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Abstract. Hierarchical phrase-based translation models have advanced
statistical machine translation (SMT). Because such models can improve
leveraging of syntactic information, two types of methods (leveraging
source parsing and leveraging shallow parsing) are applied to intro-
duce syntactic constraints into translation models. In this paper, we
propose a bilingually-constrained recursive neural network (BC-RNN)
model to combine the merits of these two types of methods. First we
perform supervised learning on a manually parsed corpus using the stan-
dard recursive neural network (RNN) model. Then we employ unsu-
pervised bilingually-constrained tuning to improve the accuracy of the
standard RNN model. Leveraging the BC-RNN model, we introduce
both source parsing and shallow parsing information into a hierarchical
phrase-based translation model. The evaluation demonstrates that our
proposed method outperforms other state-of-the-art statistical machine
translation methods for National Institute of Standards and Technology
2008 (NIST 2008) Chinese-English machine translation testing data.

1 Introduction

Hierarchical phrase-based models [1] have advanced statistical machine trans-
lation (SMT) by employing hierarchical rules. Formally, a hierarchical phrase-
based model is a synchronous context-free grammar that is learned from a bitext
without any syntactic information. Thus, such models can be considered to be a
shift in the formal machinery of syntax-based translation systems without any
linguistic commitment, which enables their convenient and extensive application.

Numerous studies have leveraged syntactic information in SMT systems.
Some of these studies have introduced linguistic syntax via source parsing to
direct word reordering. For example, [2] used dependency tree to add syntac-
tic cohesion. [3] proposed to parse and to translate jointly by taking tree-based
translation as parsing. [4] propose a nonparametric Bayesian method for induc-
ing Part-of-Speech (POS) tags in dependency trees to improve the performance
of statistical machine translation. Such methods are performed within the unit of
tree nodes and efficiently address some mistakes such as word reordering in SMT.
However, they cause data sparseness and are vulnerable to parsing errors because
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of their strict constraints on the parse tree. Other studies have employed shallow
parsing (also chunking) to justify the selection of translation rules. [5] presented
a chunk-to-string translation model where the decoder generates a translation
by first translating the words in each chunk, then reordering the translation
of chunks. [6] present a hierarchical chunk-to-string translation model, which
can be seen as a compromise between the hierarchical phrase-based model and
the tree-to-string model. The constraints on the syntactic information that are
applied in these studies are significantly weaker. However, these methods tend
to suffer from the conflict between the different definitions of phrases in SMT
and traditional chunking methods: phrases in SMT are grammar-free, whereas
traditional chunking methods require phrases to be intact in terms of grammar.

In this paper, we present a bilingually-constrained recursive neural network
(BC-RNN) model to combine the merits of the two types of studies. First, we
propose a standard recursive neural network (RNN) model to perform super-
vised learning to determine how to parse phrases and how to represent phrases
in a continuous vector space of features [7] for source- and target- languages,
respectively. A simple softmax layer is employed in this model to predict syntac-
tic categories (also chunk labels). Second, we propose a bilingually-constrained
learning model to fine-tune the parameters of the standard RNN to improve the
accuracy of the representation and chunk labels of the phrases. Finally, by lever-
aging the BC-RNN model, we extract information about parsing and chunking
from the source sentence and efficiently add extra syntactic features to state-of-
the-art hierarchical phrase-based translation systems.

Using the 2008 National Institute of Standards and Technology (NIST)
Chinese-English MT translation test set, the results of the experiments demon-
strate that our model can significantly improve the performance of hierarchi-
cal phrase-based translation models and outperform other state-of-the-art SMT
methods that leverage syntactic information.

2 Bilingually-Constrained RNN

In this section, we describe the structure of the BC-RNN model. We also define
the objective function and the inferences of the parameters of the BC-RNN
model.

2.1 The BC-RNN Model

Assume that we are given the phrase w1w2...wm; it is projected onto a list of vec-
tors (x1, x2, ..., xm) using word vector representation. The standard RNN learns
the parsing tree and the distributed representation of the phrase by recursively
combining two child vectors in a bottom-up manner. Given the distributed rep-
resentation p of the phrase w1w2...wm, it is convenient to add a simple softmax
layer to predict chunk labels, such as NP and VP. The details of structure pre-
diction and Category Classifier using standard RNN can be got from [7] and we
don’t introduce it in this paper.
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Given two standard RNN models, we propose a bilingually-constrained opti-
mization to fine-tune the parameters of both standard RNN models. The struc-
ture of the BC-RNN model is illustrated in Figure 1.

