Machine Learning for Search Ranking and Ad Auctions

Tie-Yan Liu
Senior Researcher / Research Manager
Microsoft Research
The Speaker

Research interests
- Algorithms
 - Learning to rank
 - Knowledge-powered word embedding (deep learning)
 - Fast and scalable topic models
 - Game theoretic machine learning
 - Online learning
- Theory
 - Statistical Learning theory for ranking, deep learning, and game-theoretic learning
- Platform
 - Parallel machine learning

Professional activities
- Book @ Springer: Learning to rank for information retrieval
- 70+ papers at top conferences and journals (with 8000+ citations), including 2 best paper awards
- Chairs/keynote speakers of 10+ top conferences in machine learning, information retrieval, and computational economics
- Associate editor of ACM TOIS, IR Journal, and FnTIR, etc.
- Adjunct faculty of CMU (LTI), USTC, Nankai, and SYSU.
- Honorary professor of University of Nottingham
Search and Ads
Eco-system

- Submit queries,
- View and click search results and ads

Search Users

- Retrieve/rank web pages according to relevance to query
- Select ads and predict their click probabilities
- Run auction to determine ranking and pricing of ads
- Display search results and ads to users, charge advertiser when their ads are clicked

Search engines

- Provide ad copies,
- Bid on keywords for ads,
- Pay if ads are clicked by users.

Advertisers
Eco-system

- Submit queries,
- View and click search results and ads

Search Users

How much money do you contribute to the search engine every time you submit a query?

Revenue per search: 5~10 cents
Daily profit: ~10 Million dollars

Search engines
- Retrieve/rank web pages according to relevance to query
- Select ads and predict their click probabilities
- Run auction to determine ranking and pricing of ads
- Display search results and ads to users, charge advertiser when their ads are clicked

Advertisers
- Provide ad copies,
- Bid on keywords for ads,
- Pay if ads are clicked by users.

Search Users
- Submit queries,
- View and click search results and ads
Cash Machine – $42.8 billion in 2013

Advertising revenue market share by media - 2013 ($ billions)

- Internet: $42.8
- Broadcast Television: $40.1
- Cable Television: $34.4
- Newspaper: $18.0
- Radio: $16.7
- Magazine (Consumer): $13.4
- Out of Home: $7.9
- Video Game: $0.9
- Cinema: $0.8

Ad formats – full year 2013
Total - $42.8 billion

Sources: IAB/PwC Internet Ad Revenue Report, 2013; PwC
Backend Systems

Backend Systems

Query: “New York Hotel”

Ads Corpus
- Keywords
- Bid prices
- Ad copies

Ad Selection
- Query-keyword matching

Click Prediction
- pClick

Auction
- Ranking
- Pricing

Ranking
- Relevance Ranking
- Page Ranking

Web Corpus
- Inverted index
 - Title
 - Body
 - Anchor
Key Components

Search – Ranking

• Heuristically designed ranking models

\[f_{BM25}(D, Q) = \sum_i \frac{IDF(q_i) f(q_i, D)(k_1+1)}{f(q_i, D)+k_1(1-b+b_{AVDL})}, \]
\[IDF(q_i) = \log \frac{N - n(q_i) + 0.5}{n(q_i) + 0.5} \]
\[PRank(v_i) = \sum_{v_j \in \text{inlink}[v_i]} \frac{PRank(v_j)}{|\text{outlink}[v_j]|} \]

Ads – Auction

• Heuristically designed ranking and pricing rules

• GSP auction ranks ads by \(p_{\text{Click}} \times \text{bid} \)
• GSP auction charges clicked ads by \(\frac{p_{\text{Click}}_{\text{next}} \times \text{bid}_{\text{next}}}{p_{\text{Click}}} \).

• Under rationality assumption

• For GSP, there always exists at least one pure Nash equilibrium
• The worse-case social welfare in equilibrium is around 80% of the optimal social welfare.
Key Components

Search – Ranking
• Heuristically designed ranking models
 • \(f_{BM25}(D, Q) = \sum \frac{IDF(q_i)f(q_i,D)(k_1+1)}{f(q_i,D)+k_1(1-b+b\frac{|D|}{AVDL})} \),
 \(IDF(q_i) = \log \frac{N - n(q_i) + 0.5}{n(q_i) + 0.5} \)

Ads – Auction
• Heuristically designed ranking and pricing rules
 • GSP auction ranks ads by \(p\text{Click} \times bid \)
 • GSP auction charges clicked ads by \(\frac{p\text{Click}_{\text{next}} \times bid_{\text{next}}}{p\text{Click}} \)

• Conventional approaches are based on heuristically designed magic formulas, or strong assumptions.
• Are these heuristic methods optimal? Can we improve them in an effective way?
“Data” vs. “Heuristics + Assumptions”

Instead of relying on heuristics and assumptions, we can let the data speak for us.
Part I: Machine Learning for Search Ranking
Is Ranking a New Problem?

1. **Reduce ranking to regression**
 - Treat relevance degree (click frequency) as real values
 - Example: Regression [Cossock and Zhang, 2006].

2. **Reduce ranking to classification**
 - Treat relevance degree (or click event) as categories
 - Example: MC-Rank [Li, et al. 2007].

