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Abstract. This paper presents a purely data-driven approach for gener-
ating natural language (NL) expressions from its corresponding seman-
tic representations. Our aim is to exploit a parsing paradigm for natural
language generation (NLG) task, which first encodes semantic represen-
tations with a situated probabilistic context-free grammar (PCFG), then
decodes and yields natural sentences at the leaves of the optimal parsing
tree. We deployed our system in two different domains, one is response
generation for a Chinese spoken dialogue system, and the other is instruc-
tion generation for a virtual environment in English language, obtaining
results comparable to state-of-the-art systems both in terms of BLEU
scores and human evaluation.

Keywords: Natural language generation · Meaning representation ·
Situated PCFG

1 Introduction

Natural language generation (NLG) is the task of constructing natural-language
sentence from formal, abstract meaning representation (MR) (Reiter and Dale,
2000). Depending on the application at hand, the meaning representation can
have various forms such as database records, domain knowledge bases, geo-
information. It is generally assumed that the core tasks of language generation
process can be split up into two stages: (1) content selection, which decides what
meanings to express, and (2) surface realization, which expresses those meanings
using natural language (Belz and Kow, 2009). Over the past decade, statistical
methods for NLG have received considerable attention (e.g., Wong and Mooney,
2007; Belz, 2008; Konstas and Lapata, 2012; McKinley and Ray, 2014). How-
ever, this prior work is mostly based on hand-crafted generation rules, which
are extensive, but also expensive. Furthermore, although it is a consensus that
at a rather abstract level natural language generation can benefit a lot from its
counterpart natural language understanding (NLU), the problem of leveraging
NLU resources for NLG remains pretty much open.

In this paper, we propose a data-driven natural language generation model
which exploits a PCFG parser to assist natural language generation. The basic
idea underlying our method is that the generated sentence is licensed by a
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context-free-grammar, and thus can be deduced from a parsing tree which
encodes hidden structural linkage between meaning representation and its sen-
tence expression. We operate in a setting in which we are given a set of records,
where each record is a data pair consisting of a structured meaning representa-
tion and its natural language sentence. A situated PCFG - i.e., a PCFG with
the context of application-specific concepts, is learned from data pairs and then
used to guide generation processes for other previously unseen meaning repre-
sentations. Table 1 exemplifies two records from the two applications at hand.

The strength of our approach is that it allows generation process to be rep-
resented as an optimization problem within a tree structure, without concerns
about how the surfacial words are ordered and selected, and without the need
to manually define PCFG derivations, which is one of the most important pre-
requisites in work of (Belz and Kow, 2009) and (Konstas and Lapata, 2012). We
demonstrate the versatility and effectiveness of our method on (1) response gen-
eration for a situated Chinese spoken dialogue system (SDS)1 for booking meet-
ing rooms, and (2) GIVE (Generating Instructions in Virtual Environments)2

challenge, within which a NLG module generates a sequence of English instruc-
tions that will help in a “treasure hunt” task in a virtual 3D environment.

Table 1. Examples of meaning representation input as a structured database and its
corresponding natural language expression. Each meaning representation has several
fields, each field has a value.

2 Related Work

Over the past decade, there has been a surge of interest in statistical techniques
for natural language generation, a methodology that was largely inspired by the
blossom of statistical natural language processing. Statistical NLG mainly fol-
lows two streams of research. The one is to introduce statistics at the sentence
1 A demo can be found at http://www.aidc.org.cn:8008/WebContent/
2 More about GIVE challenge can be seen at http://www.give-challenge.org/research/
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generation level by training a model which refines or reranks candidate outputs
of a handcrafted generator. A pioneering work is Langkilde and Knight’s Nitro-
gen systems (Langkilde and Knight, 1998), which first generates a candidate set
of sentences and then reranks them using an n-gram language model trained on
news articles. Langkilde and Knight proved that the statistical post-processor
yielded more fluent outputs and reduced the need for deep, hand-crafted gram-
mars. In order to produce more customerized outputs, Walker et al. investigate
a trainable sentence planner on the basis of feedback from users (Walker et al.,
2002). The major drawbacks of such “overgenerate and rank” approach are their
inherent computational cost and not grammatically informed.

