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Abstract. Canonical Correlation Analysis (CCA) is a standard statistical tech-
nique for finding linear projections of two arbitrary vectors that are maximally 
correlated. In complex situations, the linearity of CCA is not applicable. In this 
paper, we propose a novel local method for CCA to handle the non-linear situa-
tions.We aim to find a series of local linear projections instead of a single globe 
one. We evaluate the performance of our method and CCA on two real-world 
datasets. Our experiments show that local method outperforms original CCA in 
several realistic cross-modal multimedia retrieval tasks. 
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1 Introduction 
Canonical correlation analysis (CCA) is a statistical method of correlating linear rela-
tionships between two parts of multidimensional variables [11,17]. CCA can be re-
garded as the problem of finding two basis directions onto which the correlation  
between the projections of two variables is maximized. CCA is broadly used in unsu-
pervised analysis since it does not require labeled data. The applications are therefore 
cross various areas, including natural language processing [9,18], neuronal data anal-
ysis [6], computer vision [20] and cross modal multimedia retrieval [8,15]. However, 
because of its linearity, when strong nonlinear relation occurs, CCA is often not ap-
plicable. Several methods were thus proposed to find nonlinear projections. However, 
most of the state-of-the-art non-linear improvements still aim to maximize the correla-
tion of two variables in a single uniform projection.  

In this paper, we propose a local linear model for CCA. Unlike the methods which 
aim to find uniform projections, we consider to construct several local projections, 
each of them maximizes correlation in a particular region of the dataset. The local 
projection relaxes the global linearity objective of CCA. In order to construct local 
CCA projection, we make use of the techniques from non-parametric kernel smooth-
ing. The final correlation between two variables is smoothed combination of local 
correlation. Our results show that the method based on local linear projection outper-
forms the standard CCA in various real world information retrieval tasks. 

2 Related Work 

Rasiwasia [15] used canonical correlation analysis to solve the cross-modal multime-
dia retrieval problem. Instead of classical text-based information retrieving, Rasiwasia 
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made use of the rich multiple modalities information. Take text-image cross retrieving 
for example, they used Latent Dirichlet Allocation (LDA) method to process text 
corpus into a group of vectors and use SIFT method to extract images’ features into 
another group of vectors. By applying canonical correlation analysis on these two 
kinds of vectors, it is able to retrieve related images from a text query or retrieve re-
lated texts from a given image. 

Improvement of canonical correlation analysis for handling non-linear projections 
has been researched intensively. Kernel Canonical Correlation Analysis [4] maximiz-
es correlation in higher dimension space with help of kernel trick. Neuronal networks 
are also introduced for solving the linearity drawback of CCA [2,19].  

Another part of related work is the local models. Local principal component analy-
sis by Kambhatla[13] proposed local models for PCA. Kambhatla’s work partition the 
train data into disjoint regions and within each of which they construct linear models 
by PCA. Local Linear Embedding(LLE)[16] provides local linear model for dimen-
sionality reduction. Local methods is also common in non-parametric analysis. Lee, 
Joonseok, et al.[14] proposed a local low rank model for matrix completion.  

2.1 Background 

Canonical Correlation Analysis(CCA) 
Consider a pair of training vectors (we call they are in different views), ሺX, Yሻ Թ୫ൈ୰భא ൈ Թ୫ൈ୰మ with corresponding covariance pair  ሺΣଵଵ, Σଶଶሻ . Let Σଵଶ denote the 
cross-covariance ofሺX, Yሻ. CCA aims to find a pair of directions (a,b) (called canoni-
cal components) on which the vectors’ projection is maximally correlated, i.e. 

 ሺܽ, ܾሻ ൌ arg max௔,௕ ୡ୭୴൫௔೅௑,௕೅௒൯ఙೌ೅೉ఙ್೅ೊ ൌ arg max௔,௕ ௔೅ఀభమ௕ඥ௔೅ఀభభ௔ඥ௕೅ఀమమ௕ (1) 

Because the choice of re-scaling is arbitrary, the optimization of Eq. (1) is equiva-
lent to maximizing the numerator subject to 

ଵଵܽߑ்ܽ  ൌ 1, ଶଶܾߑ்ܾ ൌ 1 (2) 

The optimization thus is transformed into 

 ሺܽ, ܾሻ ൌ argmax௔೅ఀభభ௔ୀଵ,௕೅ఀమమ௕ୀଵ  ଵଶܾ (3)ߑ்ܽ

For simplicity, we denote ݑ ൌ ்ܽܺ, ݒ ൌ ்ܾܻ . Then by constructing the corres-
ponding Lagrangian we get, 