3. **Reduce ranking to pairwise classification**
 - Classify the order between each pair of documents.
Example: Subset Ranking
[Cossock and Zhang, COLT 2006]

• Regard relevance degree as real number, and use regression to learn the ranking function.

\[L(f; x_j, y_j) = (f(x_j) - y_j)^2 \]
Example: McRank
[Li, et al. NIPS 2007]

• Multi-class classification is used to learn the ranking function.
 • For document x_j, the output of the classifier is \hat{y}_j.
 • Loss function: surrogate function of $I\{y_j \neq \hat{y}_j\}$

• Ranking is produced by combining the outputs of the classifiers.

\[
\hat{p}_{j,k} = P(\hat{y}_j = k), \quad f(x_j) = \sum_{k=1}^{K} \hat{p}_{j,k} k
\]

Classification-based
Example: Ranking SVM
[Herbrich, et al., Advances in Large Margin Classifiers, 2000]

- Ranking SVM is rooted in the framework of SVM
- Kernel tricks can also be applied to Ranking SVM, to handle complex non-linear problems.

\[
\min \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{n} \sum_{u,v:y_u^{(i)}=1} \xi_{u,v} \\
w^T (x_u^{(i)} - x_v^{(i)}) \geq 1 - \xi_{u,v}, \text{if } y_u^{(i)} = 1 \\
\xi_{u,v} \geq 0, i = 1,\ldots,n.
\]

\(x_u - x_v\) as positive instance of learning

Use SVM to perform binary classification on these instances, to learn model parameter \(w\)

Pairwise Classification-based
Appropriate Reductions?

• “Rank” as learning target
 • Top-ranked documents are more important
 • Relative order > absolute score
 • Evaluations are rank-based (NDCG, MAP, etc.)
 • $AP = \frac{\sum_k P@k \cdot g(\pi^{-1}(k))}{\{\text{docs with ground-truth label 1}\}}$
 • $NDCG@K = Z_k \sum_k G(\pi^{-1}(k))/\log(k + 1)$

• “Query” as important notion
 • Documents are comparable only w.r.t. the same query
 • Evaluations are averaged over queries

Something important for ranking is missing...
Appropriate Reductions?

• Example:
 • Model $f : f(A) = 3, f(B) = 0, f(C) = 1$ ACB
 • Model $h : h(A) = 4, h(B) = 6, h(C) = 3$ BAC
 • ground truth $g : g(A) = 6, g(B) = 4, g(C) = 3$ ABC
 • According to NDCG or AP: $\text{sim}(f, g) > \text{sim}(g, h)$

• Pointwise distance/pairwise comparison contradicts ranking measures
 • According to pointwise distance: $\text{sim}(f, g) < \text{sim}(g, h)$.
 • According to pairwise comparison: $\text{sim}(f, g) = \text{sim}(g, h)$.
Listwise Approach

• Instead of considering individual documents or document pairs, treat the entire document set $x^q = (x^q_1, ..., x^q_M)$ associated with the same query as a learning instance.

• Define “listwise” loss function on ranked list (permutation) of these documents

• Learn the ranking model by minimizing the listwise loss function

Notion of query is naturally captured.
Ranking positions are visible to the learning algorithm.
Representation of Ranked Lists

• Ranked list \leftrightarrow Permutation probability distribution

\[
P_{PL}(\pi | f) = \prod_{j=1}^{m} \frac{\exp(f(x_{\pi(j)}))}{\sum_{k=j}^{m} \exp(f(x_{\pi(k)}))}
\]

\[
P_{PL}(ABC | f) = \frac{\exp(f(A))}{\exp(f(A)) + \exp(f(B)) + \exp(f(A))}, \quad \frac{\exp(f(B))}{\exp(f(B)) + \exp(f(C))}, \quad \frac{\exp(f(C))}{\exp(f(C))}
\]

- $P(A \text{ ranked No.1})$
- $P(B \text{ ranked No.2} | A \text{ ranked No.1})$
- $P(C \text{ ranked No.3} | A \text{ ranked No.1}, B \text{ ranked No.2})$

Plackett-Luce Model

\(f\): $f(A) = 3, f(B) = 0, f(C) = 1$; Ranking by f: ABC
Distance between Ranked Lists

\[d(f, g) = 0.46 \]
\[d(g, h) = 2.56 \]

Using KL-divergence to measure difference between distributions

- **f**: \(f(A) = 3, f(B)=0, f(C)=1 \);
 - Ranking by \(f \): ABC

- **g**: \(g(A) = 6, g(B)=4, g(C)=3 \);
 - Ranking by \(g \): ABC

- **h**: \(h(A) = 4, h(B)=6, h(C)=3 \);
 - Ranking by \(h \): ACB
Listwise Loss Functions

- **ListNet** [Cao et al. ICML 2007]
 - Minimize KL divergence between permutation probabilities of ranking model and ground truth
 - \(L(f; x, g) = D(P_{PL}(\pi|g)||P_{PL}(\pi|f(x))) \)

- **ListMLE** [Xiao et al. ICML 2008]
 - Directly maximize likelihood of ground truth permutation induced by ranking model
 - \(P_{PL}(\pi|g) \rightarrow P_g(\pi) = \begin{cases} 1, \pi = \pi_g \\ 0, \text{otherwise} \end{cases} \rightarrow L(f; x, g) = -\log P_{PL}(\pi_g|f(x)) \)

- Model general ground truth labels using "equivalent permutation set" [Liu, FnTIR 2009]
 - \(L(f; x, g) = \min_{\pi \in \Omega_g} (-\log P_{PL}(\pi|f(x))) \)
 - For relevance degree or clicks: \(\Omega_g = \{\pi|u < v, if \ g(\pi^{-1}(u)) > (\pi^{-1}(v))\} \)
 - For pairwise preference: \(\Omega_g = \{\pi|u < v, if \ g(\pi^{-1}(u), \pi^{-1}(v)) = 1\} \)
Experimental Results on LETOR Benchmark

Winning number: comparison with other algorithms over all 7 sub datasets in LETPOR

{ListNet}>\{RankSVM, RankBoost\}>\{Regression\}

http://research.microsoft.com/~letor/
Listwise Ranking Functions

• Beyond pointwise ranking function
 • Instead of simply sorting the scores assigned to individual documents, also consider relationship between documents (topic diversity, domain hierarchy).