The second stream of research has focused on introducing statistics at the
generation decision level by training models that find the set of generation
parameters maximizing an objective function, e.g., generating the most likely
context-free derivations (Belz, 2008; Konstas and Lapata, 2012), or maximiz-
ing the expected reward using reinforcement learning (Rieser and Lemon, 2009;
Dethlefs and Cuayahuitl, 2014). While such methods do not suffer from over-
generation problem, they still require a set of handcrafted generation rules or
reward functions to derive a generation decision space within which an opti-
mal sentence can be deduced statistically. Our model is closest to (Konstas and
Lapata, 2013) who reformulates the Markov structure between a world state
and a string of text depicted in (Liang, et al., 2009) into a set of CFG rewrite
rules, and then deduces the best derivation tree for a set of database records.
Although this Markov structure can capture a few elements of rudimentary syn-
tax, it is essentially not linguistic grammars. Thus the sentences produced by
this model are usually ungrammatically informed (for instance, its 1-best model
outputs grammatically illegal sentences like “Milwaukee Phoenix on Saturday on
Saturday on Saturday on Saturday”). (Konstas and Lapata, 2013) claims that
dependency structure is an efficient complementary to CFG grammar, and incor-
porates dependency information between words into the reranking procedure to
boost the performance.

Although conceptually related to (Konstas and Lapata, 2013), our model
directly learns more grammatical rewrite rules from hybrid syntactic trees whose
non-terminal nodes are comprised of phrasal nodes inheriting from a syntactic
parser and conceptual nodes designed for encoding target meaning representa-
tion. Therefore, the learning aspect of two models is fundamentally different.
We have a single CFG grammar that applies throughout, whereas they train
different CFG grammar and dependency grammar respectively.

3 Problem Formulation

3.1 The Grammar

Following most previous works in this area (Liang, et al., 2009; Konstas and
Lapata, 2013), we use the term record r to refer to a (m,w) pair. Each meaning
representation m is described as several fields f , each field has value f.v. As
exemplified in Table 1, each m in GIVE system has eight fields: action, direction,
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visible, adj (adjunct), object, reference, adj2 (adjunct 2) and ref-object (reference
object). Each field has a specific value. The value can be a string (e.g., blue,
button), a numeric quantity (e.g., 2000, 2500), or null. The text is simply a
sequence of words w = (w1, ..., w|w|).

Our goal is to learn a PCFG for paraphrasing a MR with NL expression. As
mentioned in Section 2, prior research on CFG based natural language generation
has mainly focused on relatively simple grammar, either hand-crafted grammars
for deterministic parsing (Belz and Kow, 2009), or probabilistic regular gram-
mar describing Markov dependency (Konstas and Lapata, 2013) among fields
and word strings. In order to generate more grammatical sentence, the estab-
lished grammar should capture recursive structure of phrases. Meanwhile, in
order to generate sentence expressing target meanings, the grammar should also
capture concept embeddings corresponding to desired meaning fields. Under this
framework, the situated PCFG grammar we used for generation can be described
as a 6-tuple:

G = 〈Np, Nc, T, S, L, λ〉 (1)

where Np is a finite set of non-terminal symbols inheriting from a phrase struc-
ture parser, Nc is a finite set of concept symbols corresponding with record fields,
T is a finite set of NL terminal symbols (words), S ∈ Np is a distinguished start
symbol, L is a lexicon which consists of a finite set of production rules, and λ is
a set of parameters that define a probability distribution over derivations under
G.

3.2 Grammar Induction

In this section, we present a learning procedure for the proposed grammar
described above. The input to the learning algorithm is a set of training sentences
paired with their correct meaning representations (as illustrated in Table 1). The
output from the learning algorithm is a PCFG describing both phrase and con-
cept embeddings. The learning algorithm assumes that a phrase structure parser
is available, but it does not require any prior knowledge of the MR syntax.

To describe the grammar learning procedure, we start with an example. Con-
sider the NL sentence in Table 1(a). We first analyze its phrase structure using a
syntactic parser whose non-terminals are syntactic categories (e.g., NP, VP and
QP) and part-of-speech tags (e.g., PN, DEG and NN). The parser we used for
GIVE and SDS are both the Stanford Parser3. Figure 1(a) outlines the partial
parser tree of sentence in Table 1(a).

