

A Supervised Dynamic Topic Model

Zhuoren Jiang Dalian Maritime University December 2014

Motivation

Probabilistic topic models

Topic Model-- Latent Dirichlet Allocation (LDA)

- Each topic is a distribution over words
- Each document is a mixture of corpus-wide topics
- Each word is drawn from one of those topics

Topic Model-- Latent Dirichlet Allocation (LDA)

Topic proportions

Documents

Topics

- In reality, we only observe the documents
- The other structure are hidden variables
- Our goal is to infer the hidden variables

Limitation 1

- Assumption:
- The order of documents does not matter.
- Time attributes

• Language is changing over time

An example

1789 April 30

Inaugural addresses

Language change

2013 January 21

Solution

Topic should evolve over time

Topic model need to model the "Timevarying" content

Limitation 2

Solution

The problem of topic interpretatio n and topic number setting

Using supervised technology

Supervised dynamic topic model

Dynamic topic SDTM Labeled model

Graphical representation

Variational Inference

The idea behind variational methods is to optimize the free parameters of a distribution over the latent variables so that the distribution is close in Kullback-Liebler (KL) divergence to the true posterior; this distribution can then be used as a substitute for the true posterior.

Variational Inference

- For document-level: q Z
- EM algorithm:
- Inear-scaling Newton-Rhapson algorithm & Coordinate ascent algorithm

- For topic-level: *b*
- Standard Variational Kalman Filtering algorithm

- Corpus: A twenty-five-year-spanning (1985-2009) Chinese journal paper corpus that is mainly focusing on natural language processing.
- Author provided keywords as the label of topic: 65 keywords (topics)

<199 6	1996- 1999	2000- 2001	2002- 2003	2004	2005	2006	2007	2008	2009
392	402	413	548	438	426	511	506	531	448

Time slices (10)

- Text classification
- 2,072 documents that has only one topic(label)
- 13 classes (topics)
- 1. Representing text with these topic distribution trained by these approaches
- 2. Perform text classification based on the representation results
- Naïve Bayes, Maximum Entropy, C4.5

Result

Visualization

The change of top words appear in two topics over time

Visualization

The probability change of specific words in two topics over time

"中文信息处理"

"语料库"

Conclusion

- For overcoming the the limitations of traditional topic models
- Model the time-varying language dynamics and is combined with supervised learning technology
- Comparing with static supervised topic model and unsupervised dynamic topic model, S-DTM has a better semantic interpretation performance

Our team

Yan Chen

Liangcai Gao

Xiaozhong Liu

Zhuoren Jiang

Thank you!!Questions