 ࣦ ൌ ∑ ்ܽሺݔ௜ െ ௜ݕതሻሺݑ െ ҧሻܾݒ െ ఒଶ ሺ்ܽߑଵଵܽሻ െ ఏଶ ሺ்ܾߑଶଶܾሻே௜ୀଵ  (4) 

Taking derivatives to a, b, we obtain the following equations, 

 డࣦడ௔ ൌ ∑ ሺݔ௜ െ ௜ݕሻ்ሺݑ െ ҧሻܾݒ െ Σଵଵܽߣ ൌ 0ே௜ୀଵ  (5) 
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 డࣦడ௕ ൌ ∑ ሺݕ௜ െ ௜ݔሻ்ሺݒ െ തሻܽݑ െ Σଶଶܾߣ ൌ 0ே௜ୀଵ  (6) 

By using ்ܽ  times the Eq.(5) and using ்ܾ  times Eq.(6) and accompanied the 
constraint Eq.(2) we obtain,  

ߣ  ൌ ߠ ൌ ଵଶ௪ߑ்ܽ ܾ (7) 

Obviously, the maximal ߣ  is in fact the maximal correlation. By simplifying 
Eq.(7) and assuming Σଵଵand Σଶଶ is invertible we obtain, 

 ΣଵଵିଵΣଵଶܾ ൌ  (8) ܽߣ

 ΣଶଵିଵΣଶଶܾ ൌ  (9) ܾߣ

We then transform the Eq. (8) and Eq.(9) into matrix format, 

 ൬Σଵଵିଵ 00 Σଶଶିଵ൰ ൬ 0 ΣଵଶΣଶଵ 0 ൰ ቀܾܽቁ ൌ λ ቀܾܽቁ (10) 

Let ܤdenotes൬Σଵଵ 00 Σଶଶ൰, ܣ  denotes൬ 0 ΣଵଶΣଶଵ 0 ൰  and ݎdenotesቀܾܽቁ, finally, we 

transform Eq. (9) into the following form, 

ݎܣଵିܤ  ൌ  (11)  ݎߣ

The problem left in Eq. (11) is a generalized eigenvalue problem. 

Local Approach and Kernel Methods 
In non-parametric statistics, kernel methods can be used to specify the local neighbor-
hood by assigning weights to the points around a given point [10]. Let ܭ௛ሺ݌଴,  ሻ݌
denote a kernel function, h is the bandwidth parameter h > 0, ݌଴ is a query point. A 
large value of h implies thatܭ௛ሺ݌଴, ሻ spread widely while a small value means it 
spread narrowly. The kernel function will calculate weight for each point within the 
neighborhood. Points within the local neighborhood will be assigned weights by the 
kernel function. The following is three popular kernels [14], uniform kernel, triangu-
lar kernel and Epanechnikov kernel. ܭ௛ሺ݌଴, ሻ݌ ؔ ૚ሾ݀ሺ݌଴, ሻ݌ ൏ ݄ሿ ܭ௛ሺ݌଴, ሻ݌ ؔ ൫1 െ ݄ିଵ݀ሺ݌଴, ,଴݌ሻ൯૚ሾ݀ሺ݌ ሻ݌ ൏ ݄ሿ ܭ௛ሺ݌଴, ሻ݌ ؔ ሺ1 െ ݀ሺ݌଴, ,଴݌ሻଶሻ૚ሾ݀ሺ݌ ሻ݌ ൏ ݄ሿ 

After the neighborhood is determined, result is calculated by Nadaraya–Watson 
[10] kernel weighted average.  

 መ݂ሺ݌଴ሻ ൌ ∑ ௄೓ሺ௣బ,௣೔ሻ௣೔∑ ௄೓ሺ௣బ,௣ೕሻೕಿே௜  (12) 
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3 Local Linear Model 

Most of the real-world data do not contain strong linearity globally. In order to handle 
non-linear situation. Our local model focuses on maximizing the correlation in a par-
ticular local region. Therefore, we aim to find a strategy to construct such a series of 
local projections and calculate distance between query vectors to the candidate vec-
tors based on these local projections. 

