
A Full-Text Retrieval Algorithm for Encrypted
Data in Cloud Storage Applications

Wei Song1,2, Yihui Cui2, and Zhiyong Peng1,2(B)

1 State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China
{songwei,peng}@whu.edu.cn

2 School of Computer, Wuhan University, Wuhan, China
cuiyihui@whu.edu.cn

Abstract. Nowadays, more and more Internet users use the cloud storage
services to store their personal data, especially when the mobile devices
which have limited storage capacity popularize. With the cloud storage
services, the users can access their personal data at any time and any-
where without storing the data at local. However, the cloud storage service
provider is not completely trusted. Therefore, the first concern of using
cloud storage services is the data security. A straightforward method to
address the security problem is to encrypt the data before uploading to the
cloud server. The encryption method is able to keep the data secret from
the cloud server, but cloud server also can not manipulate the data after
encryption. It will greatly undermine the advantage of the cloud storage.
For example, a user encrypts his personal data before uploading them to
the cloud. When he wants to access some data at the cloud, he has to down-
load all the data and decrypt them. Obviously, this service mode will incur
the huge overheads of communication and computation. Several related
works have been proposed to enable the search over the encrypted data, but
all of them only support the encrypted keyword search. In this paper, we
propose a new full-text retrieval algorithm over the encrypted data for the
scenario of cloud storage, in which all the words in a document have been
extracted and built a privacy-preserved full-text retrieval index. Based on
the privacy-preserved full-text retrieval index, cloud server can execute
full-text retrieval over the large scale encrypted documents. The numer-
ical analysis and experimental results further validate the high efficiency
and scalability of the proposed algorithm.

1 Introduction

Cloud computing attracts considerable attentions and interests from both indus-
try and academia because of its scalability, flexibility, and cost-effective features.
With cloud storage services, users can rent the cloud storage space to store their
personal data and does not have to buy the storage hardware. This mechanism
is particularly suitable for the mobile devices which have the limited storage
spaces. However, due to the nature of the public, users usually prefer not to
store their sensitive private information into the cloud in the plaintext form
even if the data privacy is enforced by law.
c© Springer International Publishing Switzerland 2015
J. Li et al. (Eds.): NLPCC 2015, LNAI 9362, pp. 229–241, 2015.
DOI: 10.1007/978-3-319-25207-0 20

230 W. Song et al.

A straightforward solution for users to protect their data privacy is to encrypt
the data before outsourcing. This service mode has been adopted by Amazon IS
service. By encryption, the data privacy is preserved, but the data utilization,
i.e., search, becomes difficult over the encrypted data. A naive way requires the
user to download and decrypt the data and execute the search over the plain-
text. Obviously, such approach incurs tremendous overheads of communication
and computation and greatly undermines the advantages of using cloud storage
applications.

Searchable encryption schemes [1–6] have been developed in recent years
for balancing the search efficiency and data privacy. However, the existing
approaches mainly focus on the keyword-based search which is difficult to meet
the requirements of the large-scale cloud storage systems. Full-text retrieval is
a successful information retrieval technology for content search over the large
scale data. Its effectiveness and efficiency have been verified by the success of
Internet search engine systems. However, the full-text retrieval technology needs
to extract all the words in the contents of documents, which makes the scale of
index words is much larger than that in the keyword-based search. Therefore,
it is far from practical to provide the full-text retrieval services for the cloud
storage applications using the existing searchable encryption schemes.

To achieve the full-text retrieval over the large scale encrypted documents,
we design a privacy-preserved full-text retrieval index based on which a full-text
retrieval algorithm have been proposed. In our scheme, all the documents are
encrypted, the search processes do not need to decrypt the data. We analyze the
efficiency of the proposed scheme and prove its security. The main contributions
of this paper can be summarized as follows:

– To the best of our knowledge, this is the first work that identifies the problem
of privacy-preserved full-text retrieval over the encrypted data for a large-
scale cloud storage system.

– To address this problem, we propose a secure index structure, based on which
an efficient and secure full-text retrieval scheme over the encrypted data has
been proposed.

– We analyze the security and efficiency of the proposed scheme. Moreover, we
demonstrate the effectiveness and efficiency of the proposed scheme through
extensive experimental evaluation.

