, w_{k})}{\sum_{w_{l}} c(w_{l}, w_{j}, w_{k})}$$

Bi-term relation model

 $P_{R}(w_{i} \mid Q) = \sum_{q_{j}, q_{k} \in V} P_{R}(w_{i} \mid q_{j}q_{k}) \times P(q_{j}q_{k} \mid Q) \approx \sum_{q_{j}, q_{k} \in Q} P_{R}(w_{i} \mid q_{j}q_{k}) \times P(q_{j}q_{k} \mid Q)$

 $P(q_j q_k | Q)$: uniform

Example

 Compare expansion terms by UQE and BQE: e.g. Query #55: "Insider trading"

Unigram relationships (UQE): P(*/insider) or P(*/trading) market:0.0113156 US:0.0112784 stock:0.014177 year:0.010224 exchang:0.0101797 trade:0.00922486 report:0.00825644 price:0.00764028 dollar:0.00714267 1:0.00691906 govern: 0.00669295 state: 0.00659957 million:0.00614666 dai:0.00605674 futur:0.00619518 offici:0.00597034 peopl:0.0059315 york:0.00579298 issu:0.00571347 nation:0.00563911

Bi-term relationships (BQE): P(*/insider, trading)

secur:0.0161779 boeski:0.0125011 case:0.0106411 exchang:0.00804568 fraud:0.00718055 charg:0.0158751 stock:0.0137123 inform:0.011982 street:0.0113332 year:0.00908383 million:0.00869452 govern:0.00778614 sec:0.00778614 law:0.00631543 ivan:0.00609914

scandal:0.0128471 wall:0.0112034 investig:0.00826196 drexel:0.00756986 profit:0.00566658

Dependence Models for Information Retrieval

-- Dependency = the meaning of a word depends on another word

-- "computer architecture" ≠ computer + architecture

Dealing with dependencies in IR

- Quoted queries
 - "black Monday": OK
 - "computer architecture": ?
 - _ "淘宝手机": No
 - How can a user decide with little knowledge on IR and data?
- Phrases
 - Automatically detect phrases
 - Dictionary
 - Statistical analysis
 - Integration into an IR model

A typical integration method

- Detect phrases in the query and the documents
- Train a phrase model and a word model $Score(D,Q) = \alpha Score_{phrase}(D,Q) + (1-\alpha) Score_{word}(D,Q)$
- Limited impact
 - [Fagan 88]: syntactic phrases have less impact than statistical phrases
 - More recent work tends to confirm

Why?

- Not all phrases are fixed expressions
 - "Black Monday" is
 - but not "desktop computer" and "HD movie"
 - desktop computer ≈ desktop
 - HD movie ≈ movie in HD ≈ HD...movie
- Many user queries are not grammatical
 - Bag of words
 - \neq strict and unique expression of query intent
 - Assuming them to be fixed expressions hurts IR

How to tackle flexible dependencies?

- Consider n-grams, not phrases [Bai et al. WWW'08]
- Dependency model [Gao et al. 04]
- Term proximity [Tao and Zhai 07] [Zhao and Yun, 09]
- Consider adjacent terms or all terms in a query [Metzler and Croft 05]

Matching N-grams

- Given a long query abcdefg
- Extract n-grams: abc, bcd, cde, def, efg
- An extra score for a document according to its matches to the n-grams

 $Score(D,Q) = \alpha Score_{ngram}(D,Q) + (1-\alpha)Score_{baseline}(D,Q)$

- Not all n-grams are meaningful and useful
- Limited impact

Dependence Model

Dependence LM (Gao et al. 04)

Capture more distant dependencies within a sentence

- Syntactic analysis
- Statistical analysis
 - Only retain the most probable dependencies in the query

Estimate the prob. of links (EM)

For a corpus C:

- 1. Initialization: link each pair of words with a window of 3 words
- 2. For each sentence in C:

Apply the link prob. to select the strongest links that cover the sentence

- 3. Re-estimate link prob.
- 4. Repeat 2 and 3

Calculation of P(Q|D)

