Sentiment Analysis and Lifelong Machine Learning

Bing Liu University Of Illinois at Chicago liub@cs.uic.edu

Introduction: my goal

- Briefly introduce sentiment analysis (SA)
- Using SA as a platform for *lifelong learning*
 - Statistical "one-shot" learning methods such as deep NN, SVM, NB, and CRF, have their limits
 - How to go beyond these algorithms?
 - Lifelong learning: retain knowledge learned in the past to help future learning & problem solving
 - Without it, an AI system will never be intelligent
 - Solving a SA problem using *lifelong learning* and *big data* (Chen & Liu, ICML, KDD, 2014).

Outline

What is sentiment analysis (SA)?

- SA: a very rich NLP problem
 - □ SA is not a single problem
 - Aspect sentiment classification
 - Aspect extraction
 - ••••
- Aspect extraction: lifelong learning & big data
 Summary

SA: A fascinating problem

- Sentiment analysis (SA) or opinion mining
 - computational study of opinion, sentiment, appraisal, evaluation, attitude, and emotion.
- Popular research & unlimited applications.
 - popular research area in NLP, DM, etc.
 - Spread from CS to management & social sciences
 - More than >300 companies in USA alone.
- Intellectually challenging.
 - CEO 1: "Anyone who claims >70% accuracy is lying"
 - CEO 2: "Our system is as bad as everyone else's"

Definition of an opinion

- Id: Abc123 on 5-1-2008 -- "I bought an iPhone yesterday. It is such a nice phone. The touch screen is really cool. The voice quality is clear too. It is much better than my Blackberry. However, my mom was mad with me as I didn't tell her before I bought the phone. She thought the phone was too expensive"
- Definition: An opinion is a quadruple (Liu, 2012), (target, sentiment, holder, time)
- Target can be complex, e.g., "I bought an iPhone. The voice quality is amazing."
 - Target = voice quality? (not quite)

A more practical definition (Hu and Liu 2004; Liu, 2010)

An opinion is a quintuple

(entity, aspect, sentiment, holder, time)

- *entity:* target entity (or object).
- aspect: aspect (or feature) of the entity.
- □ **sentiment**: +, -, or neu, a rating, or an emotion.
- holder: opinion holder.
- □ *time*: time when the opinion was expressed.

Called Aspect-based sentiment analysis Used in industry

Our example blog in quintuples

- Id: Abc123 on 5-1-2008 "I bought an iPhone a few days ago. It is such a nice phone. The touch screen is really cool. The voice quality is clear too. It is much better than my old Blackberry. However, my mom was mad with me as I did not tell her before I bought the phone. She thought the phone was too expensive, …"
- In quintuples

(iPhone, GENERAL, +, Abc123, 5-1-2008)
(iPhone, touch_screen, +, Abc123, 5-1-2008)
(iPhone, voice_quality, +, Abc123, 5-1-2008
(Abc123, GENERAL, -, momOfAbc123, unknown)
(iPhone, price, -, momOfAbc123, unknown)

Outline

- What is sentiment analysis (SA)?
- SA: a very rich NLP problem
 - SA is not a single problem
 - Aspect sentiment classification
 - Aspect extraction
 - • • •
- Aspect extraction: lifelong learning & big data
 Summary

SA is a very rich problem

(entity, aspect, sentiment, holder, time)

- target entity:
- aspect of *entity*:
- sentiment:
- opinion holder:
- □ time:

Entity extraction & resolution Aspect extraction & resolution Aspect sentiment classification Information/data extraction Information/data extraction

Other NLP problems

- Synonym grouping: voice = sound quality
- Lexical semantics: aspect(expensive) = price
- Coreference resolution:
 - "The sound of this phone is great. It is cheap too."
 - "The sound of this phone is great. It is crystal clear."

_

Aspect sentiment classification

"Apple is doing very well in this poor economy"

Lexicon-based approach: Opinion words/phrases

 Parsing: simple sentences, compound sentences, conditional sentences, questions, modality verb tenses, etc (Hu and Liu, 2004; Ding et al. 2008; Narayanan et al. 2009).