Fig. 1. Structure of bilingually-constrained recursive neural network

2.2 The Objective Function

To fine-tune the standard RNN models for the source and target languages, for
a bilingual phrase pair (s, t), two types of errors are involved:

(1) Semantic error: this is quantified in terms of the semantic distance of the
distributed representation ps and pt of the bilingual phrase pair (s, t) [9].

Because word embeddings for two languages are learned separately and
located in different vector spaces, a transformation must be performed to cal-
culate the semantic distance. Thus, the semantic distance is bidirectional: there
is both the distance between pt and the transformation of ps, and the distance
between ps and the transformation of pt. Consequently, the total semantic error
becomes

Esem(s, t; θ) = Esem(s|t, θ) + Esem(t|s, θ) (1)

where θ denotes the parameters of the BC-RNN model and we calculate
Esem(s|t, θ) using the Euclidean distance:

Esem(s|t, θ) =
1
2
||pt − f(W ch

enps + bch
en)||2 (2)

Esem(t|s, θ) can be calculated in exactly the same manner.
(2) Chunk label error: this is quantified by the difference between the pre-

dicted chunk labels of the distributed representations ps and pt.
After applying the simple softmax layer of each standard RNN models, the

output vector representations cs and ct denote the probability distribution of
the chunk labels. Consequently, similar to semantic error, the total chunk label
error becomes bidirectional as follows:

Echunk(s, t; θ) = Echunk(s|t, θ) + Echunk(t|s, θ) (3)
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where θ denotes the parameters of the BC-RNN model and Echunk(s|t, θ) is
calculate as follows:

Echunk(s|t, θ) =
1
2
||ct − f(W ch

chunkps + bch
chunk)||2 (4)

Thus, for a bilingual phrase pair (s, t), the joint error is

E(s, t; θ) = αEsem(s, t; θ) + (1− α)Echunk(s, t; θ) (5)

The hyper-parameter α weights the semantic and chunk label errors. The final
BC-RNN objective function over the phrase pairs training set (S, T ) becomes:

JBC−RNN =
∑

(s,t)∈(S,T )

E(s, t; θ) +
λ

2
||θ||2 (6)

2.3 Parameter Inference

The parameter θ can be divided into the source-side parameter θs and the target-
side parameter θt [9]. We apply the stochastic gradient descent (SGD) algorithm
to optimize each parameter. Word vector representations θL are initialized with
the DNN toolkit Word2Vec [8] using large-scale monolingual data, and other
parameters are randomly initialized. The details of optimization of the parame-
ters can be got from [9].

3 A Hierarchical Phrase-Based Translation Model that
Leverages Syntactic Information

In this section, we leverage two types of syntactic information in the hierarchical
phrase-based translation model.

3.1 Feature1: The Score of the Parse Tree

First, we calculate the score of this tree by applying the fine-tuned parameter
θ∗s in the BC-RNN model.

Given the fine-tuned parameters W r∗
s and br∗s , the distributed representation

of each nonterminal in this tree is calculated as

p = f(W r∗
s [c1 : c2] + br∗s ) (7)

where the concatenation of two children [c1 : c2] is provided by word vector
representation. Then, we calculate the parsing score similarly to [7] as follows:

s = Wscorep (8)

Let T (yi) denote the set of spans coming from all nonterminal nodes of this
parse tree. The total parsing score of this tree is calculated as the sum of the
scores of each span:
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sparse(f, e, a) =
∑

d∈T (yi)

sd(c1, c2) (9)

where “f” represents the target sentence and “e” represents the source sen-
tence and “a” represents the word alignment. The more details of parsing score
can be got from [7] and we don’t introduce it in this paper.

3.2 Feature2: Hierarchical Rules with Syntactic Categories

We now discuss how to extract chunk-based hierarchical rules, as Basic phrases
are defined using the same heuristic as in previous systems [11][12]. Chunk-based
hierarchical phrases are extracted as follows:

1. If < f j2
j1
, ei2

i1
> is a basic phrase with a chunk label c (source-side only),

then a rule is extracted:

X →< f j2
j1
, ei2

i1
> (10)

2. Assume that X →< α, β > is a rule with α = α1f
j2
j1
α2 and β = β1e

i1
i2
β2.

