Weakly-supervised Occupation Detection for Micro-blogging Users

> Ying Chen and Bei Pei China Agricultural University 2014.12.8

Outline

- Background
- Related Work
- Methodology
- Experiments
- Conclusions

Background

- Personal information detection is very important personalization business applications.
- Our task: the occupation detection for the users in Micro-blogging platforms.

Related Work

- Occupation Detection
 - Can be considered as a sub-problem of Information Extraction (IE)
 - The properties of texts determine the approaches of IE (Sarawagi, 2004).

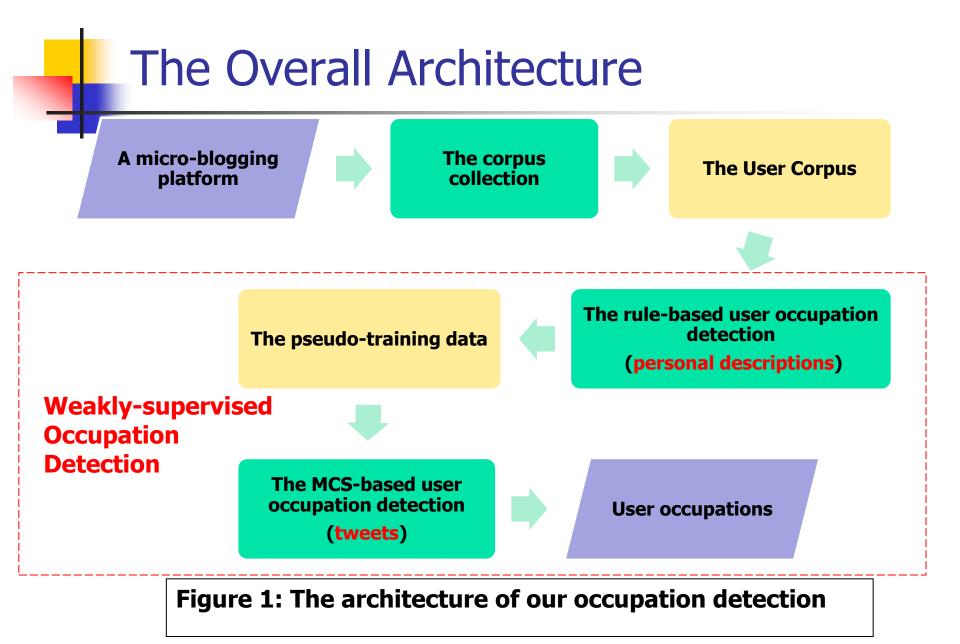
The two types of texts: personal descriptions and tweets

- Imbalanced Classification
 - Sampling: over-sampling methods and under-sampling methods.

A sampling method for the data imbalance and the data noise

Outline

- Background
- Related Work
- Methodology & Experiments
 - The overall architecture
 - The rule-based user occupation detection
 - The MCS-based user occupation detection (MCS: a multiple classifier system)
- Conclusions



The Rule-based User Occupation Detection

- Detects the occupations of some users according to their personal descriptions.
 - 1. If the job information is provided, the user is tagged as "employee".
 - 2. If the college information is provided, the user is tagged as "student".
 - 3. The user is tagged as "undermined".

The Evaluation of the Rule-based User Occupation Detection (1)

- Datasets:
 - The test/dev datasets:
 - The rule-determined test/dev dataset: ~1000 instances with the tag "student" or "employee".
 - The rule-undetermined test/dev dataset: ~1000 instances with the tag "undetermined".
 - The pseudo-training data: ~27,000 instances.

The Evaluation of the Rule-based User Occupation Detection (2)

- Data noise
 - Noisy features
 - Tweets are intrinsically noisy -> the features based on tweets are noisy
 - Noisy pseudo tags

	rule-determined	rule-undetermined
Accuracy	~72%	~28%

Table 1: The accuracy of the rule-based user occupation detection on test datasets The Evaluation of the Rule-based User Occupation Detection (3)

Data imbalance

- Eg. the imbalance ratio between "undetermined" and "employee" is ~5 in the pseudo-training data.
- 3-class classification: student, employee and undetermined

	studen t	employee	un-employed	undetermined
rule-determined	50.8%	36.5%	1.2%	11.5%
rule-undetermined	40.2%	31.4%	0.4%	28.0%

Table 2: The real occupation distribution over test datasets

The MCS-based User Occupation Detection

- The training stage:
 - Some training instances selected by our class-based random sampling method.

data imbalance and data noise

- A base classifier is trained with a supervised classification method as well as these training instances.
- For each training instance, all of the tweets are catenated into a document on which feature extraction works.
- The test stage: our cascaded ensemble learning method is used.

