Short Text Feature Enrichment

--Using Link Analysis on Topic-Keyword Graph

Peng Wang

Joint work with H. Zhang, B. Xu, H.W. Hao, and Chenglin Liu

Computational-Brain Research Center Institute of Automation, Chinese Academy of Sciences

Outline

Introduction

Our Method

- Short Text Modeling with Topic Model
- **>** Re-rank Keywords under Topics
- Construct Topic-keyword Graph
- Extract Candidate Keywords
- > Expand Short Text
- Evaluation
- Conclusions

Outline

Introduction

Our Method

- Short Text Modeling with Topic Model
- **Re-rank Keywords under Topics**
- Construct Topic-keyword Graph
- Extract Candidate Keywords
- Expand Short Text
- Evaluation
- Conclusions

Introduction

CASIA

Introduction (contd.)

The Explosion of

e-commerce, online communication, & online publishing, products ordering...

Typical Examples

- > Web search snippets
- Short messages, advertising messages
- Book/movie summaries
- Product descriptions & customer reviews
- ≻ News feeds
- Forum/chat messages
- ➢ Sina micro-blog, twitter.
- > Descriptions of entities: people, companies, hotels, etc

Introduction (contd.)

Challenges

Compared with normal text,

- ➢ Noise (class irrelevant), Irregular
- Short and Sparsity
- Less topic-focused
- > Especially for BOW,
 - ➢ ignores the textual information
 - lacks semantic knowledge
 - ➢ Less co-occurrences

Existing Work

- ➢ Phan www'2008:
 - Learn LDA based on Wikipedia as external corpus;
 - Make inference on short text collection;
 - Expand and enrich the short text;
 - better similarity measurement;

Introduction (contd.)

Existing Work (contd.)

- ≻ Chen et al. AAAI'2011
 - Improved by learning multi-granularity topics
- ➤ Yan et al. www'2013
 - proposed a biterm topic model;
 - model topics over the whole corpus instead of document-level.
- > Zhu et al. UAI'2011
 - present a non-probabilistic topic modeling method, which can control the sparsity.
- Sun SIGIR'2012
 - A simple method using representative words as query to search a few of labeled samples, and the majority vote of the search results is the predictable category.
- Gabrilovich IJCAI'2007
 - a method to improve text classification performance by enriching document representation with Wikipedia concepts

Our Framework

> Our framework based on TM & Link Analysis,

Fig 1. Method for short text expansion

Short Text Modeling with Topic Model

Blei et.al. JMLR'2003

- firstly proposed LDA and used it to estimate multinomial observations by unsupervised learning.
- based on an assumption of document generation process,

Fig.3 Grapical model of BTM

Fig.2 Grapical model of LDA

➢ Yan et al. www'2013

- Based on LDA, proposed BTM especially for short text.
- Directly model the word co-occurrences in the whole corpus to make full use of the global information.

Short Text Modeling with Topic Model

- ➢ To extract topics, we learn parameters of BTM.
- words from each topic are related,
- representation more topicfocused,
- to alleviate sparsity and noise.

Table 2. Most likely words of some topics

Topic0:music band rock album song songs released Topic1:species food animals animal plants humans Topic2: energy mass field quantum particles force Topic3: india indian hindu pakistan sanskrit century Topic4: blood body brain heart cells muscle syndrome Topic5: water carbon oil chemical gas process oxygen Topic6: government party president constitution Topic7: power energy solar electric electrical Topic8: ystem data code software computer Topic9: horse opponent horses body hand match Topic10: south africa united country islands world

Table 1. Variables in BTM

Para.	Details	
М	number of bi-terms	
α,β	Para. for <u>Dirichlet</u>	
ō	topic distribution	
z	index of a topic	
$\overline{\varphi_{i z}}$	<i>i</i> th word distribution	
V	vocabulary size	
K	the number of topics	
Φ	a $K \times V$ matrix	
BT	corpus with M biterms	

Re-rank Keywords under Topics

> The long tail like distribution of keywords under topics,

Fig.5 The keywords distribution under topics

$$SAS = \frac{e^{\hat{\varphi}_{z,i}}}{\sum_{m=1}^{M} e^{\hat{\varphi}_{z,i}}} \qquad (1)$$

where $\hat{\varphi}_{\perp}$ is the probability distribution of the *i*th word under topic *k*.

Construct Topic-keyword Graph

Fig.6 native topic-keyword graph

Fig.7 re-Ranked topic-keyword graph

Extract Candidate Keywords

Link Analysis:

$$s(w_{a},w_{b}) = \begin{cases} 1 & , & \text{if } w_{a} = w_{b} \\ \frac{C}{|I(w_{a})||I(w_{b})|} \sum_{i=1}^{|I(w_{a})||I(w_{b})|} \sum_{j=1}^{s(I_{i}(w_{a}),I_{j}(w_{b}))} s(I_{i}(w_{a}),I_{j}(w_{b})), & \text{if } w_{a} \neq w_{b} \end{cases},$$
(2)

Expand Short Text

Evaluation

Experimental data

Search snippets dataset, consists of 10,060 training snippets and 2,280 test snippets from 8 categories, as shown in Table 3. On average, each snippet has 18.07 words

Domain	Tr_snippets	Te_snippets
Business	1200	300
Computers	1200	300
Cultarts- <u>ente</u> .	1880	330
EduScience	2360	300
Engineering	220	150
Health	880	300
Politics-Society	1200	300
Sports	1120	300
Total	10060	2280

Collected by Phan professor.

Used in Phan and Nguyen WWW'2008, Chen et al. AAAI'2011;

Evaluation

Conclusions

Achievements

- > Re-rank the candidates keywords under topics;
- Construct the topic-keywords graph;
- Extract keywords using link analysis;
- > Expand the short text by Keywords.

> Remaining Issues

- > The BTM is time-consuming;
- > Noise is still may be introduced.

Thanks For Your Time !

