Cross-Lingual Sentiment Classification Based on Denoising Autoencoder

Huiwei Zhou, Long Chen, and Degen Huang

Dalian University of Technology
Natural Language Processing laboratory
Outline

- Introduction
- Denoising Autoencoder (DAE)
- The Combination CLSC Approach Based on Denoising Autoencoder
- Experiments and Analysis
- Conclusion and Future Work
Outline

- Introduction
- Denoising Autoencoder (DAE)
- The Combination CLSC Approach Based on Denoising Autoencoder
- Experiments and Analysis
- Conclusion and Future Work
Sentiment Classification

- Sentiment classification technique is the task of predicting sentiment polarity for a given text.

- Generally, sentiment classification approaches can be divided into two categories:
 - Lexicon based approach
 - Machine learning based approach
Labeled data are very imbalanced

The lack of sentiment resources limits the research progress in some languages.

Cross-Lingual Sentiment Classification (CLSC).

leverage resources on one language (source language) to resource-poor language (target language) for improving the classification performance on target language
The problems to be settled in CLSC task:
- Machine translation services adopted in CLSC task, bring translation errors in training process
- The language gap between source language and target language also influences the performance of system
Decrease the effects of noisy examples

- **To reduce the effect of translation errors**
 - Denoising autoencoder is adopted

- **To eliminate the language gap**
 - Two classifiers are trained in English view and Chinese view respectively, and the final results are combined from two classification outputs
Outline

• Introduction
• Denoising Autoencoder (DAE)
• The Combination CLSC Approach Based on Denoising Autoencoder
• Experiments and Analysis
• Conclusion and Future Work
Autoencoder

\[L_H(x, z) = H(B_x \parallel B_z) = - \sum_{k=1}^{d} [x_k \log z_k + (1-x_k) \log(1-z_k)] \]
Outline

- Introduction
- Denoising Autoencoder (DAE)
- The Combination CLSC Approach Based on Denoising Autoencoder
- Experiments and Analysis
- Conclusion and Future Work
The Combination CLSC Approach Based on Denoising Autoencoder

- **Training phase**
 - English training set D_{el}
 - English classifier based on denoising autoencoder M_{e}
 - Chinese classifier based on denoising autoencoder M_{c}

- **Classification phase**
 - Chinese-to-English test set D_{elu}
 - Machine translation (Chinese-to-English)
 - Machine translation (English-to-Chinese)

- **Combination**
 - English results
 - Chinese results
 - final results

- **English View**
 - English-to-Chinese training set D_{el}

- **Chinese View**
 - Chinese test set D_{elu}
The Advantages of This Approach

- Denoising autoencoder is adopted to reduce the impacts of training errors.

- Training classifiers in multi-views helps to bridge the gap between English and Chinese.
Feature Setting

- Sentiment Word Features Selection
 - High-Frequency Words Method
 - CHI Statistical Method

\[\chi^2(t_i, C_j) = \frac{N \times (A \times D - B \times C)^2}{(A + C) \times (B + D) \times (A + B) \times (C + D)} \]

- A: \((t_i, C_i)\)
- B: \((t_i, \overline{C}_i)\)
- C: \((\overline{t}_i, C_i)\)
- D: \((\overline{t}_i, \overline{C}_i)\)
Feature Setting

- Negation Features

\[\text{vector} = (\text{neg}_1, \text{sent}_1, ..., \text{neg}_i, \text{sent}_i, ..., \text{neg}_{2000}, \text{sent}_{2000}) \]

- Feature Weight Calculation
 - Boolean Method
 - Word Frequency Method
 - TF-IDF method

\[w_{ij} = tf_{ij} \times \log \frac{N}{n_i} \]
Outline

- Introduction
- Denoising Autoencoder (DAE)
- The Combination CLSC Approach Based on Denoising Autoencoder
- Experiments and Analysis
- Conclusion and Future Work
Experimental Settings