The Class-based Random Sampling

Input: the initial training data, K (a value which controls the size of the outputted training dataset)

Output: a training dataset for a base classifiers

Procedure:

- 1. For each class c_i (i = 0 to M, M is the class number), K instances are randomly selected from the instances whose tags are c_i in the initial training data.
- 2. M * K instances are combined to form a training dataset for a base classifier.

The Cascaded Ensemble Learning

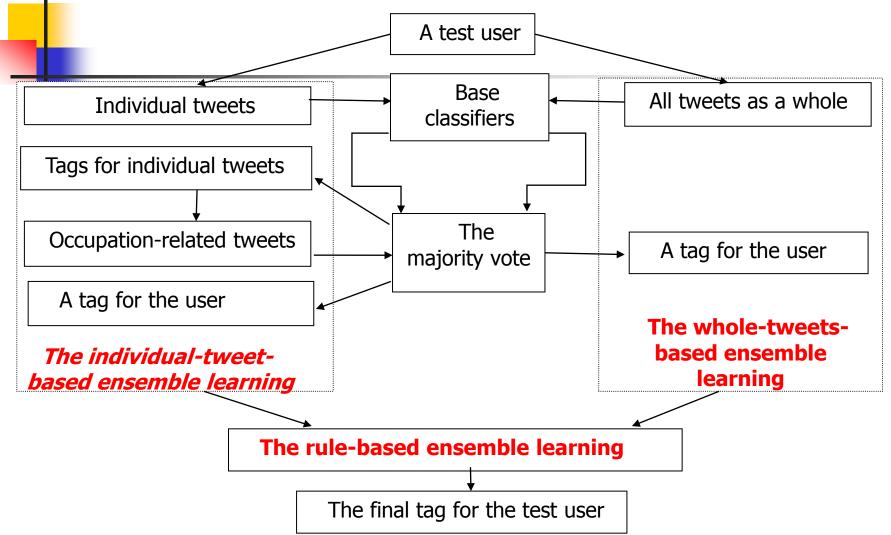


Figure 2: The cascaded ensemble learning method

The Evaluation of the MCS-based User Occupation Detection

- Basedlines :
 - SC: a common classification, which uses the following dataset to train one and only one classifier.
 - All of "student" instances, all of "employee" instances and some of "undetermined" instances.
 - UndSamp+WTEnsem: uses random under-sampling and the whole-tweets-based ensemble learning.

The Performances of Different Occupation Detection Models

	Prec	Rec	Fs	Acc
(1)SC	62.2	65.6	60.7	67.6
(2)UndSamp+WTEnsem	64.1	66.8	64.7	73.6
(3)RanSamp+WTEnsem	68.6	73.2	69.8	77.0
(4)RanSamp+CasEnsem	69.5	72.6	70.6	77.7

Table3: The performances for the rule-determined test dataset

	Prec	Rec	Fs	Acc
(1)SC	57.9	54.4	50.3	50.0
(2)UndSamp+WTEnsem	60.2	56.1	54.9	54.6
(3)RanSamp+WTEnsem	63.3	59.9	58.4	58.2
(4)RanSamp+CasEnsem	63.3	62.8	61.7	61.9

Table 4: The performances for the rule-undetermined test dataset

The Performances of Different Occupation Detection Models

SC-> UndSamp+WTEnsem

- A significant improvement is achieved.
- A MCS-based framework with a sampling method can effectively overcome the data imbalance.

UndSamp+WTEnsem -> RanSamp+WTEnsem

- The performances are further improved
- Our class-based random sampling can overcome both the data imbalance and the data noise.

RanSamp+WTEnsem -> RanSamp+CasEnsem

- A significant improvement is achieved for "rule-undet", and a slight improvement for "rule-det".
- The improvement is from the tag "employee" and "undetermined".
- Our individual-tweet-based ensemble learning can effectively solve the confusion of "employee vs. undetermined".