The rest of our paper is organized as follows. In the next section, we discuss
some related work. Then we introduce our full-text retrieval algorithm in Section
3. In Section 4, we analysis the efficiency of our scheme and prove the security.
We evaluate the performance of our scheme by the experiments in Section 5.
Finally, our paper is concluded in Section 6.

2 Related Work

Our work mainly focuses on addressing the problem of the secure and efficient
full-text retrieval over the encrypted data at the cloud. To the best of our knowl-
edge, no existing research has addressed this issue. The existing researches that

A Full-Text Retrieval Algorithm for Encrypted Data 231

are similar to ours can be found in the areas of keyword searchable encryption,
rich functional encrypted data search, and ranked search over encrypted data.

2.1 Keyword Searchable Encryption

The existing keyword searchable encryption schemes [1–6] usually build an
encrypted searchable index such that content of sensitive documents is hidden to
the cloud server. The client gives appreciate query trapdoors through the secret
key to retrieve the interested documents. It is first studied by Song et al. [4]
with the symmetric surroundings. Some improvements and advanced security
definitions, including Goh [1], Chang et al. [2], Curtmola et al. [5], and Kamara
et al. [8] are given. In the public key setting, Boneh et al. [6] propose the first
public key searchable encryption construction (PEKS), where anyone encrypts
the data using public key but only authorized users with private key can create
query trapdoors to search. Public key solutions usually have a high computation
overhead. The Bloom filter is an effectively searchable index structure by which
some researches [2,3,6] have been given to implement encrypted data query.
However, these researches put keywords of a document into a Bloom filter, this
document-based index pattern needs to match Bloom filter one by one during
query, so the query efficiency will be reduced with document scale increasing.
Our work, which builds the hierarchical Bloom filter tree index based on the
word, can keep the high query efficiency with a large scale of documents.

2.2 Rich Functional Encrypted Data Search

To achieve authorized encrypted data search, the public-key searchable encryp-
tion schemes [9–12] have been proposed. A common approach of them is to use
a paring based encryption to construct the searchable indexes. However, these
solutions are inefficient to support the cloud storage application because paring
operations are expensive. To enrich the search functionalities, conjunctive key-
word search, fuzzy keyword search, and subset query [9,13–16] over encrypted
data have been proposed. These schemes result in large overhead for their func-
tional computations, such as bilinear computation cost in [13], communication
cost for secret sharing in [14]. And a more general search schemes, predicate
encryption schemes [17–19] are recently proposed to support both conjunctive
and disjunctive search. The disjunctive search is similar to our full-text retrieval
which returns every document that contains a subset of the query keywords.
Moreover, our full-text retrieval scheme designs the effective index structure
contains all words of a document, so it can describe document contents more
accurately and comprehensively and make the cloud with high availability.

2.3 Ranked Search Over Encrypted Data

Ranked searchable encryption enables users to retrieve the most relevant docu-
ments from the cloud in the case that both the user queries and data are in the

232 W. Song et al.

encrypted form to protect user privacy. The work in [20] is the first research for
ranked search encryption. It only supports single-keyword search, and encrypts
documents and queries with a one-to-many OPSE (Order Preserving Symmetric
Encryption) scheme [21] and utilizes keyword frequency to rank query results.
Their following work [22], which supports multi-keyword searches, uses the secure
KNN scheme [23] to rank the results based on inner product value.

3 Full-Text Retrieval Algorithm Over Encrypted Data

3.1 Full-Text Retrieval Model and Its Security Problem

The full-text retrieval model is a successful technology in the scenario of infor-
mation retrieval applications, its efficiency has been verified in the popular
search engine applications. The straightforward method to achieve the full-text
retrieval over encrypted data is to improve the index structure in the exist-
ing full-text retrieval model. To protect the privacy of user’s personal data, we
should encrypt the full-text retrieval index. According to the encryption granu-
larity, the encrypted index can be divided into two main categories: ‘index level ’
and ‘token level ’. The ‘index level ’ mode is to encrypt the whole index. During
the search processes, cloud server has to decrypt the entire index or partial index
and execute the query over the plaintext index. The searches in the ‘index level ’
mode will lead to a great deal of encryption/decryption operations, so it is not
suitable for the large-scale cloud data. Moreover, this service mode makes the
cloud server be able to decrypt the index on the cloud, which makes it be not
able to resist to the internal threatens.