• C-CRF [Qin et al. NIPS 2008]

\[
P(g^q | x^q) = \frac{1}{Z(x^q)} \exp\{\sum_i \sum_k \alpha_k h^1_k (g^q_i, x^q) + \sum_{i,j} \sum_k \beta_k h^2_k (g^q_i, g^q_j, x^q)\}\]

• R-RSVM [Qin et al. WWW 2008]

\[
f(x) = \arg \min_z \{\alpha l_1 (h(x; w), z) + \beta l_2 (R, z)\}\]
Listwise Ranking: An Important Branch

Algorithmic development of learning to rank is booming
Beyond Empirical Results

• In practice, one can only observe experimental results on relatively small datasets. Such empirical results might not be reliable, because
 • Small training set cannot fully realize the potential of a learning algorithm.
 • Small test set cannot reflect the true performance of an algorithm, since the real query space is too huge.

• Statistical learning theory analyzes the performance of an algorithm when the training data is infinite and the test data is randomly sampled.
Generalization Analysis

• In the training phase, one learns a model by minimizing the empirical risk $\hat{R}(f)$ on the training data.

• In the test phase, one evaluates the expected risk $R(f)$ of the model on any sample.

• Generalization analysis is concerned with the asymptotical bound of the difference between the expected and empirical risks, when the number of training data approaches infinity.
Generalization Analysis for Learning to Rank

Loss $L(f; x, g)$ on finite data

Test Measure \leq Training Loss + $\varepsilon(n,m,F)$

New theory is needed due to uniqueness of ranking
How to Get There...

\[
\text{Test Measure} \leq \text{Training Loss} + \varepsilon(n, m, F)
\]

To perform this generalization analysis, we need to make probabilistic assumptions on the data generation.
Previous Assumptions

Instance Ranking [Agarwal et al., 2005; Clemencon et al., 2007]

No Notion of query
“Deep and shallow training sets correspond to the same generalization ability”.

[Yilmaz and Robertson, 2009]
Previous Assumptions

Instance Ranking [Agarwal et al., 2005; Clemencon et al., 2007]

![Diagram showing instance ranking]

Subset Ranking [Lan et al., 2008; Lan et al., 2009]

![Diagram showing subset ranking]

“More training documents will not enhance and even hurt generalization ability”.

2014/9/18
Two-layer Sampling
[Chen et al. NIPS 2010]
Two-layer Sampling

[Chen et al. NIPS 2010]

• Different from instance ranking
 • Sampling of queries
 • Documents associated with different queries are sampled according to different distributions
• Different from subset ranking
 • Sampling of documents for each query is considered.

Elements in two-layer sampling are neither independent nor identically distributed.
Theorem 1. Suppose l is the loss function for ranking, \mathcal{F} is the function class of the ranking model, and $l^\circ \mathcal{F}$ is bounded by M, and Rademacher average $E[\mathcal{R}_m(l^\circ \mathcal{F})]$ is bounded by $D(l^\circ \mathcal{F}, m)$, then for arbitrary sample distribution, for $\forall f \in \mathcal{F}$, with probability at least $1 - \delta$,

$$R_l(f) \leq R_{m_1, \ldots, m_n}(f) + D(l^\circ \mathcal{F}, n) + \sqrt{\frac{2M^2 \log(4/\delta)}{n}} + \frac{1}{n} \sum_i D\left(l^\circ \mathcal{F}, \left[\frac{m_i}{2}\right]\right) + \sqrt{\sum_i \frac{2M^2 \log(4/\delta)}{m_i n^2}}.$$

With fixed total budget of labeling ($\sum_i m_i = C$), when the ranking function class satisfies $VC(\mathcal{F}) = V$ and $|f(x)| \leq B$, the optimal tradeoff between number of queries and number of document per query (shallow or deep) is:

$$n^* = \frac{c_1 \sqrt{V} + \sqrt{2 \log(4/\delta)}}{c_1 \sqrt{2V}} \sqrt{C}; \quad m_i^* \equiv \frac{C}{n^*}$$
Theorem 1. Suppose \(l \) is the loss function for ranking, \(\mathcal{F} \) is the function class of the ranking model, and \(l^o\mathcal{F} \) is bounded by \(M \), and Rademacher average \(E[\mathcal{R}_m(l^o\mathcal{F})] \) is bounded by \(D(l^o\mathcal{F}, m) \), then for arbitrary sample distribution, for \(\forall f \in \mathcal{F} \), with probability at least \(1 - \delta \),

\[
R^l(f) \leq \hat{R}^l_{m_1, \ldots, m_n}(f) + D(l^o\mathcal{F}, n) + \sqrt{\frac{2M^2 \log(\frac{4}{\delta})}{n}} + \frac{1}{n} \sum_i D\left(l^o\mathcal{F}, \left[\frac{m_i}{2}\right]\right) + \sqrt{\sum_i \frac{2M^2 \log(\frac{4}{\delta})}{m_i n^2}}.
\]

With fixed total budget of labeling (\(\sum_i m_i = C \)), when the ranking function class satisfies

For more complicated ranking function class, more documents per query and therefore a deep training set is preferred; For simpler ranking function class, a shallow training set is preferred.
How to Get There…

\[\text{Test Measure} \leq \text{Training Loss} + \varepsilon(n,m,F) \]
Loss Function vs. Ranking Measure

• Loss Function in ListMLE, as an example

\[L(f; x, g) = -\log P_{PL}(\pi_g | f(x)) \]

Based on the scores \(f(x) \) produced by the ranking model.