Supervised learning is tricky:

- Feature weighting: consider distance between word and target entity/aspect (e.g., Boiy and Moens, 2009)
- Use a parse tree to generate a set of target dependent features (e.g., Jiang et al. 2011)

Aspect extraction

- "The battery life is long, but pictures are poor."
 Aspect terms: battery life, picture
- Main approaches
 - Frequency-based approach: frequent noun phrases (Hu and Liu, 2004).
 - Syntactic dependency: opinion and target relation (Hu and Liu 2004; Zhuang et al 2006; Qiu et al., 2009, etc).
 - E.g., "The pictures are great"
 - Supervised sequence labeling (e.g., HMM, CRF) (Liu et al. 2005; Jin and Ho, 2009; Jakob and Gurevych, 2010, etc)
 - **Topic modeling** (Mei et al., 2007; Titov et al., 2008; etc)

Aspect extraction: topic modeling

Aspect extraction actually has two tasks:

- (1) extract aspect terms
 - "picture," "photo," "battery," "power"
- (2) cluster them (synonym grouping).
 - Same aspects: {"picture," "photo"}, {"battery," "power"}
- Top modeling (Blei et al 2003) performs both tasks at the same time. A topic is an aspect.
 - □ E.g., {*price*, *cost*, *cheap*, *expensive*, …}
 - Ranked based on probabilities (not shown).

Current extraction paradigm

- Existing methods basically work as follows:
 - Given a collection of opinion documents D,
 - Run an extraction algorithm (supervised or unsupervised learning) on D to extract aspects
 - "One-shot" approach
- Results are still not great
 - No matter what you do with the current "one-shot" learning algorithms, I think it is hard to make a major progress.
 - How to improve further?

Outline

- What is sentiment analysis (SA)?
- SA: a very rich NLP problem
 - SA is not a single problem
 - Aspect sentiment classification
 - Aspect extraction
 - ••••

Aspect extraction: lifelong learning & big data Summary

Machine learning (ML) for SA & NLP

- SA and NLP apply many ML algorithms.
- Although ML researchers can still improve them, statistical learning algorithms have their limits, which are fast approaching.
- Then what? How can we progress beyond such "one shot" algorithmic ML algorithms?
 - I believe that answer is: lifelong learning
 - Learn as humans do.
 - Exploiting diverse big data

Learn as humans do

- We learn and retain the learned knowledge and use the knowledge to help future learning
- Without this lifelong learning (LL) capability,
 - we will never solve the NLP problem.
 - we will never have an intelligent system
- SA/NLP provides an excellent platform for LL
 - Same words/phrases have similar meanings in different domains, which enables easy transfer of knowledge

Key observation in practice (Chen and Liu, ICML-2014)

- A fair amount of aspect overlapping across reviews of different products or domains
 - Every product review domain has the aspect price,
 - Most electronic products share the aspect *battery*
 - Many also share the aspect of screen.
- This sharing of concepts / knowledge across domains is true in general, not just for SA.
 - It is rather "silly" not to exploit such sharing in learning

Big data and aspect sharing

- Why using SA for lifelong learning?
 - Online reviews: Excellent data with extensive sharing of aspect/concepts across domains
 - Hard to find suitable data in other appl. areas
- Why big (and diverse) data?
 Learn a broad range of reliable knowledge. More knowledge makes future learning easier.

Lifelong topic modeling (LTM) (Chen and Liu, ICML-2014)

- For aspect extraction
- Top modeling (Blei et al 2003) find topics from a collection of documents. Topics are aspects.
 - A document is a distribution over topics
 - A topic is a distribution over terms/words, e.g.,
 - {price, cost, cheap, expensive, ...}

Questions:

How to find good past knowledge and how to use them to help future extraction? What knowledge?

Should be in the same aspect/topic

=> Must-Links

e.g., {picture, photo}

Should not be in the same aspect/topic
 => Cannot-Links

 e.g., {battery, picture}

Problem statement

- Given a large set of document collections (big data), D = {D₁, ..., D_n}, learn from each D_i to produce the result S_i. Let S = U S_i
 S is called the *topic base*
- Goal: Given a test/new collection D^t, learn from D^t with the help of S (and possibly D).
 - $\square D^t \in D \text{ or } D^t \notin D.$
 - The results learned this way should be better than without the guidance of S (and D).

