A Query Weighted-based Method for User Modeling

Hu Juan, Bai Yu, Cai Dongfeng

Knowledge Engineering Research Center
Shenyang Aerospace University
Outlines

- Background
- Query Weighted-based User Modeling
- Experiments and Results
Outlines

➢ Background
➢ Query Weighted-based User Modeling
➢ Experiments and Results
Background

- With the rapid growth of Internet-scale, information overload is an increasing problem for web users.
- Recommendation system is one of the most promising approaches to solve the problem of information overload.
- A personalized recommendation system can divide into three parts:

 User interest modeling
 Recommendation object modeling
 Recommendation algorithm
The recommendation system

- Object source by the object modeling methods obtain the object model
- User behavior by the user modeling methods generate the user model
- Combining the user model and object model to obtain recommender list, and then return to user
Background

- **User Modeling**: is a process of obtaining and maintaining the user interest, needs and habits, and generates user model that can reflect the users’ specific interest.

- The purpose of user modeling are:
 1. Mining user interests → Query Weighted-based user Modeling
 2. Representing user model → Set of keywords
Outlines

- Background
- Query Weighted-based User Modeling
- Experiments and Results
Query Weighted-based User Modeling

The framework of user modeling

- We preprocess the query log
- The second step is session division, and we obtain session set for each user
- For each user, we use the query weighted method to get the weight of each query in a session
- The last step is interest voting, and then we get user model
The preprocessing of query log:

- Splitting the query log by user, put the query log of same user together;

- Filtering the users by the number of query log is more than the threshold.
The framework of session division

The principles of session division:

1) The time interval of a session <= session time threshold
2) The time interval between adjacent queries in a session <= query time threshold
3) The cosine similarity between adjacent queries >= query similarity threshold

Based on: Mining user web search activity with layered bayesian network or how to capture a click in its context. (2009)
Session Division

The session sample of an user:

<table>
<thead>
<tr>
<th>Session</th>
<th>Query</th>
<th>QueryTime</th>
<th>Rank</th>
<th>ClickURL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session1</td>
<td>midway online literary journal</td>
<td>2006-04-21 11:24:43</td>
<td>3</td>
<td>http://www.mndaily.com</td>
</tr>
<tr>
<td></td>
<td>midway online literary journal</td>
<td>2006-04-21 11:24:44</td>
<td>9</td>
<td>http://www.smallspiralnotebook.com</td>
</tr>
<tr>
<td>Session2</td>
<td>mark twain middle school</td>
<td>2006-04-21 14:38:23</td>
<td>2</td>
<td>http://www.fcps.k12.va.us</td>
</tr>
<tr>
<td></td>
<td>mark twain middle school</td>
<td>2006-04-21 14:38:27</td>
<td>1</td>
<td>http://www.fcps.k12.va.us</td>
</tr>
<tr>
<td></td>
<td>babies are fireproof</td>
<td>2006-04-22 07:31:22</td>
<td>1</td>
<td>http://babiesarefireproof.blogspot.com</td>
</tr>
</tbody>
</table>
Query Weighted

We proposed three hypotheses:

The query weight is bigger when:

(1) the query occurs more times in a session;
(2) the query average duration in a session last longer;
(3) the url average rank of the query in a session is higher.
The framework of query weighted

A session contains Q1Q2……Qk queries, for each query we calculate the FreRate, TimeRate and AverRank, and then, we get the weight of a query.
Query Weighted--*FreRate*

\[FreRate_{Q_{kj}} : \text{the rate of query } Q_{kj} \text{ occurrence times in session } S_k \]

\[FreRate_{Q_{kj}} = \frac{Fre_{Q_{kj}}}{Q} \]

\[Fre_{Q_{j}} : \text{the occurrence times of query } Q_{kj} \text{ in session } S_k \]

\[Q : \text{the total number of query in session } S_k \]
Query Weighted--**TimeRate**

the query stream, sorted by time: \(\{Q_1, Q_2, \ldots, Q_i, \ldots, Q_K\} \)

\[\text{the duration of query } Q_i \]

\[\text{QueryDuration}_{Q_i} = \begin{cases}
\text{QueryTime}_{Q_{i+1}} - \text{QueryTime}_{Q_i} & 1 \leq i < K \\
\text{EndTime} & i = K
\end{cases} \]

\[\text{EndTime} = \begin{cases}
10s & (Q_K \text{ didn't click url}) \\
60s & (Q_K \text{ clicked url})
\end{cases} \]

The time of query \(Q_i \)
Query Weighted--*TimeRate*

TimeRate Q_{kj}: the rate of the average duration of query Q_{kj} in session S_k

\[
\text{TimeRate } Q_{kj} = \frac{\text{QueryDuration } Q_{kj}}{\text{SessionTime } S_k}
\]

\[
\text{QueryDuration } Q_{kj} = \frac{\sum \text{QueryDuration } Q_{kj}}{\text{Fre } Q_{kj}}
\]

QueryDuration Q_{kj}: the average duration of query Q_{kj} in session S_k

SessionTime S_k: the total duration of session S_k
Query Weighted--AverRank

\(\text{AverRank}_{Q_{kj}} \): the reciprocal of the average clicked URL rank of query \(Q_{kj} \) in session \(S_k \)

\[
\text{AverRank}_{Q_{kj}} = \frac{\text{Fre}_{Q_{kj}}}{\sum \text{Rank}_{Q_{kj}}}
\]

\(\text{Rank}_{Q_{kj}} \): each clicked URL rank of query \(Q_{kj} \)
Query Weighted

\(W_{Q_{kj}} \): the weight of query \(Q_{kj} \) in session \(S_k \)

\[
W_{Q_{kj}} = \alpha \times \text{FreRate}_{Q_{kj}} + \beta \times \text{TimeRate}_{Q_{kj}} + \gamma \times \text{AverRank}_{Q_{kj}}
\]

\[
\alpha + \beta + \gamma = 1
\]

\[
0 \leq \alpha \leq 1 \quad 0 \leq \beta \leq 1 \quad 0 \leq \gamma \leq 1
\]
Query Weighted—Interest Voting

Calculating the weight of each word in each user’s query log.