• 1- NDCG (Normalized Discounted Cumulative Gain)

\[NDCG@K = Z_k \sum_k G(\pi^{-1}(k))/\log(k + 1) \]

Based on the ranked list \(\pi \) by sorting the scores.
Challenge

• Relationship between loss and measure in ranking is unclear due to their different mathematical forms.
Challenge

• Relationship between loss and measure in ranking is unclear due to their different mathematical forms.

• In contrast, for classification, both loss and measure are defined regarding individual documents and their relationship is clear.
Essential Loss for Ranking
[Chen et al. NIPS 2009]

- Model ranking as a sequence of classifications

Ground truth permutation:
\[g = \{A > B > C > D\} \]

Prediction of the ranking function \(f \):
\[\pi = \{B > A > D > C\} \]

Classifier \(T_f(x_s) \)

Output the document with the largest ranking score

The weighted classification error for each step in the sequence
\[L_\beta(f; x, g) = \sum_s \beta(s)I_{T_f(x_s) \neq g(s)} \]
Essential Loss vs. Ranking Measures

Theorem 2. Given K-level rating data with n_k objects with rating k, the following inequalities hold for $\forall f$:

1) $1 - \text{NDCG}(f; x, g) \leq Z_n L_{\beta_1}(f; x, g)$, where $\beta_1(s) = \frac{G(g(\pi^{-1}(s)))}{\log(s+1)}$.

2) $1 - \text{AP}(f; x, g) \leq \frac{1}{\Sigma_{i \geq k^*} n_i} L_{\beta_2}(f; x, g)$, where $\beta_2(s) \equiv 1$.
Essential Loss vs. Loss Functions

Theorem 3. The loss functions of many learning to rank methods including RankSVM, RankBoost, and ListMLE, are all upper bounds of the essential loss, i.e., for $\forall f$:

$$L_\beta(f; x, g) \leq \frac{\max s \beta(s)}{\ln 2} L(f; x, g)$$
Overall Theory

• \((1 - \text{NDCG}), (1 - \text{MAP}) \leq \text{Essential Loss} \leq \text{Loss Functions}\)

\[
1 - \text{NDCG}(f; x, g) \leq Z_n L_{\beta_1}(f; x, g) \leq \frac{\max s \beta_1(s) Z_n}{\ln 2} L(f; x, g)
\]

\[
1 - \text{AP}(f; x, g) \leq \frac{1}{\sum_{i \geq k^*} n_i} L_{\beta_2}(f; x, g) \leq \frac{1}{\ln 2 \sum_{i \geq k^*} n_i} L(f; x, g)
\]
Summary of Part I

• Learning to rank methods
 • Better to treat ranking as a new machine learning problem, rather than simply reducing it to regression, classification, or pairwise regression
 • Both listwise loss function and ranking functions could be employed

• Generalization theory for ranking
 • Essential loss plays as a bridge between ranking measures and widely used loss functions for ranking
 • Minimization of widely used loss functions can effectively maximize ranking measures
Part II: Machine Learning for Ad Auctions
Revisit of Auction Mechanism

• GSP auction
 • Ranks ads by \(p\text{Click} \times \text{bid} \)
 • Charges clicked ads by \(\frac{p\text{Click}_{\text{next}} \times \text{bid}_{\text{next}}}{p\text{Click}} \).

• Naive application of machine learning: learn \(p\text{Click} \) then follow GSP

\[
P(c = 1|x^i) = \frac{1}{1 + \exp(-\sum_{j=1}^{d} w_j x^i_j)}
\]

\[
w = \arg\max_w \left(\sum_{i=1}^{n} \log \left(P(c_i|x^i) \right) + \log(P(w)) \right)
\]
What’s the Problem?

- User click behavior is more complicated than pointwise classification
- Advertiser behavior is totally missing in the approach
- GSP auction is not a data driven model

User Click Behavior Prediction
- Psychological click prediction (KDD 2013)
- Relational click prediction (WSDM 2012)
- Temporal click prediction (AAAI 2014)

Advertiser Bidding Behavior Modeling
- Fictitious play model (WINE 2012)
- Rationality model (WWW 2013)
- Markov Behavior Model (AAAI 2014)

Auction Mechanism Design
- Game-theoretic machine learning for mechanism optimization (IJCAI 2013)
- Auction with value externality (AAMAS 2014)
- Broad-match GSP auction (EC 2014)
1. User Click Behavior Modeling

• Psychological click prediction
 • Beyond modeling “what (relevance)” and “how (historical clicks)”, model “why” users click on ads

• Relational click prediction
 • Instead of considering ad impressions as i.i.d. samples, model externality between different ads

• Temporal click prediction
 • Instead of considering ad impressions as i.i.d. samples, model temporal dependency between different clicks of the same user on the same ad
Why Users Click?