1. Determine the links in Q (the required links)

$$L = \arg \max_{L} P(L | Q) = \arg \max_{L} \prod_{(i,j) \in L} P_{C}(R | q_{i}, q_{j})$$
2. Calculate the likelihood of Q (words and links)
$$P(Q | D) = P(L | D)P(Q | L, D)$$

$$P(L | D) = \prod_{l \in L} P(l | D) \quad \} \text{ links}$$

$$P(Q | L, D) = P(q_{h} | D) \prod_{(i,j) \in L} P(q_{j} | q_{i}, L, D) = \dots$$

$$= \prod_{i=1...n} P(q_{i} | D) \prod_{(i,j) \in L} \frac{P(q_{i}, q_{j} | L, D)}{P(q_{i} | D)}$$
Requirement on words and bi-terms

Term proximity

- If two query term appear closely in document, then higher score
 - Calculate a span of query terms [Tao and Zhai]
 - Increase the score if span is small
 - Smooth the document model by term centrality [Zhao and Yun]

$$\hat{\theta}_{D,i}^{B} = \frac{c(w_{i}; D) + \lambda Prox_{B}(w_{i}) + \mu P(w_{i}|C)}{|D| + \sum_{j=1}^{|V|} \lambda Prox_{B}(w_{j}) + \mu}$$
$$P_SumProx(q_{i}) = \sum_{q_{j} \in Q, q_{j} \neq q_{i}} f\left(Dis(q_{i}, q_{j}; D)\right)$$
$$f(x) = para^{-x}$$

Markov Random Field

For a graph *G*, the joint probability:

$$P(X_1,...,X_n) = \frac{1}{Z} \prod_{c \in C(G)} \psi_c(X_c)$$

 $X_1, ..., X_n$: random variables $\psi_c(X_c)$: potential function on a set of variables X_c C(G): set of cliques

Markov Random Field for IR (Metzler and Croft, 2005)

Two graphs for IR

Sequential dependence Full dependence $Score(D,Q) = P_{\Lambda}(Q,D) = \frac{1}{Z} \prod_{c \in C(G)} \psi(c;\Lambda)$

Markov Random Field for IR

$$Score(D,Q) = P_{\Lambda}(Q,D) = \frac{1}{Z} \prod_{c \in C(G)} \psi(c;\Lambda)$$

$$= \sum_{c \in C(G)} \lambda_c f(c) = \sum_{c \in T} \lambda_T f_T(c) + \sum_{c \in O} \lambda_O f_O(c) + \sum_{c \in U} \lambda_U f_U(c)$$

- 3 components:
 - Term T $f_T(c) = \log P(q_i | D)$
 - Ordered term clique O $f_O(c) = \log P(\#1(q_i,...,q_{i+k})|D)$
 - Unordered term clique U $f_U(c) = \log P(\#uw(q_i,...,q_{i+k})|D)$
- $\lambda_T, \lambda_O, \lambda_U$: fixed parameters
 - Typical good values (0.8, 0.1, 0.1) or (0.85, 0.1, 0.05)

Weighted MRF-SD (Bendersky, Croft and Metzler, 10)

• Make the parameters $\lambda_{T'}$, $\lambda_{O'}$, λ_{U} dependent on the pair of terms

$$\lambda(q_i) = \sum_{j=1}^{k_{uni}} w_j^{uni} g_j^{uni}(q_i)$$
$$\lambda(q_i, q_{i+1}) = \sum_{j=1}^{k_{bi}} w_i^{bi} g_j^{bi}(q_i, q_{i+1})$$

 $P(D|Q) \stackrel{rank}{=} \sum_{j=1}^{k_{uni}} w_j^{uni} \sum_{q_i \in Q} g_j^{uni}(q_i) f_T(q, D) + \sum_{j=1}^{k_{bi}} w_j^{bi} \sum_{q_i q_{i+1} \in Q} g_j^{bi}(q_i, q_{i+1}) [f_O(q_i q_{i+1}, D) + f_U(q_i q_{i+1}, D)]$

• Learn to weight $\lambda_{T'}$, $\lambda_{O'}$, λ_U based on features

Variable Dependency Model (Shi & Nie 2010)