The meaning of the sentence is then integrated by adding conceptual sym-
bols of its subparts into the parser tree. Figure 1 (b) shows a hybrid parse tree
of Figure 1 (a). Here the non-terminal symbols in bold, BUDGET, VAL1 and
VAL2, represent domain-specific concepts corresponding to fields budget, value1
and value2. To get the hybrid parse tree, we first align phrases in the NL with
the actual MR fields mentioned using the model of (Liang, et al., 2009) which
is learned in an unsupervised manner using EM to produce which words in the
3 http://nlp.stanford.edu/software/lex-parser.shtml
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(a) (b)

Fig. 1. Example of (a) a syntactic tree and (b) its corresponding hybrid tree from
which the situated PCFG defined in Formula (1) is constructed. The subtree circled
by dotted line contains conceptual node and its terminal derivations.

text were spanned by the fields. The aligned pairs are recorded in a tempo-
rary dictionary. Then for each phrase in the dictionary, we find the minimal
subtree spanning it, and modify its ancestor node attached directly below the
subtree’s root node to the conceptual symbol of its aligned field. All ancestor
nodes keep unchanged for phrases not in the alignment dictionary. The cen-
tral characteristic of a tree structured representation is that component concept
appears as a node in a tree, with its word realizations as terminal nodes derived
by it. For example, the concept BUDGET has a terminal node (budget)”,
and VALUE1 “2,000 (2,000 yuan)”, these could then form part of the repre-
sentation for the sentence (Your budget is
between 2,000 yuan and 2,500 yuan.)” The use of a recursive hybrid syntactic
and conceptual structure is one characteristic that distinguishes the proposed
grammar from earlier work in which meaning is represented by logical forms or
regular grammars (Lu and Ng, 2011; Konstas and Lapata, 2013).

Given hybrid trees, Np, Nc, T , S and the set of derivations that are possible
are fixed, we only need to learn a probabilistic model parameterized by λ. Since
the correct correspondence between NL words and MR fields is fully accessi-
ble, i.e., there is a single deterministic derivation associated with each training
instance, model parameter λ can be directly estimated from the training corpus
by counting. Because the derived trees output by parser can be noisy, we need
to process them to obtain cleaner PCFG rules. We compare the 3-best trees
produced by the Stanford Parser, and prune off inconsistent components voted
by majorities when extracting and counting rules.
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3.3 Decoding

Our goal in decoding is to find the most probable sentence ŝ for a given meaning
expression m:

ŝ = g( argmax
D s.t. m(D)=m

P (D|G) · ln(|D|+ 1)) (2)

where g is a function that takes as input a derivation tree D and returns ŝ, m(D)
refers to the meaning representation of a derivation D, and P (D|G) is product
of weights of the PCFG rules used in a derivation D, the factor ln(|D|+1), offers
a way to compensate the output sentence length |D|.

A conventional CKY-style decoder (Kasami, 1965; Younger, 1967) is not
applicable to this work since the fields of MR do not exhibit a linear structure.
We use a basic decoding introduced in (Konstas and Lapata, 2013) which is
essentially a bottom-up chart-parsing algorithm. It first fills the diagonal cell of
the chart with the top scoring words emitted by the unary productions of the
type A→ α, where A is a non-terminal symbol, and α is a terminal word. The
extracted grammar is binarized such that decoding takes cubic time with respect
to the sentence length.

In order to search among exponentially many possible generations for a given
input, it would be preferable if we added to the chart a list of the top k words and
production rules, and thus produced a k-best list of derivations at the root node,
yielding k-best sentences at the leaf nodes. We do this k-best decoding using the
lazy algorithm introduced in (Huang and Chiang, 2005) which delays the whole
k-best calculation until after parsing. Then an external language model can be
applied to rerank the k-best derivations. We examine two ways of intersecting
language model, one is to rerank directly the k-best sentences after those sen-
tences are generated (Langkilde and Knight, 1998), the other is to rerank derived
partial trees in a timely manner with cube pruning (Huang and Chiang, 2005;
Konstas and Lapata, 2013).

4 Empirical Evaluation

This section presents our experimental setup for assessing the performance of
our model. We give details on our dataset, model parameters, the metric used
for comparison and experimental results.