We should preprocess the query as follow:

- Splitting words by white space
- Removing the stop words and the noise words
- Stemming by Porter

\[
W_{T_i} = \text{Vote}(T_i) = \sum_{k}^{K_i} \sum_{j}^{N_{ki}} (W_{Q_{kj}} \ast F_{ij})
\]

\(F_{ij}\): the occurrence times of keyword in query

Keyword \(T_i\) occurred in \(K_i\) sessions, and occurred in \(N_{ki}\) queries in session \(S_k\)

And we can represent the user model:

\[
\text{UserInterest} = \{(T_1, W_{T_1})(T_2, W_{T_2}) \ldots \ldots (T_{T_M}, W_{T_M})\}
\]
Outlines

➤ Background
➤ Query Weighted-based User Modeling
➤ Experiments and Results
Dataset: AOL query log (http://www.datatang.com/data/42724)

- Time: 2006-03-01~2006-05-31
- Form: {UserID, Query, QueryTime, Rank, ClickURL}
- Users: 657,426
- Records: 10,154,742
- We used: 376 users(query number is bigger than 20 both in training set and test set)
- Training set: 2006-03-01~2006-05-15
Evaluation Design:

- The preprocessing work in test set
- Representing the test set as a keyword set to be considered as the real interest word set of user
- Comparing the real interest word set and the user model by the evaluation metrics

Evaluation Metrics:

- **MeanP**: the mean of user prediction precision

 The value of MeanP is higher, the prediction precision of user model is higher

- **MAP**: the mean of the average of each user precision

 The value of MAP is higher, the higher ranks of the successful prediction interests

\[
MeanP = \frac{1}{|U|} \sum_{u} \frac{Pr eNum_u}{M_u} \quad MAP = \frac{1}{|U|} \sum_{u} \frac{1}{N_u} \sum_{m} \text{Precision}(R_{um})
\]
Parameter Estimation

The purpose is to confirm the value of α, β, γ

- Set the step value is 0.1, obtain each corresponding values of MeanP and MAP

The figure is the 65 experiments of different of α, β, γ, and at the experiment 36, the value of MeanP is the highest
Parameter Estimation

In order to verify the effects of the three features:

- The 1, 2, 3 are the effects of only one feature, the 4, 5, 6 are the effects of two features, the 7 is the effect of all three features

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Feature Selection</th>
<th>MeanP</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FreRate ((\alpha = 1.0, \beta = 0.0, \gamma = 0.0))</td>
<td>0.23237</td>
<td>0.26883</td>
</tr>
<tr>
<td>2</td>
<td>TimeRate ((\alpha = 0.0, \beta = 1.0, \gamma = 0.0))</td>
<td>0.21619</td>
<td>0.25081</td>
</tr>
<tr>
<td>3</td>
<td>AveRank ((\alpha = 0.0, \beta = 0.0, \gamma = 1.0))</td>
<td>0.23432</td>
<td>0.27096</td>
</tr>
<tr>
<td>4</td>
<td>TimeRate & AveRank ((\alpha = 0.0, \beta = 0.5, \gamma = 0.5))</td>
<td>0.23742</td>
<td>0.27569</td>
</tr>
<tr>
<td>5</td>
<td>FreRate & AveRank ((\alpha = 0.5, \beta = 0.0, \gamma = 0.5))</td>
<td>0.24714</td>
<td>0.28657</td>
</tr>
<tr>
<td>6</td>
<td>FreRate & TimeRate ((\alpha = 0.7, \beta = 0.3, \gamma = 0.0))</td>
<td>0.23892</td>
<td>0.27581</td>
</tr>
<tr>
<td>7</td>
<td>FreRate & TimeRate & AveRank ((\alpha = 0.4, \beta = 0.3, \gamma = 0.3))</td>
<td>0.24873</td>
<td>0.28844</td>
</tr>
</tbody>
</table>

In this table, we can get the result: when three features were used at the same time, the values of MeanP and MAP are both the highest;

So we considered the result of \(\alpha = 0.4, \beta = 0.3, \gamma = 0.3\) as user model.
Experiments

Method 1: considering the user query log as documents, and calculating the TF-IDF value of each word. *(TF-IDF)*

Method 2: Weighted the bipartite graph, imported the diffusion theory, and then, recourses were allocated to realize the prediction of user behavior and generate user model. *(Diffusion-based)*

Method 3: the query weighted-based user modeling *(Query-weighted)*
The figure shows the values of MeanP and MAP of each method. It shows that our method is better than the TF-IDF Method and Diffusion Method.
This figure shows that the different return number of interest of an user correspond with the value of $MeanP$, and the Query_weighted Method is the best all the time.
Conclusions

- We proposed a query weighted-based method for user modeling;

- The experiments show the effectiveness of the three hypotheses;

- The results show that user behavior reflected user interests, user modeling are not only the user contents modeling, but also the user behavior modeling;

- The method just considered the single user information, the information between the user and the user were not included;

- The future work is taking the information between the user and the user into account, and to obtain better prediction.
Thank you!