Discriminative model

$$P(Rel | Q, D) = \frac{1}{Z} \exp\left(\sum_{i}^{n} \lambda_{i} f_{i}(Q, D)\right)$$

$$\begin{split} P(Rel | Q, D) &\propto \sum_{q_i \in Q} \lambda_U(q_i | Q) f_U(q_i, D) \\ &+ \sum_{q_i q_{i+1} \in Q} \lambda_B(q_i, q_{i+1} | Q) f_B(q_i q_{i+1}, D) \\ &+ \sum_{w \in W} \sum_{q_i q_j \in Q, i \neq j} \lambda_{C_w}(q_i, q_j | Q) f_{C_w}(q_i, q_j, D) \end{split}$$

Variable Dependency Model (Shi & Nie 2010)

$$P(Rel | Q, D) \propto \sum_{q_i \in Q} \lambda_U(q_i | Q) f_U(q_i, D)$$

+
$$\sum_{q_i q_{i+1} \in Q} \lambda_B(q_i, q_{i+1} | Q) f_B(q_i q_{i+1}, D)$$

+
$$\sum_{w \in W} \sum_{q_i q_j \in Q, i \neq j} \lambda_{C_w}(q_i, q_j | Q) f_{C_w}(q_i, q_j, D)$$

Unigram:

$$f_U = P_U(q_i | Q) \log P_U(q_i | D)$$

- Ordered bigrams: $f_B = P_A$
- $f_{B} = P_{B}(q_{i}q_{i+1} | Q)\log P_{B}(q_{i}q_{i+1} | D)$
- Unordered co-occurrence dependency within distance w (2, 4, 8): $f_{C_w} = P_{C_w}(\{q_i, q_j\} | Q) \log P_{C_w}(\{q_i, q_j\}_w | D)$
- λ_C , λ_B and λ_{Cw} are the importance of a particular term or dependency for the query
- Learning these parameters based on features

Death cancer – only unigrams

death cancer

	MRF-SD	DLM	Ideal
weights	.90 <i>U</i> .08 <i>B</i> .02 <i>C</i> ₈	.98U .02B	1.0 <i>U</i>
MAP	0.0088	0.0104	0.0105

Black Monday – Co-occ and bigram

What has been achieved?

- Bag of words
 - Implemented as a vector space model, probabilistic model or language model
 - Achieve descent effectiveness
- Extensions
 - Term relations (programming→computer)
 - Relevance feedback
 - Thesauri
 - Co-occurrences in a corpus
 - Query logs (talk of Jianfeng Gao)
 - Dependency (computer architecture)

Remaining problems

- We only considered the relevance between an isolated document-query pair
- Reality:
 - Documents can be connected (hyperlinks)
 - Queries can be related (query session)
 - Users may have typical behavior (interpret a query in similar ways)
- Recent efforts aim to consider these factors

From search to search intelligence

Information retrieval

- Search engine
- Finding relevant information from a large set of documents
- User submits a query \rightarrow search results

A review of generations of IR techniques

- Generation 1: basic models
- Generation 2: relations between documents, terms
- Generation 3: Learning from users
- Generation 4: Understanding users

Basic IR – Generation 1

- 1950s-1990s
- Extract keywords from documents
- Match query words against document keywords
- Document score using a manually defined function

Examples

- Document:
 - e.g. "The area of information retrieval started in 1950s."
 - Keywords: area, information, retrieval, started, 1950s
 - Some word processing: area, inform, retriev, start, 1950
- Query:
 - information retrieval
 - Inform, retriev
- Score: cosine similarity, BM25, language model

Characteristics of G1

- Selection of meaningful words (stopword removal)
- Term weighting (tf*idf)
- Only content words (title, body, ...)
- Isolated documents
- Limited structure of documents
- Manually defined score functions
 - Cosine, BM25, probabilistic models, language models, ...

IR – Generation 2

- Started form ~1995
- Web search
- Connected documents (hyperlinks)
 - Anchor texts as additional description
 - Links as votes (popularity)
 - PageRank, HITS
- Links between terms (proximity)

PageRank – Basic idea

Can view it as a process of PageRank "flowing" from pages to the pages they cite.