The ‘token level ’ mode encrypts the tokens and builds the secure full-text
retrieval index to enable the searches over the encrypted data. But, the existing
various full-text retrieval algorithms are based on the token offset position and
the token frequency, which will leak the user’s privacy. During the search pro-
cesses, the server needs to compute the offset position and the token frequency,
so we can not directly encrypt the offset position and the token frequency. We
design a novel full-text retrieval algorithm over the encrypted data without using
the offset position and the token frequency.

To introduce our scheme, we first define the full-text retrieval model.

Definition 1: A full-text retrieval system R can be defined as {D,Q,F}, where
D is the set of documents in R, and Q is the expression of the user’s queries,
and F denotes the framework of document expression and content extraction.

Based on the above definition, we introduce our privacy-preserved full-text
retrieval algorithm as below. For a document di, it is mapped into a set of tokens
Ti((t1, p1), (t2, p2), . . . , (tk, pk)) under the framework F , in which tj represents
a token in di’s contents, and pj represents the tj ’s offset position in di. After
extracting all the tokens in di, client uses a one-way hash function H to process
every plaintext token tj by its private key keypri and outputs the encrypted
token ej as Equation 1.

ej = H(tj |keypri) (1)

A Full-Text Retrieval Algorithm for Encrypted Data 233

Once the client gets the set of encrypted tokens ETi = (ei, pi)1≤i≤k as in
Equation 2, it builds the encrypted full-text retrieval index EIndex for di and
uploads to the cloud server.

di
F−→ Ti((t1, p1), . . . , (tk, pk))

Encrypt−−−−−→ ETi((e1, p1), . . . , (ek, pk))
Index−−−−→ EIndex (2)

3.2 System Model

We first present the overview of the proposed privacy-preserved full-text retrieval
framework in this subsection, which is shown in Fig. 1.

cloud storage system

data owner

secure full-text
retrieval index

Upload the encrypted document
and encrypted words

build index

generate
query request

execute full-text retrieval over
the index

decrypt

the
results

data owner
keydoc, keypri

Fig. 1. The full-text retrieval framework of our scheme

The processing flow of the full-text retrieval over the cloud encrypted data
is as follows. While a new user joins the cloud storage system, he first chooses
a private key keypri and a document encryption key keydoc and stores them at
local. And the cloud server initializes a hash function H for the new user. H
represents a one-way hash function which maps arbitrary string to an integer
between 1 and 2m. m is a system global parameter decided by the cloud server. To
protect data privacy, the data owner utilizes the symmetric encryption algorithm
to encrypt the documents before outsourcing. Besides encrypting the documents,
the data owner extracts all the words from the contents of the document and
encrypts these words by the hash function H with the key keypri. Finally, the
data owner uploads the encrypted documents and the encrypted index words
to the cloud. Once the cloud server receives the files uploaded from the data
owner, it inserts them into the full-text retrieval index to provide the secure and
efficient full-text retrieval services.

When the user wants to query the data in the cloud with certain query
words, he generates encrypted query words using the key keypri and the hash
function H. After the cloud server receives the query request, it executes the full-
text retrieval over the index. Finally, the authorized user decrypts the results
returned from cloud with keydoc to finish the query processes.

234 W. Song et al.

3.3 Privacy-Preserved Full-Text Retrieval Index Based on B+ Tree

But the token’s offset position will leak the user’s privacy, so we design a privacy-
preserved full-text retrieval index based on B+ tree without token’s offset posi-
tion. The index structure is shown in Figure 2.

Encrypted
documents

encrypted
token
pointer

encrypted
token
pointer

encrypted
token
pointer

encrypted
token
pointer

encrypted
token
pointer

encrypted
token
pointer

encrypted
token
pointer

encrypted
token
pointer

encrypted
token
pointer

encrypted
token
pointer

encrypted
token
pointer

encrypted
token
pointer

encrypted
token
pointer

encrypted
token
pointer

encrypted
token
pointer

encrypted
token pointer encrypted

token pointer encrypted
token pointer

Encrypted
document

Encrypted token,
Encrypted token,
Encrypted token,

Encrypted
document

Encrypted token,
Encrypted token,
Encrypted token,

Encrypted
document

Encrypted token,
Encrypted token,
Encrypted token,

Fig. 2. The encrypted full-text retrieval index based on B+ tree

First, the client calls the document processing algorithm which we introduce
in the next section to extract all the tokens Ti(t1, t2, . . . , tk) for a document di.
To protect user’s privacy, the index in our scheme does not include the tokens
offset position information. Then, we improve the index generation in Equation
2 as Equation 3

di
F−→ Ti(t1, t2, . . . , tk)

Encrypt−−−−−→ ETi(e1, e2, . . . , ek)
Index−−−−→ EIndex (3)

In our scheme, the search processes does not have the decryption operations.
After the cloud server receives the query request from the client, it converts the
request to the query condition formed by the encrypted query words.