The Impact of the Class-based Random Sampling (1)

- Two important parameters:
 - *K*: the parameter of our class-based random sampling.
 - *L* : the number of the base classifiers in a MCS-based framework
- Relationships between the two parameters and the performance?

The Impact of the Class-based Random Sampling (2)

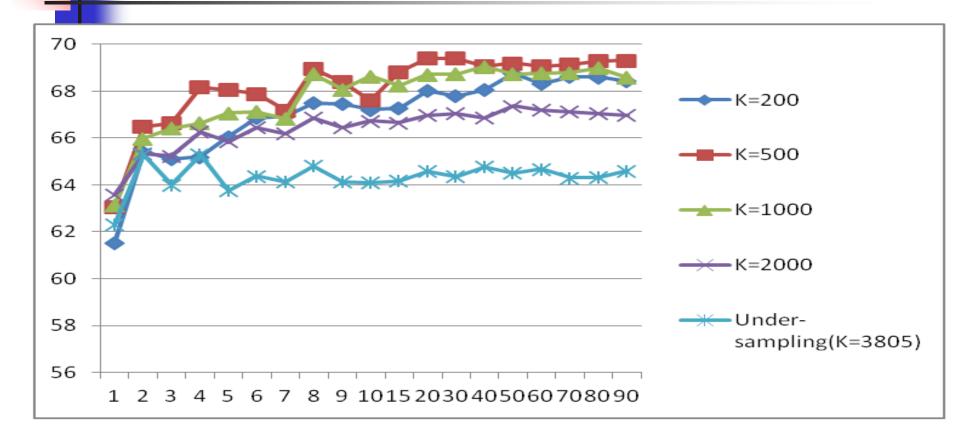


Figure 3. The performances of the RanSamp+CasEnsem model for the rule-determined test (x <u>axis</u>: the value of *L*; y axis: F-score)

The Impact of the Class-based Random Sampling (3)

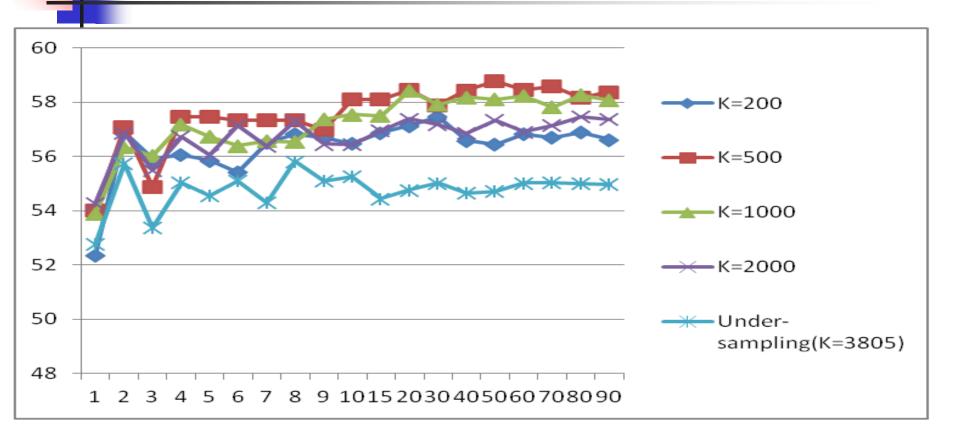


Figure 4. The performances of the RanSamp+CasEnsem model for the rule-undetermined test(x <u>axis</u>: the value of *L*; y axis: F-score)

The Impact of the Class-based Random Sampling (4)

The impact of L

- For a given K, the curve greatly varies when L is small, and becomes stable when L is large enough.
 - The performance of a supervised model is often determined by the size of the training data.
- For a given *K*, the curve generally increases with the increasing *L*.
 - Even if the initial training data are noisy, more diverse training datasets -> an effective feature is likely to be selected.

The impact of K

- For a given *L*, the performance generally increases when *K* decreases from 3805 (the under-sampling) to 500.
 - The larger training dataset is -> the more conflicts -> the more confused a base classifier is
- For a given *L*, the performance generally decreases when *K* decreases from 500 to 200.
 - Too small training dataset

Conclusions

- Proposed a weakly-supervised user occupation detection which achieves a significant improvement.
- Examine the contributions of different kind of user textual information to the occupation detection.
- Propose the class-based random sampling and the cascaded ensemble learning to overcome the data noise problem.

Questions?