PageRank Algorithm

Let *S* be the total set of pages. Let $\forall p \in S: E(p) = \alpha / |S|$ (for some $0 < \alpha < 1$, e.g. 0.15) Initialize $\forall p \in S: R(p) = 1 / |S|$

Until *convergence* (values do not change much) do

For each $p \in S$:

$$R'(p) = \sum_{q:q \to p} \frac{R(q)}{N_q} + E(p)$$

For each $p \in S$: R(p) = cR'(p) (normalize)

$$c = 1 / \sum_{p \in S} R'(p)$$

96

Search engine – Generation 3

- Considering user interactions
 - Click-through: clicked documents are more relevant than unclicked ones
 - Noisy relevance judgments
 - Query sessions: queries of similar search intents
 - Relations between queries in the same session

Some ideas commonly used

For a query, if many users clicked on a document, the document is likely relevant.

Some ideas commonly used

- A later query in the same session may be an alternative expression of the same intent
 - Used to suggest query rewriting
 - pdf reader
 - acrobat reader
 - free acrobat reader

User preference

Some ideas commonly used

- Terms in a query are related to terms in the clicked documents (titles)
 - Query expansion

msn web	0.6675749		
Webmensseger	0.6621253		
msn online	0.6403270		
windows web messanger	0.6321526		
talking to friends on msn	0.6130790		
school msn	0.5994550	Clicked Title	
msn anywhere	0.5667575	msn web messenger	
web message msn com	0.5476839	- mail web messenger	
msn messager	0.5313351		
hotmail web chat	0.5231608		
messenger web version	0.5013624		
instant messager msn	0.4550409		

An example of query expansion

Images for Beijing air pollution

Report images

More images for Beijing air pollution

Beijing Air Pollution: Real-time PM2.5 Air Quality Index (AQI) aqicn.org/ -

Beijing AQI: Beijing Real-time Air Quality Index (AQI). ... Beijing PM25 (fine particulate matter) measured by Beijing Environmental Protection Monitoring Center (... Beijing Air Pollution - Map - Shanghai - Central, Singapore Air Pollution

News for Beijing air pollution

China's Horrific Air Quality Prompts Its Government to ...

VICE News - 6 days ago

The policy probably won't do much to improve China's abysmal air quality, ... Highly polluted regions like the Beijing-Tianjin-Hebei

But may be wrong

Paper Cost

About 770,000,000 results (0.32 seconds)

Staples® Multipurpose Paper, 8 1/2" x 11", Ream | Make ... www.staples.com > Paper & Stationery > Copy & Multipurpose Paper Shop Staples® for Staples® Multipurpose Paper, 8 1/2" x 11", Ream and enjoy everyday low prices, plus FREE shipping on orders over \$29.99. Get everything ...

Copy Paper / Printer Paper | Staples®

www.staples.ca/en/Copy-Paper...Paper/cat_CG2567_2-CA_1_20001 -Whatever the project, having the right paper is key - whether you're looking for cost-

effective general printer paper for basic print jobs or high quality color copy ...

Paper Cost Calculator - CS Professional Suite from ...

https://cs.thomsonreuters.com/FileCabinetCS/worksheet.aspx *

Paper Cost Calculator. A paperless software solution that saves you money. We've estimated that a typical firm with 500 clients could easily be spending more ...

Learning to rank – a major move

- It is difficult to define a ranking (score) function manually
- Learn the ranking function from users
 - Editorial judgments (relevance judgments by annotators)
 - Perfect(4), Very good (3), Good (2), Fair(1) Bad(0)
 - User clicks
 - Less accurate than editorial data, but there are much more
 - May reflect real user's true intent

Principles of learning-to-rank

- Regression (pointwise L2R): define a score function to fit the editorial judgments
 - E.g. Gradient Boosting Regression Trees
 - Editorial judgments for Q-D pairs
 - Extract features (F1, ...): e.g. tfidf, in-title?, clicked?, ...
 - Train a set of decision trees to fit the true scores

Principles of learning-to-rank

- Absolute relevance judgments are difficult to make
 - Inconsistency between annotators
- Easier to rank to documents
 - D1 is better than D2, i.e. $D1 \succ D2$
- The goal of a search engine is to rank, not to produce absolute relevance score
- Learn to rank documents

Principles of learning-to-rank

 Transform a set of editorial judgments to a set of preferences

 $(Q, D_1) \succ (Q, D_2)$

- \rightarrow Good pairs (D₁,D₂) vs. Bad pairs (D₂,D₁)
- 2-class classification problem
 - RankSVM, …
- Classify document pairs correctly
 - Pairwise L2R
- Or consider the whole order in a list of document
 - Listwise L2R
- *see (Li 2011) and (Liu 2011) for details

Characteristics of generation 3

- No longer a manually defined ranking function
- Learn from users
- Flexible to incorporate various types of features on
 - Query

. . .