Let C(X) denotes the set of chunk labels of the nonterminals in this rule, then
we update the rule as:

X →< α1X1α2, β1X1β2 > X1 ∈ C(X) ∪ c (11)

The chunk labels are tagged using the fine-tuned parameter θ∗s in the BC-
RNN model. We evaluate the distribution of these rules in the same manner as
[13].

Leveraging chunk-based hierarchical rules, we introduce information about
chunk labels into the hierarchical translation model. In the translating decoding
process, we select a penalization of incorrect chunk labels as our loss function
and add a penalization term to each incorrect decision. Let TX denote the set
of applied hierarchical rules in the decoding process. The penalization can be
derived as

schunk(f, e, a) =
∑

X∈TX

∑

n∈N(X)

1{c(n) /∈ C(X)} (12)

where N(X) represents the set of the nonterminals of the hierarchical rule
X and c(n) represents the chunk labels (source-side only) of the subphrase that
covers the nonterminal n and is given by BC-RNN model.

The Hierarchical Translation Model with Syntactic Information.
Finally, we introduce both the features into the standard hierarchical translation
model [1]. The formula can be derived as follows:

strans(f, e, a) =
∑

i

λilog(si(f, e, a))

+ λparselog(sparse(f, e, a)) + λchunklog(schunk(f, e, a))
(13)
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where si(f, e, a) represent the traditional features used in standard hierar-
chical translation model which is as same as [1]. The weights λi and λparse and
λchunk are learned via minimum error-rate training [14] using the development
dataset.

4 Experiments

4.1 Data Preparation and Tools

We got training data for source-side standard RNN model from the standard
Chinese Treebank (CTB) 6.0, which has 780k words with several categories.
The English Treebank corpus (ETB), which contains 2,881k tokens is used to
train the target-side standard RNN model.

We used the NIST training set for Chinese-English translation tasks exclud-
ing the Hong Kong Law and Hong Kong Hansard as the training data, which
contains 470K sentence pairs. For the training data set, we first performed word
alignment in both directions using GIZA++ toolkit [10] then refined the align-
ments using “final-and”. We trained a 5-gram language model with modified
Kneser-Ney smoothing on The English Gigaword corpus, section AFP which
contains 611,506,174 words. we employ an out-of-the-box toolkit Moses (v3.0)
framework and minimum error rate training [14] to train and tune the feature
weights of SMT systems. We used our in-house Chinese-English data set as the
development set and used the 2008 NIST Chinese-English MT test set (1859
sentences) as the test set. Our evaluation metric is BLEU-4.

We employed the Stanford Chinese word segmentation tools to segment the
Chinese sentences in the training and testing process.

4.2 Machine Translation Performance

First, we evaluate the performance of our method and compare it with other
state-of-the-art methods, including a phrase-based machine translation model
[11], a standard hierarchical phrase-based machine translation model [1], a tree-
to-string machine translation model that leverages source parsing [4], and a
chunk-to-string machine translation model that leverages shallow parsing [6].
The comparison of the performance is shown in Table.1.

Table 1. Translation performance of different methods on NIST 2008

Methods NIST2008 %

phrase-based 23.25

hierarchical phrase-based 23.94

Tree-to-string 24.1

chunk-to-string 24.8

Feature1 only 25.56

Feature2 only 25.35

Feature1+Feature2 26.02
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Table 2. Translation performance using different chunkers on NIST 2008

Methods NIST2008 %

Feature2 with Left corner PCFG 23.5

Feature2 with Standford parser 24.0

Feature2 with BC-RNN 25.35

The results indicate that using either the score for parsing tree or the chunk-
based penalization function can effectively improve the performance of the stan-
dard hierarchical translation model. When we integrate both features, the model
outperforms the other translation model and can significantly improve the per-
formance of machine translation.

Moreover, for additional analysis, we use the traditional chunker in the Fea-
ture2 instead of our BC-RNN model and compare the translation performance
with our method in Table.2. The method “Left corner PCFG” is obtained from
[15]. The Stanford parser is an out-of-the-box parsing system [16] with the latest
version.

The results show that our BC-RNN model can integrate syntactic informa-
tion into hierarchical translation models more effectively and accurately than
traditional chunkers.

5 Conclusion

In this paper, we propose a bilingually-constrained RNN model to introduce
high-quality syntactic information into the standard hierarchical translation
model. We combine the merits of the two types of studies and propose a
bilingually-constrained tuning to improve the quality of syntactic information.
The evaluation demonstrate that our method outperforms other state-of-the-art
SMT systems.
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