What (Relevance)

Average Pearson correlation between relevance score (BM5) and click is only 0.08.
(Very weak, almost equivalent to random guess!)

(Dataset: production pClick training data set with 15M ad impression, ~2M query event)

How (Historical Clicks)

Given the same ad, the variance of CTRs across different users is very large. Difficult to predict one user’s click behavior based on other users.
Why Users Click?

Query: Nike

Free Nike Coupons
Download And Print Nike Coupons (100% Free)

Discount, Free

0.08

Nike - Sale Prices
Latest Fashions and Styles on Sale. Buy Nike Fast!

0.005

AKADEMA Baseball Outlet
PRO, ROOKIE, FASTPITCH, APPAREL, BATS, MITT & GLOVES $7.99 - 199.99

0.003

Query: Perfume

Perfume.com official site
10,000+ brand name perfumes and colognes - up to 80% off retail!

Trust, Brand

0.16

Luxury English Perfume
Shop online for luxury perfumes for men, women & the home.

0.005

Versace Perfume
The Scent of You. Discover Versace Perfume!

0.003

Query: HP Drivers Download

HP Drivers Download
(Recommended) Download HP Drivers. Download HP Drivers in Seconds.

Fast, Convenient

0.484

HP Drivers Download
Free Download: HP Drivers Update. Download & Install HP Drivers Now

0.167

HP Drivers Downloads
(Recommended) HP Printer Drivers. HP Drivers Download Center.

0.103
Why Users Click?

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Coverage</th>
<th>CTR Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>“coupon”</td>
<td>2.2%</td>
<td>+47.5%</td>
</tr>
<tr>
<td>“x% off”</td>
<td>4.1%</td>
<td>+19.7%</td>
</tr>
<tr>
<td>“official”</td>
<td>2.6%</td>
<td>+25.0%</td>
</tr>
<tr>
<td>“return guarantee”</td>
<td>1.9%</td>
<td>+31.4%</td>
</tr>
</tbody>
</table>

![Graphs showing CTR distributions for different patterns]
Generalization: Users’ Psychological Needs

<table>
<thead>
<tr>
<th>Psychological Needs</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiological</td>
<td>Save money, Best price, 30% off, Coupon, Free Shipping, 20% Discount</td>
</tr>
<tr>
<td>Safety</td>
<td>365 Days Return, 100% Guaranteed, Official site, 20,000+ PCs & Laptops, Customer Reviews</td>
</tr>
<tr>
<td>Love/belonging</td>
<td>Find it Nearby, Call 888-888-8888, Visa, Amex, Paypal Accepted, Hotels in Chicago, Same Day Shipping</td>
</tr>
<tr>
<td>Esteem</td>
<td>First Class, Top Quality, VIP, Ultimate Experience, Just for you, Unique Specialty, Top Brands</td>
</tr>
<tr>
<td>Self-actualization</td>
<td>Advance your career, Your dream, Achieve yours, Your ideal, Moments of yours</td>
</tr>
</tbody>
</table>

Maslow's hierarchy of needs
Psychological Needs Mining [Wang et al. KDD 2013]

- **Preprocessing**
 - Remove query and bid keyword
 - Tokenize digits and locations
 - Based on document frequency and CTR lift

- **Candidate Patterns**
 - Frequent Pattern Mining

- **Filtration**
- **Refined candidate patterns**
- **Uncertainty-based active learning**
- **Most uncertain candidates**

- **Label propagation**
- **Human Labeling** (to predefined categories)

- **Pattern database**
 - Psychological Needs
 - Patterns whose pseudo labels are certain enough
 - Labeled pattern candidates

- **Pattern similarity = term overlap**
- **Neighborhood graph construction based on similarity threshold**
- **Personalized PageRank based propagation**
- **Compute pseudo label (mean) and uncertainty (variance)**

- **Psychological Needs Mining**

 \[p_k^{\text{C}}(p_k) \]

- **Ads corpus + logs**
- **~500 patterns**

- **Keep updating**
- **ADL - Tie-Yan Liu**
Hierarchical clustering for pattern aggregation in the same category

Psychological needs for users

• Use ads clicked by a user to predict her preferences on pattern clusters
• Use patterns hit by an ad to compute the needs addressed by the ad.

Hierarchical clustering for pattern aggregation in the same category

Psychological needs for ads

Projecting users on ads

Historical click-through log

Projecting ads on pattern clusters

Psychological Matching

Pattern database

~30% users covered

~80% ads covered

\[C(u_j) = \frac{1}{N} \sum_{i=1}^{N} C(a_i), \ a \in \{\text{ads clicked by } u_j\} \]

\[C(a_i) = \max_{p_k} C(p_k), \ p_k \in \{\text{hit pattern in ad } a_i\} \]

~5 top-layer clusters per category

~80% ads covered

~30% users covered

Psychological Matching

Psychological Needs Mining [Wang et al. KDD 2013]
Click Prediction based on Psychological Features

HF: only uses historical click features.
HF-RF: uses historical click features and relevance features.
HF-DPF: uses historical click features and desire pattern features.
HF-DPLF: uses historical click features and both desire pattern and desire level features.
HF-RF DPF: uses historical click features, relevance features, and desire pattern features.
HF-RF DPLF: uses historical click features, relevance features, and both desire pattern and desire level features.

