

Aspect-Object Alignment Using Integer Linear Programming

Yanyan Zhao, Bing Qin and Ting Liu

Dec. 2014 Shenzhen, China

Outline

- Introduction
- Related Work
- Method
- Experiments
 - Experimental Setup
 - Results and Discussion
- Conclusion and Future work

HIT-SCIR

Target Extraction

composed of object and aspect

I bought [Canon 600D]^o yesterday, its [photos]^a are amazing.

Target: <photos, Canon 600D>

Problem

- Object-ignoring
- Two subtasks of target extraction
 - Aspect/object extraction
 - Aspect-Object Alignment
 - Find the correct, corresponding object for each aspect

- Importance of Aspect-Object Alignment
 - Co-occurrence of aspects and objects in a same sentence
 - 10% aspects can explore its objects in the same sentence

• SHOULD explore the objects for most aspects in other sentences

- Initial Idea
 - Binary classification
 - <aspect, object> candidates
 - Drawback

GF3 NEX-5N The [appearance]^a is very beautiful.

- Each decision independently of previous ones in a greedy way
- How to solve?
 - Post-processing
 - Integer Linear Programming as an optimization problem
 - Intra-sentence constraints
 - Inter-sentence constraints

HIT-SCIR

目录

- Introduction
- Related Work
- Method
- Experiments
 - Experimental Setup
 - Results and Discussion
- Conclusion and Future work

- Aspect extraction
 - Rule-based method
 - Supervised method
 - Topic model based method
- Entity assignment task
 - assign objects to each sentence
- Coreference resolution
 - aspect can be treated as anaphor, and object can be treated as entity

few researchers are studying on the aspect-object alignment task

HIT-SCIR

目录

- Introduction
- Related Work
- Method
- Experiments
 - Experimental Setup
 - Results and Discussion
- Conclusion and Future work

- Two steps
 - Learning an aspect-object alignment classifier
 - To estimate the probability for each pair of aspect and object
 - Problem
 - Objects assigned to aspects in a sentence often contradict each other

ILP inference

- Use ILP as an inference procedure to make a final decision that is consistent with the constraints
- Achieve an optimal global result by considering specific special constraints

- Generate the Cartesian product of all the aspects and objects in each review into a pair-wise vector <*a*, *o*>
- Classify each <*a*, *o*> into true or false
- We use a maximum entropy model for the aspect-object alignment classifier

Features	Category	In detail
	Basic Features	Sentence type feature
		Comparative sentence feature
		Object feature
	Relational Features	Distance between present and previous sentence
		Distance between present and nearest sentence
		Consistency between the object in previous sentence and the candidate object in <a, o=""></a,>
		Consistency between the object in nearest sentence and the candidate object in <a, o=""></a,>
	Special Target Features	First appearing object in the review
		Most frequent object in the review

- In an ideal setting
 - Has a perfect aspect-object alignment classifier, each aspect can obtain the correct object according to the classifier's prediction
- In reality
 - Objects assigned to aspects in a sentence often contradict each other

- Formally,
 - aspect set: $A = \{a_1, a_2, ..., a_n\}$
 - object set: $O = \{o_1, o_2, \dots, o_m\}$
 - the resulting object set for the aspects in A: $S = \{s_1, s_2, \dots, s_n\}$
- Maximizing the overall score of the aspects in a review
 - Aspect-object assignment classifier attempts to assign object from
 O for each a_i in set A

optimal result
$$\hat{S} = argmax \sum_{i=1}^{n} p(a_i, s_i)$$
 likelihood of assigning label s_i for aspect a_i

Step2: ILP Inference

- intra-sentence constraints
 - They describe the constraints between objects and aspects or between two aspects, where the objects and aspects appear in a same sentiment sentence.
- inter-sentence constraints

 They describe the constraints between objects and aspects or between two aspects, where the objects and aspects appear in different sentiment sentences.

S₁:

- Constraint 2
 - If the aspect a_p and a_q are in the same sentence *s*, and no object appears in the sentence, then a_p has the same

object as a_a has.