4.1 Data Set

We conducted experiments on a Chinese spoken dialogue system (SDS) for meet-
ing room booking. Our NLG module receives structured input from dialogue
management (DM) module and generates natural language response to user.
The structured input includes dialogue actions (e.g., greet, request, confirm),
objects (e.g., date, budget, location) and object values which can be a null. DM
delivers to NLG at most two actions at a time. The SDS corpus consists of 1,406
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formal meaning representations, along with their Chinese NL expressions written
by 3 Chinese native speakers. The average sentence length for the 1,406-example
data set is 15.7 Chinese words. We randomly select 1,000 record pairs as training
data, and the remaining 406 as testing data.

In order to assess the generation performance across different domains and
different languages, we conducted experiments on the platform provided by the
Challenge on Generating Instructions in Virtual Environments (GIVE), a theory-
neutral, end-to-end evaluation effort for NLG systems. The NLG model gener-
ates a sequence of English NL instructions guiding users performing a “treasure
hunt” task in a virtual 3D environment. We obtain 63 American English written
discourses in which one subject guided another in a treasure hunting task in the
spirit of the GIVE-2 virtual worlds. In order to ensure quality of the gold data,
we preprocessed the corpus to delete non-sense instructions (i.e., sentences not
related with any environmental parameters or operation instructions, e.g., “lol.”,
“what?” ), correct spelling mistakes and tokenize the abbreviations (e.g., “srry”,
“u”). Finally, 1,159 NL and MR pairs from 50 discourses are used for training,
and 294 pairs from the remaining 13 discourses for testing. The average sentence
length for the 1,453 sentences is 7.8 English words.

4.2 Evaluation Metric

To evaluate the quality of the generated sentences, the BLEU score (Papineni et
al., 2002) is computed by comparing system-generated sentences with human-
written sentences. Specifically, the BLEU score is the geometric mean of the
precision of n-grams of various lengths, multiplied by a brevity penalty factor
that penalizes candidate sentences shorter than the reference sentences. BLEU
has a fairly good agreement with human judgment and has been used to evalu-
ate a variety of language generation systems (Angeli et al., 2010; Konstas and
Lapata, 2012).

In addition, we evaluated the generated text via a human judgment as
designed in (Angeli et al., 2010). Human evaluators were presented with a mean-
ing representation and were asked to rate its corresponding NL expression along
two dimensions: fluency (is the text grammatical and overall understandable?)
and semantic correctness (does the meaning conveyed by the NL sentences corre-
spond to meaning representations?). Human evaluators used a five point rating
scale where a high number indicates better performance. The averaged score of
three difference human evaluators was computed.

4.3 Results

In order to compare our work with previous related work, we implement the
method of (Konstas and Lapata, 2013) on our datasets. The BLEU scores of
different systems are summarized in Table 2.

Table 2 compares BLEU scores achieved using the situated grammar
described in Section 3.1 and 3.2 with that using the grammar described in (Kon-
stas and Lapata, 2013). 1-BEST signifies results obtained from the basic decoder.
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Table 2. BLEU scores on SDS and GIVE.

system SDS GIVE

1-BEST-Konstas 9.32 10.49
k-BEST-Konstas 19.14 21.70
k-BEST-LM-Konstas 21.85 24.26
1-BEST-Our 30.88 31.07
k-BEST-Our 31.82 30.26
k-BEST-LM-Our 31.96 31.21

k-BEST and k-BEST-LM are results obtained respectively from reranking after
generation and reranking during generation described in Section 3.3. Here we set
k=20 without more fine-tuning work. Since the training data and the sentence
length of our applications are relatively small, we used a bigram language model
with add-one smoothing. Regarding these results, one point should be noted that
the sentence length N is not restricted as a fixed number, while varying from
1 to a length of the longest sentence in the training data. The sentences with
different length are overall sorted to obtain the 1-BEST and the k-BEST.

From Table 2, we find that differences in BLEU scores between 1-BEST-
Konstas and 1-BEST-Our are statistically significant (9.32 vs. 30.88 in SDS
domain, and 10.49 vs. 31.07 in GIVE domain). Since the only difference between
these two results is the grammars used, we have reason to justify that the situated
grammar learnt from the phrase-concept-hybrid trees is superior for modeling
NL and MR correspondence to that used in (Konstas and Lapata, 2013).