- Document
- Document-query pair
- User's search space / user profile

Search engine – Generation 4

- Trend: search engines are evolving towards:
 - Understanding user's search intent
 - Java: programming language, Java island or coffee?
 - Result diversification: mix up results for several possible intents in the first page
Query intent

- Query intent = a full specification of the documents the user wants to find
- A search query is partial specification of the information need and is not unique
- Often underspecified or ambiguous
 - 故宫
 - A general presentation?
 - A map or itinerary to go there?
 - A book?
 - ••••
 - Java transportation
 - Ambiguous query
- Intent mining: often based on query logs

Bai 百度 新闻 网页 贴吧 知道 音乐 图片 视频 地图 文库 更多»

14-	<u></u>
ਨਾ	
HA.	

百度一下

推广链接

-

<u>故宫_百度百科</u>

故宫,世界文化遗产,全国重点文物保护单位,国家AAAAA级旅游景区。故宫旧称紫禁城。 于明代永乐十八年(1420年)建成,建成后3月即失火烧毁,20年后重建。是明、... 其他含义:

<u>故宫携程故宫博物院 20元起贵就赔随时退</u> piao.ctrip.com 🚽 🚺 🛧

携程旅游-故宫门票特价1折起,凭身份证刷码入园,无需排队!随时退!贵就赔!

<u>南京故宮</u>

<u>沈阳故宫</u>

<u>查看"故宫"全部6个含义>></u>

baike.baidu.com/ 2014-07-21 -

▲ 放宮博物院 宮岡

北京故宫博物院建立于1925年,是在明朝、清朝两代皇宫及其收藏的基础上建立起来的中国综合性博物馆,也是中国最大的古代文化艺术博物馆,其文物收藏主要来源于清代宫中旧藏。 www.dpm.org.cn/ 2014-05-19 ▼ V2 - 百度快照 - 评价

故宫 2005_全集高清视频在线观看_百度视频

更新至 2010-01-12

首播频道: CCTV

简介: 12集《故宫》从故宫的建筑艺术、使用功能、馆藏文物和从皇 宫到博物院的历程等方面,全面展示故宫辉煌瑰丽、神秘沧桑 的宫殿建筑、丰富多彩,经历传奇的珍贵文物... <u>更多>></u>

How to do it?

- Add a diversity criterion to relevance in document ranking
- At each iteration, select a document that is both relevant to the query and different from the documents already selected

 $MMR(Q) = \underset{D_i \in R \setminus S}{\operatorname{argmax}} [\lambda Sim_1(D_i, Q) - (1 - \lambda) \underset{D_j \in S}{\operatorname{max}} Sim_2(D_i, D_j)]$

Some Extensions

- Try to cover the subtopics of the query as much as possible
 - xQuad (Santos et al. 2010, ...)
- Expand the initial query so as to have a more diversified pool
 - Diversified query expansion (Bouchoucha et al. 2012, 2013)
- Intent mining
 - NTCIR intent

▼ 显示广东天气预报

www.weather.com.cn/ - >>

北京天气预报一周,7天,10天,15天,未来一周天气预报查询_2345天气...

2014年7月10日 - 2345天气预报提供北京未来15天天气,通过2345天气 预报详细了解北京各地区未来15天天气情况,温度,空气质量,降水,风力 ,气压,紫外线强度等! tiangi.2345.com/beijin... 2013-07-25 → - 百度快照

Bai 金百度 新闻 网页 贴吧 知道 音乐 图片 视频 地图 文库 更多»

百度一下

刘德华老婆的丈夫的老婆

刘德华老婆的丈夫的老婆:

朱丽倩

朱丽倩英文名字叫carol, 1966年4月6日出生在马来西亚槟城, 有5 个兄弟姐妹, 家境富裕, 父亲做地产和酒楼生意。1984年她和姐妹 参加当地的"新潮小姐"选美获得季军, 之后赴... 详情>>

来自百度百科 | 报错

How to do it?