It has a good [resolution]^a and a good [LCD screen]^a

$$\forall j \in \{1, ..., m\}: \quad z_{pj} = z_{qj},$$

• Constraint 3

- This constraint is available only when the given sentence *s* can satisfy three conditions: (1) *s* is a comparative sentence; (2) *s* contains two objects o_k and o_t , which appear on both sides of the comparative word; and (3) only one aspect a_p appears in this sentence. Then the corresponding object for a_p is one of the two appearing objects in the given sentence.

the [shutter sound]^a of [Canon 5D3]^o is better than [5D2]^o's

$$z_{pk} + z_{pt} = 1,$$

- Constraint 4
 - This constraint is available only when the given sentence s can satisfy two conditions: (1) s contains only one aspect a_p and one object o_k; and (2) this sentence is a normal sentence. Then the corresponding object for a_p is the object o_k.

the [shutter sound]^a of [Canon 5D3]^o is good

$$z_{pk} = 1,$$

- Many previous research illustrate that adjacent sentences in a review have particular sentiment relationships.
 - The sentiment orientations for two adjacent sentences are always the same or totally different (because of the usage of transitional words, such as "but"), which is named as "sentiment consistency."
- This idea is also very useful for the aspect-object alignment task.

- Constraint 5
 - This constraint is available only when the given sentence s_g can satisfy three conditions: (1) s_g only contains an aspect a_p, but no object; and (2) the previous sentence s_p is a normal sentence, which contains an aspect a₀ and an object o_k; and (3) the sentiment orientation of s_g is the same as that of s_p. Then the corresponding object for a_p is the object o_k in the previous sentence s_p.

The best feature about [Canon S110]^o is its [size]^a. The [picture quality]^a is good, too.

$$z_{pk} = 1,$$

• Constraint 6

- This constraint is available only when the given sentence can satisfy two conditions: (1) the given sentence s_g contains an aspect a_p , but no object; and (2) the previous sentence s_p is a comparative sentence, and contains two objects ok and o_t , which appear on both sides of the comparative word and ok is in front of o_t . If the given sentence shows the same sentiment orientation as the previous sentence, then the corresponding object for a_p is the object ok in the previous sentence. However, if the given sentence shows a different sentiment orientation with the previous sentence, the object for a_p is o_t .

the [shutter sound]^a of [Canon 5D3]^o is better than [5D2]^o's. The [picture quality]^a is good, too."

 $\begin{aligned} z_{pk} &= 1, & if \ polarity(s_g) &= polarity(s_p) \\ z_{pt} &= 1, & if \ polarity(s_g) &= -polarity(s_p), \end{aligned}$

Outline

- Introduction
- Related Work
- Method
- Experiments
 - Experimental Setup
 - Results and Discussion
- Conclusion and Future work

HIT-SCIR

• Corpus

- http://ww.xitek.com/
- http://www.fengniao.com/

Table 1. Statistics for the corpus

No.	Types	Digital camera
1	# of reviews	200
2	# of sentences	8,042
3	# of aspects	2,017
4	Average $\#$ of object for each review	2.82
5	# of pairwise $\langle a, o \rangle$	9,161

- Baselines
 - Baseline1: a cascading rule-based approach, which is similar to the method of Ding et al.
 - Baseline2: the aspect-object alignment classifier without the ILP inference

Table 2. Comparative results of our method and two baselines

Method	Accuracy(%)
Baseline1: cascading rule-based	78.04
Baseline2: aspect-object alignment classifier	81.80
Our ILP inference method	83.69

Table 3. Results of aspect-object alignment with different ILP constraints

Constraints	ILP constraints	Accuracy $(\%)$
	ILP-c1	81.80
Intro contoneo construinta	ILP-c2	81.85
intra-sentence constraints	ILP-c3	81.90
	ILP-c4	82.65
Inter contoneo constrainte	ILP-c5	82.45
Inter-sentence constraints	ILP-c6	82.05
All constraints	ILP-c1-6	83.69

- We propose a novel and important sentiment analysis task, aspect-object alignment, which aims to resolve the "object ignoring" problem in target extraction.
- We propose a two-step framework for this task, including an aspect-object alignment classifier and an ILP inference.

Thanks Q&A