4-5% CTR increase corresponds to hundreds of millions of revenue increase...
1. User Click Behavior Modeling

- Psychological click prediction
 - Beyond modeling “what (relevance)” and “how (historical clicks)”, model “why” users click on ads

- Relational click prediction
 - Instead of considering ad impressions as i.i.d. samples, model externality between different ads

- Temporal click prediction
 - Instead of considering ad impressions as i.i.d. samples, model temporal dependency between different clicks of the same user on the same ad
Externality between Ads

• An ad has lower CTR if shown together with high-quality (CTR) ads
Quality as Externality

• Not as obvious as expected

![Graph showing the average CTR of surrounding ads and the change in CTR (ΔCTR)]
Similarity as Externality

• Clearer trend observed
Similarity as Externality

- Clearer trend observed

Similarity is strongly negatively correlated with ΔCTR: Pearson correlation coefficient is -0.943.
Continuous Conditional Random Fields
[Xiong, et al. WSDM 2012]

• Conditional probability:
 • Given X, input feature vectors of ads and Y, the log mod of CTR

\[P(Y|X) = \frac{1}{Z(X)} \exp\left\{ \sum_i h(y_i, X; \omega) + \sum_{j>i} \beta g(y_i, y_j, X) \right\} \]

Vertex feature function
\[h(y_i, X; \omega) = -\left((y_i - f(x_i; \omega)) \right)^2 \]

Edge feature function
\[g(y_i, y_j, X) = -s_{i,j}(y_i + y_j) \]

Model the single ads feature \(x_i \)

\(S_{i,j} \) means the similarity between ads i and ad j.
Learning and Inference

• Maximum likelihood estimation for learning

\[
L(θ) = \sum_{q=1}^{N} \left(-\sum_i (y_i^q - f(x_i^q; w))^2 - β \sum_{j>i} s_{i,j}(y_i^q + y_j^q) - \log Z(X^q) \right)
\]

• During inference, find the \(Y \) that maximizes the conditional probability:

\[
Y^* = \text{argmax}_Y P(Y|X; \theta)
\]

\[
= \text{argmax}_Y \left\{ -(Y - f(X; w))^T (Y - f(X; w)) - β S^T Y \right\}
\]

\(P(Y|X; \theta) \) is concave w.r.t. \(Y \), and maximization can be efficiently performed.
Experimental Results

NS: Logistic regression, no similarity information considered

- Reduces MSE by more than 50% as compared to baseline
- Increases RIG by more than 40% as compared to baseline
1. User Click Behavior Modeling

• Psychological click prediction
 • Beyond modeling “what (relevance)” and “how (historical clicks)”, model “why” users click on ads

• Relational click prediction
 • Instead of considering ad impressions as i.i.d. samples, model externality between different ads

• Temporal click prediction
 • Instead of considering ad impressions as i.i.d. samples, model temporal dependency between different clicks of the same user on the same ad
Temporal Dependency Matters

- Last click dwell time influences next click-through rate
 - Longer dwell time on the ad landing page tends to result in higher future click-through rates.

- Vanishing impact of “quick back” click (short dwell time) on future clicks
 - Users have limited memory, and tend to gradually forget unhappy experience along with the time.
Classical Model of Temporal Dependency

• Time series analysis
 • Focus on modeling trends or periodicity in time sequences
 • However, temporal dependency between click behaviors is complex and dynamic: varying timespan, multi-type, high-order, personalized.

• New model is needed – Recurrent Neural Networks (RNN)
 • RNN is a proven tool to model complex dependency in sequential data in different applications, e.g., RNN language model, RNN based handwriting/speech recognition.
RNN Model for Click Prediction

[Zhang et al. AAAI 2014]

• Training

• Test
Experimental Results

• Settings
 • Click-through logs from Bing.com
 • One week for training and the second week for test

• Experimental results
 • In terms of AUC:
 • About 1.7% relative gain over logistic regression
 • About 0.5% relative gain over neural networks
 • In terms of RIG:
 • About 17.3% relative gain over logistic regression
 • About 10.0% relative gain over neural networks

<table>
<thead>
<tr>
<th>Model</th>
<th>AUC</th>
<th>RIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>87.48%</td>
<td>22.30%</td>
</tr>
<tr>
<td>NN</td>
<td>88.51%</td>
<td>23.76%</td>
</tr>
<tr>
<td>RNN</td>
<td>88.94%</td>
<td>26.16%</td>
</tr>
</tbody>
</table>
2. Advertiser Bidding Behavior Modeling

Machine Learning

i.i.d. behaviors

- Ignore strategic behavior of advertisers; assume previous and future behaviors follow same distribution
- The distribution is independent of auction mechanism.

Reality

Self interest + bounded rationality

- After each auction, advertisers get access to partial information I_t (#clicks, cost per click)
- Given information I_t and current bids b_t, advertisers change their bids to b_{t+1}.

Game Theory

Self interest + full rationality

- Well-defined utility + full information + capability of utility maximization
- Best response model, quantal response model (probability proportional to utilities), etc.
How to Learn Advertiser Behaviors?