Lifelong Topic Modeling (LTM) (Chen and Liu, ICML-2014)

Bing Liu @ NLPCC, December 8-9, 2014

LTM topic model

- Step 1: Runs a topic model (e.g., LDA) on each $D_i \in D$ to produce a set of topics S_i called *p*-topics.
- Step 2: (1) Mine prior knowledge (*must-links*) (2) use prior knowledge to guide modeling.

Algorithm 2 LTM (D^t, S)

- 1: $A^t \leftarrow \text{GibbsSampling}(D^t, \emptyset, N)$; // Run N Gibbs iterations with no knowledge (equivalent to LDA).
- 2: for i = 1 to N do
- 3: $K^t \leftarrow \text{KnowledgeMining}(A^t, S);$
- 4: $A^t \leftarrow \text{GibbsSampling}(D^t, K^t, 1)$; // Run with knowledge K^t .

– 5: end for

Knowledge mining function

- Topic match: find similar topics (M^t_{j*}) from p-topics for each current topic
- Pattern mining: find frequent itemsets from $M_{j^*}^t$

Algorithm 3 KnowledgeMining (A^t, S)

1: for each p-topic
$$s_k \in S$$
 do
2: $j^* = \min_j \text{KL-Divergence}(a_j, s_k)$ for $a_j \in A^t$;
3: if KL-Divergence $(a_{j^*}, s_k) \leq \pi$ then
4: $M_{j^*}^t \leftarrow M_{j^*}^t \cup s_k$;
5: end if
6: end for
7: $K^t \leftarrow \cup_{j^*} \text{FIM}(M_{j^*}^t)$; // Frequent Itermset Mining.

An example

Given a newly discovered topic:

{price, book, cost, seller, money},

We find 3 matching topics from topic base S

- Domain 1: {price, color, cost, life, picture}
- Domain 2: {cost, screen, price, expensive, voice}
- Domain 3: {price, money, customer, service, expensive}
- If we require words appear in at least two domains, we get two must-links (knowledge):
 - □ {*price*, *cost*} and {*price*, *expensive*}.
 - Each set is likely to belong to the same aspect/topic.

Model inference: Gibbs sampling

How to use the must-links knowledge?
 e.g., {price, cost} & {price, expensive}

- Graphical model: same as LDA
- But the model inference is very different
 Generalized Pólya Urn Model (GPU)
- Idea: When assigning a topic t to a word w, also assign a fraction of t to words in mustlinks sharing with w.

Gibbs sampler for GPU

• $P(z_i = t | \mathbf{z}^{-i}, \mathbf{w}, \alpha, \beta) \propto$

Experiment results

Figure 2. Top & Middle: Topical words *Precision@5 & Presicion@10* of coherent topics of each model respectively; Bottom: number of coherent (#Coherent) topics discovered by each model. The bars from left to right in each group are for LTM, LDA, and DF-LDA. On average, for *Precision@5* and

Outline

- What is sentiment analysis (SA)?
- SA: a very rich NLP problem
 - SA is not a single problem
 - Aspect sentiment classification
 - Aspect extraction
 - • • •
- Aspect extraction: lifelong learning & big data
 Summary

Summary

- SA is a well-defined semantic analysis problem
 - Two key concepts: sentiment and target
- Due to extensive concept/aspect sharing across domains of SA data,
 - SA offers an excellent platform for intelligent and continuous learning – lifelong learning
- Using lifelong learning with big data
 We can make NLP & AI systems more intelligent.

More information

- Z. Chen & B. Liu. Topic Modeling using Topics from Many Domains, Lifelong Learning, and Big Data. *ICML-2014*.
- Z. Chen & B. Liu. Mining Topics in Documents: Standing on the Shoulders of Big Data. KDD-2014.
- (New book) B. Liu. Sentiment Analysis: Mining Opinions, Sentiments and Emotions. Cambridge Univ. Press, March 2015 (about 365 pages).

BING LIU