- Extract facts from reliable sources (Wikipedia, Baidu Zhidao, Baidu Baike, ...)
- Build a knowledge graph
- Typical approach IBM Watson Deep QA system
 - Given a question:
 - Can be answered by facts stored in knowledge graph?
 - Look for answers in free texts (passage retrieval + answer identification)
- Remaining issues
 - Non-factoid questions
 - More complex questions

Data analytics – Big data

- Answers to questions may be opinions (Baidu):
 - 蚕丝被能不能晒?
 - 孕妇能不能吃冰淇淋?
- Extract opinions from user answers
- Clustering opinions and display

<u>蚕丝被,纯正蚕丝被,哪家好?</u> V1-推广

答: 浦锦佳人蚕丝被,做工精细,100%品质保证,100%放心选购,值得信赖!产品质量投保!公司产品种类 多,设计融贯中西,以"雅致,高贵"为基调,是馈赠亲朋,商务往来的品质之选!

回答者: 安徽浦锦佳人家.. 2014-08-02

蚕丝被可以晒吗(64条网友回答):

Big data – the microblog case

- A huge amount of user generated contents
- 4V: Volume, Velocity, Variety, Veracity
- Noisy (many irrelevant and useless posts)
- But contain useful information, if correctly mined

Event monitoring

- Manually define a profile for a kind of events (e.g. a set of keywords)
 - ■恐怖,犯罪,袭击,伤亡,爆炸,团伙,...
- Or construct a profile using a set of training data
- Monitor microblogs for significant increases of posts relating to the profile
- \rightarrow a possible event of this kind

An example of World Cup

Figure 1. Twitter volume graph for the 2010 World Cup game of US vs. Slovenia. The x-axis is time and the y-axis is volume as measured in tweets/minute.

Figure 4: Number of tweets related to earthquakes.

Event detection – Earthquake

Determine where the earthquake is according to the locations of tweets:

- Twitter users as sensors

Monitoring the mood of people

Some limitations

- Collect microblog posts using keywords?
- Data analytics
- Are the selected posts (data) really relevant?
- There is room for improvements:
 - => use more sophisticated IR techniques to select relevant information
 - = > consider data reliability in data analysis

Final remarks

- Several generations of IR and search engines
 - Generation 1: Basic techniques
 - Generation 2: Link structure
 - Generation 3: User interactions
 - Generation 4: Understand users, diverse applications, including in Big data
- How far can we go?
 - Can we answer complex questions?
 - Can we do complex inference?
 - Can we satisfy diverse user needs (relevance -> user satisfaction)?
 - Can we determine relevant information in Big data?

Thanks and Questions

Traditional models

- Books:
 - Gerard Salton, Michael McGill, Introduction to modern information retrieval, McGraw-Hill, 1983 (classic)
 - Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008.
 - Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, Information retrieval - Implementing and Evaluating Search Engines, MIT Press, 2010
 - W. Bruce Croft, Donald Metzler, Trevor Strohman, Search Engines: Information Retrieval in Practice, Pearson Education, 2009

Language modeling for IR

- J.M. Ponte and W.B. Croft. 1998. A language modeling approach to information retrieval. In *SIGIR 21.*
- D. Hiemstra. 1998. A linguistically motivated probabilistic model of information retrieval. *ECDL* 2, pp. 569–584.
- A. Berger and J. Lafferty. 1999. Information retrieval as statistical translation. *SIGIR 22*, pp. 222–229.
- Lavrenko, V. and Croft, W.B. Relevance-Based Language Models. In Proceedings of SIGIR Conf., pp. 120-127, 2001.
- D.R.H. Miller, T. Leek, and R.M. Schwartz. 1999. A hidden Markov model information retrieval system. *SIGIR 22*, pp. 214–221.
- Chengxiang Zhai, Statistical language models for information retrieval, in the series of Synthesis Lectures on Human Language Technologies, Morgan & Claypool, 2009

[Several relevant newer papers at SIGIR 2000-now.]