• More appropriate assumption: Markov Behavior Model
 [Tian et al. AAAI 2014]

Next Bid b_{t+1}

Accessible Information I_t

Current Bid b_t

Auction Mechanism a

• Given accessible information I_t and current bids b_t, bidding behaviors of advertisers can be modeled by a Markov transition matrix indicating how likely they change bid from b_t to b_{t+1}:

 \[
 P(b_{t+1}|all\;info) = P(b_{t+1}|I_t, b_t) = \prod_{i=1}^n P_t(b_{t+1}^i|I_t^i, b_t^i).
 \]

Basic assumption: advertisers only have limited memory – their future bidding behaviors only depend on the previous information in a finite time period.
Generality

- The Markov model can cover most previous behavior models used in game theory and machine learning literature

<table>
<thead>
<tr>
<th>Model</th>
<th>Probability Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best response model</td>
<td>(P(b_{t+1}^i</td>
</tr>
<tr>
<td>Quantal response model</td>
<td>(P(b_{t+1}^i</td>
</tr>
<tr>
<td>Random model</td>
<td>(P(b_{t+1}^i</td>
</tr>
<tr>
<td>I.I.D. model</td>
<td>(P(b_{t+1}^i</td>
</tr>
</tbody>
</table>
Aymptotical Stability

• It can be proven that the system with a general Markov behavior model will be stable with a stationary distribution.

• The Markov behavior model can cover specific dynamic behaviors studied in the literature of game theory, which lead to certain equilibrium.

\[
P(b_{t+1}^i | I_t, b_t^i) = \mathbb{I}_{\{b_{t+1}^i = \text{arg max}_b U^i(I_t, b)\}}
\]

→ Nash Equilibrium

\[
P(b_{t+1}^i | I_t, b_t^i) \propto U^i(I_t, b_{t+1}^i)
\]

→ Quantal response Equilibrium
Learnability

Parametric Learning

- Assume the transition probability to take a certain parametric form, e.g.,
 \[P_i(b' | I, b) = P_i(b | f(ω; I, b)) \]
- Given training data with size \(T_1 \), learn the parameters by means of maximum likelihood estimation:
 \[B_{T_1} = \arg \min_{B \in \mathcal{B}} l(B; a_0, u_1, ..., u_{T_1}) \]

Non-Parametric Learning

- Directly estimate the transition probability \(P_i(b' | I, b) \)
- Given training data with size \(T_1 \), estimate \(P_i(b' | I, b) \) by the conditional frequency in the training data:
 \[\hat{P}_i(b' | I, b) = \frac{\sum_{t=1}^{T_1} \mathbb{I}_{\{b_{t+1}=b', b_t=b, h_t=H_j\}}}{\sum_{t=1}^{T_1} \mathbb{I}_{\{b_t=b, h_t=H_j\}}} \]
Accuracy

Advertiser Behavior Prediction in Real Data

Error Rate vs Days in bidding logs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
3. Auction Mechanism Optimization

• Conventional machine learning approach

Define Objective Function

Optimize objective function on historical bidding data based on i.i.d. assumption

Use the learned mechanism to rank and price ads in test data

• Example: RankLogistic [Zhu et al. SIGIR 2009]
 • Training data: historical auction logs (queries, clicks, bids)
 • Objective function: empirical revenue (e.g., for first price auction with single slot)

\[
R(w) = \sum_{q \in Q} \sum_{p=1}^{n_q} rev_q(p) c_q(p) \mathbb{I}_{\min_{i \neq p} \{f(w,x_q(p)) - f(w,x_q(i))\} > 0}
\]
What’s the Problem?

Ideal assumption: model will not affect data distribution; i.i.d. sampling guarantees generalization.

Real situation: agents are strategically behaving in response to model, resulting in non-i.i.d. distribution.

Learning Machine

- **Learning**
- **Generate**
- **Generalize**

i.i.d. sampling

Nature Data is model independent

Dynamic Games

- **Learning**
- **Influence**
- **Reaction**

Self-interested Agents

Data is model dependent
Remove Wrong Assumptions

• Both rationality assumption and i.i.d. assumption are not realistic!
• A new model under Markov assumption is desirable [He et al. IJCAI 2013]

\[
\min_{B \in \mathcal{B}} l(B; a_0, u_1, \ldots, u_{T_1}) \triangleq B_{T_1}
\]

\[
\min_{a \in \mathcal{A}} L(a; B_{T_2}; u_1, \ldots, u_{T_2}) \triangleq a_{T_2}
\]
Game-Theoretic Learning

1: Auction Implement

- Implement above process on user data with size T_2, and compute the loss function (i.e., minus average search engine revenue)
 \[L(a; B_{T_1}; u_1, \ldots, u_{T_2}) = -\frac{1}{T_2} \sum_{t=1}^{T_2} \text{Rev}(a; b_t(B_{T_1}), u_t). \]

2: Bid Update

- Learn optimal auction mechanism by minimizing the loss function
 \[a_{T_2} = \arg \min_{a \in \mathcal{A}} L(a; B_{T_1}; u_1, \ldots, u_{T_2}), \text{ where } \mathcal{A} \text{ is the auction mechanism space} \]
Generalization Analysis

Data

User Random Behavior (Query/Clicks)

\(u_1, \ldots, u_{T_2} \)

Mechanism \(a_0 \) that produce the training data

Markov Chain in Random Environment

Advertise Markov Behavior (Bids)

\(b^1_1, b^1_2, b^1_{T_1}, \ldots, b^n_1, b^n_2, b^n_{T_1} \)

Training

Mechanism Learning

\(\min_{a \in \mathcal{A}} L(a; B_{T_1}, u_1, \ldots, u_{T_2}) \)

Behavior Learning

\(\min_{B \in \mathcal{B}} L(B; a_0, u_1, \ldots, u_{T_1}) \)