It is interesting to notice that k-BEST-Konstas observes substantial increase
in performance compared to 1-BEST-Konstas in both two domains, while k-
BEST-Our only achieves a slight increase compared to 1-BEST-Our. The same
observation also happens for the timely reranking k-BEST-LM-Konstas and k-
BEST-LM-Our. As reported in (Konstas and Lapata, 2013), statistical language
model offers potentially significant advantages for the sequential Markov gram-
mar. Meanwhile, these results verify the robustness of the proposed method.
Another major advantage of our method over method of (Konstas and Lapata,
2013) is that it does not require any prior knowledge of the MR syntax for train-
ing. Therefore, transplanting our method to other NLG application is relatively
easy.

Overall, k-BEST-LM performs better than k-BEST, but the improvement is
moderate. In practice, k-BEST-LM is more commonly used due to its computa-
tional efficiency and integrity.

Table 3 shows the human ratings for each system and the gold-standard
human-authored sentences. On both Chinese and English domains our system is
significantly better than the 1-BEST-Konstas baseline in terms of grammatical
coherence and semantic soundness.

In order to evaluate the quality of our generation system in a practi-
cal view, we implement our English NLG system on the GIVE platform.
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10 undergraduate volunteers are enrolled to play the “treasure hunt” game fol-
lowing the NL instructions our system generated. We collected 103 turns of game
in total, 58 turns are guided by instructions produced by 1-BEST-Our, 45 turns
by k-BEST-LM-Our.

Table 3. Human ratings for syntactic fluency (SF) and semantic correctness (SC).

system
SDS GIVE

SF SC SF SC

1-BEST-Konstas 2.29 1.94 2.04 2.47
k-BEST-LM-Konstas 3.91 3.12 3.82 3.49
1-BEST-Our 4.36 3.95 4.02 3.88
k-BEST-LM-Our 4.34 4.33 4.22 4.05
HUMAN 4.76 4.89 4.58 4.13

GIVE challenge adopts several objective metrics so as to measure the success
of instructions in a situated interaction scenario. Results of the objective metrics
can be induced automatically from log files. Table 4 outlines objective metrics
used in GIVE-2.5 challenge (Striegnitz, et al., 2011).

Table 4. Objective measures used in GIVE-2.5 challenge.

binary task success: Percent of the player get the trophy.
duration: Time in seconds from the end of the tutorial until retrieval of the trophy.
instructions: Number of instructions produced by the NLG system.
words: Number of words used by the NLG system.

Table 5 shows the comparison of our systems with the work of (Dethlefs and
Cuayahuitl, 2014) which is one of state-of-the-art systems evaluated on GIVE
challenge. In terms of task success, k-BEST-LM-Our outperforms 1-BEST-Our
by 7%, while both of them are less than that of Dethlefs. But it is a consensus
that, besides the quality of generated instructions, there are many other subjec-
tive factors influencing the task success rate, for example, whether the player is
a native English speaker, to what content the player is familiar with the game.

It is worthy to notice that both 1-BEST-Our and k-BEST-LM-Our generate
significantly less interactions which guarantees much shorter interaction time
to finish a task. Averagely, 1-BEST-Our generates 10.4 words per instruction
and k-BEST-LM-Our 14.0 words, while Dethlefs’s system generates 9.8 words
for each instruction. Our systems produce many instructions such as “click the
green button in front of you to the left of the lamp”, “turn right into the room
ahead”. In contrast, as reported (Striegnitz et al., 2011; Dethlefs and Cuayahuitl,
2014), most other GIVE systems output much shorter instructions such as



Stochastic Language Generation Using Situated PCFGs 73

“click green”, “turn right”. Although brief enough, such instructions will lead
more false actions due to lack of necessary reference information.

Table 5. Objective metrics for our systems compared with systems of (Dethlefs and
Cuayahuitl, 2014).

metric Dethlefs 1-BEST-Our k-BEST-LM-Our

binary task success 0.80 0.67 0.74
duration 700 261 491
instructions 312.3 105.3 160.7
words 3075.6 1093 2249

5 Conclusions

We have presented a PCFG-based natural language generation method. In par-
ticular, the method learns situated PCFG rules from hybrid phrase-concept
trees automatically augmented from the output of an existing syntactic parser.
A compelling advantage of the proposed method is that it does not rely on
prior knowledge of the MR syntax for training. We have shown the competitive
results across different application domains in both Chinese and English lan-
guage. Future extensions include deploying more efficient decoding algorithms,
and richer structural features to rerank the derivations.
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