3.4 Document Pre-processing

In the traditional plaintext full-text retrieval algorithm, the server determines
whether a long compound word in a document’s contents based on the word’s
offset position. For example, if a word cloud ’s offset position in the document

A Full-Text Retrieval Algorithm for Encrypted Data 235

d is x and a word computing ’s offset position in the document d is x + 1, then
the server can tell that the compound word ‘cloud computing’ must be in d. To
protect user’s privacy, we do not store the tokens’ offset position information
in the full-text retrieval index, so we propose the privacy-preserved full-text
retrieval algorithm without offset position supporting.

If we put all the possible compound words into the index, then we can
achieve the full-text retrieval over the encrypted data without offset position.
But, putting all the compound words of a document into the index will damage
the search efficiency. Moreover, the compound word which has a long size has a
small possibility for query hit. So, we design the maximal word length k extrac-
tion algorithm in Algorithm 1 to collect all the words for a document, which will
extract all the single words and compound words, the length of which are no
more than k.

Algorithm 1. Extract the index words for a document
Input: d, a document to be uploaded; k, maximal number of single words in a

compound index word; SW , stop words list
Output: words, the index words for d

1 extract all the single words from d and put them into dwords;
2 for (i = 1; i ≤ dwords.size; i + +) do
3 t = dwords[i];
4 if (t in SW) then
5 continue;

6 else
7 add t into words;

8 for (j = 1; j < k; j + +) do
9 if (the jth word after t is in SW) then

10 break;

11 else
12 add the compound word from t to the (j)th word after t into words;

13 remove reduplicative compound words from words;
14 return words;

After the data owner collects all the index words for an uploading document
d, he uses his private key keypri and the hash function H to encrypt these index
words as Equation 1. Then, the data owner uploads these encrypted index words
with the encrypted document to the cloud server.

While the cloud server receives an encrypted document d and its correspond-
ing encrypted index words ei(1 ≤ i ≤ k), it searches the full-text retrieval index
at cloud and finds all the nodes which are equal to one encrypted index word
ei. At last, the cloud server creates the pointer links from these nodes to the
encrypted document to finish the document insertion.

236 W. Song et al.

3.5 Full-Text Retrieval Algorithm Over the Encrypted Data

While a user wants to search his interested files at cloud, he first gives some
query words like using the web search engine applications. The search processes
are described by Equation 4. A user’s query Q is composed by several query
words qwi(1 ≤ i ≤ n). The user uses the same hash function H and his private
key keypri to encrypt these query words by ewi = H(qwi|keypri)(1 ≤ i ≤ n) and
submits them to the cloud server.

Q→ qw1(∧,∨)qw2, . . . , qwn
Encrypt−−−−−→ EQ(ew1, ew2, . . . , ewk)

Search−−−−→ Results (4)

Once the cloud server receives the encrypted query words ewi from the user,
it executes the query based on the index in Fig. 2. Based on the characters of B+
tree, the cloud server finds all the nodes which equal to a encrypted word ewi

from the root node. Afterwards, the cloud server returns the documents which
have pointer links to these nodes as the result of the query to the user.

4 Performance and Security Analysis

In this paper, we propose a privacy-preserved full-text retrieval algorithm over
the encrypted data. During the services, our scheme does not need the decryption
operations. In this section, we analyze the efficiency and the security of our
scheme.

4.1 Query Precision of Our Scheme

The query precision rate indicates the ratio of the exactly relevant documents to
all the returned documents as illustrated in Equation 5, in which Dmatch repre-
sents the total documents which correctly match a query, and Dreturn represents
the total documents returned from the cloud server.