- **Dataset**
 - NLP&CC 2013 cross-lingual sentiment classification dataset, including book, DVD and music categories

- **Evaluation method**
 - category accuracy
 - average accuracy

- **Model parameters**
 - architecture: 4000-500-2
 - epoch: 30
 - learning rate: 0.1

\[
Accuracy_c = \frac{\text{#system_correct}}{4000}
\]

\[
Accuracy = \frac{1}{3} \sum_{i=1}^{3} Accuracy_c
\]
Table 1. Effect of Sentiment Word Features Selection

<table>
<thead>
<tr>
<th>System</th>
<th>Methods</th>
<th>Book</th>
<th>DVD</th>
<th>Music</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>High-frequency</td>
<td>74.53%</td>
<td>75.43%</td>
<td>73.8%</td>
<td>74.58%</td>
</tr>
<tr>
<td></td>
<td>CHI statistic</td>
<td>73.03%</td>
<td>76.93%</td>
<td>75.15%</td>
<td>75.04% (+0.46%)</td>
</tr>
<tr>
<td>Chinese</td>
<td>High-frequency</td>
<td>78.40%</td>
<td>74.45%</td>
<td>73.15%</td>
<td>75.33%</td>
</tr>
<tr>
<td></td>
<td>CHI statistic</td>
<td>78.15%</td>
<td>75.05%</td>
<td>74.30%</td>
<td>75.83% (+0.50%)</td>
</tr>
</tbody>
</table>
Effect of Negation Features

Fig. 3. Performance comparison with or without negation features
Effect of Feature Weight Calculation Methods

Fig. 4. Performance comparison with different weight calculation methods
Performance of Combination CLSC Systems

Table 2. Performance of combination CLSC systems

<table>
<thead>
<tr>
<th>System</th>
<th>Book</th>
<th>DVD</th>
<th>Music</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>English system</td>
<td>73.03%</td>
<td>76.93%</td>
<td>75.15%</td>
<td>75.04%</td>
</tr>
<tr>
<td>Chinese system</td>
<td>78.15%</td>
<td>75.05%</td>
<td>74.30%</td>
<td>75.83%</td>
</tr>
<tr>
<td>Combination system</td>
<td>79.68%</td>
<td>78.33%</td>
<td>78.08%</td>
<td>78.70%</td>
</tr>
</tbody>
</table>
Effect of Destruction Fraction in Denoising Autoencoders

Fig. 5. Accuracy vs. Destruction fraction
Comparison with Related Work

Table 3. CLSC performance comparison on the NLP&CC 2013 Share Task test data

<table>
<thead>
<tr>
<th>Team</th>
<th>Book</th>
<th>DVD</th>
<th>Music</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al. 2014</td>
<td>77.00%</td>
<td>78.33%</td>
<td>75.95%</td>
<td>77.09%</td>
</tr>
<tr>
<td>HLT-Hitsz</td>
<td>78.50%</td>
<td>77.73%</td>
<td>75.13%</td>
<td>77.12%</td>
</tr>
<tr>
<td>Gui et al. 2013</td>
<td>78.70%</td>
<td>79.65%</td>
<td>78.30%</td>
<td>78.89%</td>
</tr>
<tr>
<td>Our Approach</td>
<td>80.63%</td>
<td>80.95%</td>
<td>78.48%</td>
<td>80.02%</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Denoising Autoencoder (DAE)
- The Combination CLSC Approach Based on Denoising Autoencoder
- Experiments and Analysis
- Conclusion and Future Work
Conclusion

- Denoising autoencoder and combination approach could improve the sentiment classification performance.
 - decrease the impacts of translation errors
 - eliminate the language gap
- The feature setting of CHI feature selection method together with TF-IDF weight calculation method works well on CLSC task.
Future Work

- Deep combination of classifiers rather than linear combination only
 - Such as co-training or transfer learning strategy
- Select high-quality translated reviews for training Chinese classifier to further reduce the impacts of translation errors.
Thank you!