Workshop on Language Modeling and Information Retrieval, CMU 2001. http://la.lti.cs.cmu.edu/callan/Workshops/Imir01/.

The Lemur Toolkit for Language Modeling and Information Retrieval. http://www-2.cs.cmu.edu/~lemur/. CMU/Umass LM and IR system in C(++), currently actively developed.

Query/Doc. expansion

- Qiu, Y., and Frei, H.P. (1993). Concept query expansion. In *Proceedings of SIGIR Conf.*, pp. 160-169.
- Voorhees, E.M. (1994). Query Expansion Using Lexical-Semantic Relations In *Proceedings of SIGIR Conf.*, pp. 61-69.
- Cao, G., Nie, J.Y., and Bai, J. (2005). Integrating word relationships into language modeling. In *Proceedings of SIGIR Conf.*, pp. 298-305
- Bai, J. Nie, J., Bouchard, H. and Cao, G. (2007). Using query contexts in information retrieval. In *Proceedings of SIGIR Conf.*, pp. 15-22.

Dependence models

- Gao, J., Nie, J.-Y., Wu, G., and Cao, G. (2004). Dependence Language Model for Information Retrieval. In *Proceedings of the* 2004 SIGIR Conf., pp. 170-177.
- Metzler, D. and Croft, W. B. (2005). A Markov random field model for term dependencies. In *Proceedings of SIGIR Conf.*, pp. 472-479
- M. Bendersky, D. Metzler and W. B. Croft: "Learning Concept Importance Using a Weighted Dependence Model" In Proceedings of WSDM 2010
- Lixin Shi, Jian-Yun Nie. Modeling Variable Dependencies between Characters in Chinese Information Retrieval, AIRS 2010

Learning to rank

- Fuhr, Norbert (1992), Probabilistic Models in Information Retrieval, Computer Journal 35 (3): 243–255, doi:10.1093/comjnl/35.3.243 (predecessor of L2R)
- Test data: Letor<u>http://research.microsoft.com/en-us/um/beijing/projects/letor/</u>
- Tie-Yan Liu (2009), Learning to Rank for Information Retrieval, Foundations and Trends® in Information Retrieval, Foundations and Trends in Information Retrieval: Vol. 3: No 3 3 (3): 225–331
- Hang Li (2011), Learning to Rank for Information Retrieval and Natural Language Processing, Synthesis Lectures on Human Language Technologies, Morgan & Claypool, April 2011, 113 pages, (doi:10.2200/S00348ED1V01Y201104HLT012)

Result diversification and query intent mining

- Agrawal, R.; Gollapudi, S.; Halverson, A.; and Ieong, S. 2009. Diversifying search results. In Proc. of WSDM, 5–14.
- Carbonell, J., and Goldstein, J. 1998. The use of mmr, diversity-based reranking for reordering documents and producing summaries. In Proc. of SIGIR, 335–336.
- Bouchoucha, A.; Liu, X.; and Nie, J.-Y. 2014. Integrating multiple resources for diversified query expansion. In Proc. of ECIR, 98–103.
- Dang, V., and Croft, W. B. 2012. Diversity by proportionality: An election-based approach to search result diversification. In Proc. of SIGIR, 65–74.
- Dang, V., and Croft, B. W. 2013. Term level search result diversification. In Proc. of SIGIR, 603–612.
- Xiaohua Liu, Arbi Bouchoucha, Alessandro Sordoni and Jian-Yun Nie, Compact Aspect Embedding For Diversified Query Expansions, AAAI, 2014
- Santos, R. L.; Macdonald, C.; and Ounis, I. 2010. Exploiting query reformulations for web search result diversification. In Proc. of WWW, 881–890.
- X Li, YY Wang, A Acero, Learning query intent from regularized click graphs, SIGIR'08, pp. 339-346
- J Hu, G Wang, F Lochovsky, J Sun, Z Chen, Understanding user's query intent with wikipedia, WWW'09, pp. 471-480
- F Radlinski, M Szummer, N Craswell, Inferring query intent from reformulations and clicks, WWW'10, pp. 1171-1172