Precision =
Dmatch

Dreturn
× 100% (5)

The index of our scheme is built based on the Hash function H, so the
query false positive rate brought by the confliction of Hash function has to be
considered. We assume that the width of the index node is m, then the confliction
of a node is 1

2m . Consider a document d′ with k index words uploaded by a user
u′ whose private key is key′pri, then the encrypted document d′ has been mapped
into k index nodes. While a user u whose private key is keypri launches a query
Q, the probability of a query word qw equal to an index node linked to d′

but this index node is not the word qw is 1 − (1 − 1
2m)k. For example, when

m = 16, k = 1000 the false positive rate is 1.51%, and the false positive rate is
0.47% when m = 20, k = 5000.

A Full-Text Retrieval Algorithm for Encrypted Data 237

4.2 Query Efficiency of Our Scheme

The query processes in our scheme include three main steps: 1) the user encrypts
the query words and submits them to the cloud server. 2) the cloud server
executes the query over the full-text retrieval index. 3) the user decrypts the
encrypted documents returned from the cloud server by the key keydoc.

In the 1st query step, the cloud user first selects several original query words,
then encrypts the query words by H. The computation cost of the first step is
c × Thash, where c represents the number of original query words given by the
user, and Thash represents the computation cost of one hash operation.

For a privacy-preserved full-text retrieval index which depth is l, the cloud
server needs to route to the nodes which are equal to the encrypted query word
from the root node. So, the computation cost of the 2nd step is c× l.

In the 3rd step, the user decrypts the encrypted documents returned from
the cloud by his private key keydoc. Assuming that the cloud server returned d
documents for a query, and then the computation cost for this step is d× Tdec,
in which Tdec represents the time cost of decrypting a document.

4.3 Security Analysis of Our Scheme

In our scheme, the cloud server stores and processes three types of data includ-
ing the encrypted documents E, the full-text retrieval index I, and the query
requests R from the user. In these information, E is encrypted by the data
owner. Meanwhile, the key keydoc is grasped by the data owner. We assume that
it is impossible for an adversary to stole keydoc from the data owner. Therefore,
based on the security of encryption algorithms, the attacker is unable to break
the data privacy through attacking E without keydoc.

For an external attacker, i.e., the hacker or the internal attacker, he masters
the full-text retrieval index in the cloud. We assume that an adversary A tries to
break the security of our scheme. First, A attempts to guess the word in the full-
text retrieval index node and to guess the information of encrypted documents.
To guess the word in an index node, A has to answer the one-way Hash function
H. Based on the index structure, A can output the word in an index node with
probability roughly qH/2m, where qH is the total number of the queries on H.
Take the index structure (m = 24) as the example, the probability that A can
exactly guess the word in an index node is no more than 1/16, 777, 216 in one
time query. Therefore, through the analysis, we can think of the data privacy in
our scheme is guaranteed.

5 Experiments

5.1 Experimental Setup

We use JAVA language to implement the proposed full-text retrieval scheme in
this paper. We carry out the experiments on a PC machine running Windows
7 with a 64-bits, 3.0 GHz CPU and 4GB main memory. The parameters of our

238 W. Song et al.

scheme in the experiments are shown in Table 1. In the experiments, we use
ICTCLAS1 to extract the words from the contents of documents. Moreover, we
run the experiments over the dataset: Chinese laws and regulations ceremony
which size is 60, 000.

Table 1. Experimental Parameters in the Experiments

Parameters Parameter Descriptions Values

m the bit length of index node 24

k the maximal length of the compound index word 5, 6, 7

5.2 Storage Overhead of Our Scheme

Usually, a cloud storage server stores large scale of documents. So, the storage
overhead of secure full-text retrieval index is significant important for the per-
formance of cloud storage system. We design the experiments to measure the
storage space of the index in our scheme. We compare our scheme with 2-MCIS
[7] which is multi-keyword search over the encrypted data. The experimental
results are shown in Fig. 3.

1 2 3 4 5 6
0

200

400

600

800

1000

1200

1400

1600

the size of documents(× 104)

in
de

x
sp

ac
e(

M
B

)

Mimir(k=5)
Mimir(k=6)
Mimir(k=7)
2−MCIS

Fig. 3. Storage overhead of our scheme

From the experimental results, we can find that the storage overhead of our
scheme is comparable with that in 2-MCIS. When k = 5 and d = 60, 000,
the index is no more than 830MB. So, our scheme achieves a satisfied storage
performance which makes our scheme is able to efficiently support a large scale
cloud storage system.