Test

Long-term expected performance:

\[
R(a_{T_2}, B^*) = \lim_{T_3 \to \infty} E_P(u) L(a_{T_2}, B_{T_1}, u_1, \ldots, u_{T_3})
\]

Generalization ability:

\[
\lim_{T_1, T_2 \to \infty} R(a_{T_2}, B^*) = R^{OPT}
\]

Error of Mechanism Learning

Error of Behavior Learning

Markov Chain in Random Environment

2014/9/18

ADL - Tie-Yan Liu

78
Generalization Analysis

Objective: \(\lim_{T_1, T_2 \to \infty} R(a_{T_2}, B^*) \rightarrow R^{OPT} \)

Error Decomposition

\[
R(a_{T_2}, B^*) - R(a^*, B^*) = 2\sup_{a \in \mathcal{A}} C(a, B^*) \left\| B_T - B^* \right\| + 2 \sup_{a \in \mathcal{A}} \left| R(a_{T_2}, B_T) - R(a, B_T) \right|
\]

Parametric Method:
\[
P\left\{ \left\| B_{T_2} - B^* \right\|_\infty \geq \epsilon \right\} \leq 2e^{-\frac{(T_1\epsilon)^2 |\mathcal{P}| |\mathcal{S}|}{2T_1N_0^2C_1^2}}
\]

Non-Parametric Method:
\[
P\left\{ \left\| B_{T_2} - B^* \right\|_\infty \geq \epsilon \right\} \leq 2Ce^{-\frac{C_2T_1\epsilon |\mathcal{P}| |\mathcal{S}|}{2T_1N_0^2(|\mathcal{P}|+1)^2}}
\]

Error for Behavior Learning

Error for Mechanism Learning

GSP with \(d \)-dim linear reserve price function:
\[
16N_1 \left(\frac{\epsilon}{16}, Rev \circ \mathcal{A}_{\delta}^T, T \right) \leq \left(\frac{\epsilon T_2 K}{\epsilon} \right)^{16|\mathcal{P}|d}
\]

\(2014/9/18 \)

ADL - Tie-Yan Liu
Generalization Analysis

Objective: \(\lim_{T_1, T_2 \to \infty} R(a_{T_2}, B^*) \rightarrow R^{OPT} \)

Error Decomposition

\[R(a_{T_2}, B^*) - R(a^*, B^*) = 2K \sup_{a \in \mathcal{A}} C(a, B^*) ||B_{T_1} - B||_{A} + 2 \sup_{a \in \mathcal{A}} |R(a_{T_2}, B_{T_1}) - R(a, B_{T_1})| \]

Parametric Method: \(P \left\{ ||B_{T_1} - B^*||_{\infty} \geq \epsilon \right\} \leq 2e^{-\frac{(T_1 \epsilon)^2}{2T_1 N_0 C_1^2}} \)

Error for Behavior Learning

- The overall error bound will converge to zero when the scales of agent behavior data \(T_1 \) and user data \(T_2 \) approach infinity;
- The convergence rate w.r.t. \(T_1 \) is faster than that w.r.t. \(T_2 \), indicating that one needs more user data than agent behavior data for training.
Experimental Results

- Game-Theoretic Machine Learning (10% increase)
- Classic Machine Learning (5% decrease)
- Standard GSP Mechanism (Baseline)
Experimental Results

Beyond empirical success: Is there theoretic guarantee? Can game-theoretic learning generalize? What kind of training data is desirable for game theoretic learning?
Summary of Part II

• Machine learning could be applied to user click behavior modeling, advertising bidding behavior modeling, and auction mechanism optimization.

• For user click behavior modeling, one needs to consider appropriate feature engineering, externality between ads, and temporal dependency between sequential clicks.

• Given the existence of strategic advertisers, the data distribution of bidding data will change in response to auction mechanism change. Game theoretic machine learning was proposed to handle this complex case, whose generalization ability and empirical performance were examined.
Future Research Directions
Machine Learning for Search Ranking

- Learning to rank
 - Online learning to rank (contextual bandits, etc.)
 - Structural learning to rank (diversity, whole-page relevance)
 - Large scale learning to rank (parallelization, effective sampling)
 - ...

- Other topics
 - Query suggestion
 - User modeling
 - Question answering
 - ...
Machine Learning for Ad Auctions

• Game theoretic learning
 • Efficient learning algorithm (surrogate loss, optimization methods)
 • Online game-theoretic learning (Markov bandits, etc.)
 • Applications to new domains (recommender systems, social networks, crowdsourcing, mobile apps, etc.)
 • ...

• Other topics
 • Large scale learning for click prediction
 • Personalization
 • Rich search ads, display ads, social ads, mobile ads
 • ...
References

Tie-Yan Liu

Overview

Tie-Yan Liu is a senior researcher/research manager at Microsoft Research Asia, an adjunct professor of Carnegie Mellon University, and an honorary professor of University of Nottingham. His research interests include machine learning (learning to rank, deep learning, learning theory, etc.), information retrieval, data mining, computational advertising, and algorithmic game theory. He is well known for his pioneer work on learning to rank for information retrieval. He has authored the first book in this area, and published tons of impactful papers on both algorithms and applications.

Representative Publications

4. Sijia Qiu, Qinyi Cai, Baojuan Kuo, and Baoju Jin. A Learning to Rank Algorithm for the Knowledge Discovery in Databases (KDD) Conference. KDD 2014.
Thanks

tyliu@microsoft.com
http://research.microsoft.com/users/tyliu/
http://weibo.com/tieyanliu/