1 NLPIR. http://ictclas.nlpir.org/

A Full-Text Retrieval Algorithm for Encrypted Data 239

5.3 Query Efficiency of Our Scheme

For a cloud storage system, the query response time is one of the most important
indicators. We design the experiments to evaluate the mean query response time
with different k value. The experimental results are shown in Fig. 4.

1 2 3 4 5 6
0

100

200

300

400

500

600

700

the size of documents(× 104)

qu
er

y
tim

e(
m

s)

2−MICS
Mimir(k=5)
Mimir(k=6)
Mimir(k=7)

Fig. 4. query efficiency with various scale of documents

We can find from the experimental results in Fig. 4 that our scheme is more
efficient than 2-MICS. For a query, our algorithm is able to make the cloud
server execute the query in 200 ms. Moreover, the query efficiency will not reduce
greatly with the increasing of the document scale. This interesting feature makes
our scheme be able to support large scale cloud storage system.

6 Conclusion

In this paper, for the first time we define and address the problem of support-
ing efficient yet privacy-preserved full-text retrieval services to enrich the query
function over the cloud encrypted data. We design a privacy-preserved full-text
retrieval index structure to allow the authorized user to execute the full-text
retrieval over the encrypted documents at the cloud. Through the rigorous secu-
rity and performance analysis, we demonstrate that the proposed solution is
secure and privacy preserving. Extensive experimental results further validate
the effectiveness and efficiency of our solution.

Acknowledgments. This work is supported by National Natural Science Foundation
of China No. 61202034 and 61232002, CCF Opening Project of Chinese Information
Processing No. CCF2014-01-02, and the Program for Innovative Research Team of
Wuhan No. 2014070504020237.

240 W. Song et al.

References

1. Goh, E.-J.: Secure indexes. IACR Cryptology ePrint Archive (2003)
2. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote

encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

3. Watanabe, C., Arai, Y.: Privacy-preserving queries for a DAS model using
encrypted bloom filter. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA
2009. LNCS, vol. 5463, pp. 491–495. Springer, Heidelberg (2009)

4. Song, D., Wagner, D., Perrig, A.: Practical Techniques for Searches on Encrypted
Data. In: Proceedings of S&P, pp. 44–55 (2000)

5. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmertric
encryption: improved definitions and efficient constructions. In: CCS (2006)

6. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

7. Wang, N., Zhao, W., Liu, G., Zhao, C.: K-mapping chipher index scheme as
to character data in outsourced database. Journal of Yanshan University 33(5),
438–443 (2009)

8. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic Searchable Symmetric
Encryption. In: Proceedings of CCS, pp. 965–976 (2012)

9. Li, M., Yu, S., Cao, N., Lou, W.: Authorized Private Keyword Search over
Encrypted Data in Cloud Computing. In: ICDCS, pp. 393–402 (2011)

10. Sun, W., Yu, S., Lou, W., Hou, Y., Li, H.: Protecting your Right: Attribute-based
Keyword Search with Fine-grained Owner-enforced Search Authorization in the
Cloud. In: Proceedings of INFOCOM, pp. 226–234 (2014)

11. Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Trapdoor Security in a Searchable
Public-key Encryption Scheme with a Designated Tester. Journal of System and
Software 83(5), 763–771 (2010)

12. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

13. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over
encrypted data in cloud computing. In: INFOCOM, pp. 441–445 (2010)

14. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword
searches over encrypted data. In: Qing, S., Mao, W., López, J., Wang, G. (eds.)
ICICS 2005. LNCS, vol. 3783, pp. 414–426. Springer, Heidelberg (2005)

15. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

16. Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public key encryption
that allows PIR queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 50–67. Springer, Heidelberg (2007)

17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

18. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (Hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 62–91. Springer, Heidelberg (2010)

A Full-Text Retrieval Algorithm for Encrypted Data 241

19. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg
(2009)

20. Wang, C., Cao, N., Li, J., Ren, K., Lou, W.: Secure ranked keyword search over
encrypted cloud data. In: Proceedings of ICDCS, pp. 253–262 (2010)

21. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009)

22. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. In: Proceedings of INFOCOM (2011)

23. Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N.: Secure kNN computation on
encrypted databases. In: Proceedings of SIGMOD, pp. 139–152 (2009)