 Weighted CCA: In order to make use of the weights in the local region, we 
change the standard CCA to a new weighted form. Similarly ,we start with defin-
ing the pair of two projected vectors by ݑ ൌ ்ܽܺ, ݒ ൌ ்ܾܻ with the corresponding 
weighted averages: 

ത௪ݑ  ൌ ∑ ௪೔௑೔೔∑ ௪೔೔ , ҧ௪ݒ ൌ ∑ ௪೔௒೔೔∑ ௪೔೔  (13) 

For simplicity, we normalized the weights, let ∑ ௜௜ݓ ൌ 1. The weighted variance 
and the weighted covariance are, 

ሻݑ௪ሺݎܽݒ  ൌ ∑ ௜ሺ்ܽܺݓ െ ത௪ሻଶݑ்ܽ ൌ ்ܽ ∑ ௜ሺݓ ௜ܺ െ ത௪ሻଶே௜ݑ ܽே௜ ൌ ்ܽΣଵଵ௪ ܽ (14) 

ሻݒ௪ሺݎܽݒ  ൌ ்ܾΣଶଶ௪ ܾ (15) 

,ݑ௪ሺݒ݋ܿ  ሻݒ ൌ ଵ∑ ௪ ்ܽ ∑ ௜ሺݓ ௜ܺ െ ത௪ሻሺݑ ௜ܻ െ ҧ௪ሻܾݒ ൌ ்ܽΣଵଶ௪ ܾே௜ୀଵ   (16) 

We now aim to maximize the weighted correlation in each region, 

 ሺܽ, ܾሻ ൌ argmax௔,௕ ௔೅ஊభమೢ௕ට௔೅ஊభభೢ௔ට௕೅ஊమమೢ௕ (17) 

The later derivation is similar as the standard CCA, we maximize the numerator, 
by constraining the weighted variances into unit ones.  

ሻݑ௪ሺݎܽݒ  ൌ 1, ሻݒ௪ሺݎܽݒ ൌ 1 (18) 

The remaining steps are as same as standard CCA that we mentioned in Section 2.1 

and we find then left a generalized eigenvalue problem again. 

 Local Method by Anchor Pairs: In order to construct local projections, we firstly 
select q anchor pairs. Each anchor pair has its own region which is specified by the 
kernel function. Pairs in each region are also assigned weights by kernel function 
according to the distance to the anchors. Moreover, for each region, we apply the 
aforementioned weighted CCA to obtain a local projection. Fig.1.illustrates this 
idea. 

 Combining Strategy: By local method with anchor pairs, suppose we have al-
ready selected ݍ  anchor pairs which are denoted by ሺ݁ଵ, ଵ݂ሻ … ൫݁௤, ௤݂൯, ݁ ,Թ௠ൈ௥భא ݂ א Թ௠ൈ௥మ , we now obtain ݍ local canonical components൏ ܽଵ, ܾଵ ൐ ڮ ൏ܽ௤, ܾ௤ ൐. Evaluation state of CCA is often the problem of retrieving top k nearest-
data in different view. We denote ଵܳ א Թ௥భ  as a query vector from view one.  
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The problem of calculating correlation from ଵܳ to the vectors in Թ௥మ  from q local 
projections is known as non-parametric regression. We propose using the afore-
mentioned Nadaraya-Waston regression. Let ܦሺ ଵܳሻdenotes the final distance be-
tween the query vectors ଵܳ to all other candidate vectors inԹ௥మ . Let ܦ෡௜ሺ ଵܳሻ de-
notes the distance from ଵܳ to all other candidate vectors which are calculated in 
the ݅௧௛ local projection. Therefore, with Nadaraya-Waston regression, we obtain 
the final distance by Eq. (19). 

ሺܦ  ଵܳሻ ൌ ∑ ௄೓ሺ௘೔,ொభሻ∑ ௄೓ሺ௘ೕ,ொభሻ೜ೕ௤௜ ෡௜ሺܦ ଵܳሻ (19) 

 Local Canonical Correlation Analysis(LCCA): We denote the ݅௧௛ pair of data in 
the training set using ሺ ௜ܺ, ௜ܻሻ in which ௜ܺcontains ݎଵdimensions and ௜ܻcontains ݎଶ 
dimensions. Let ݄ଵ represent the kernel width for viewܺ and ݄ଶrepresent the ker-
nel width for view ܻ. An anchor pair is denoted byሺ݁, ݂ሻ. ܭ௛భis a vector that stores 
the values from the kernel function with  ݄ଵkernel width and ܭ௛మ  has the similarly 
meaning. We use a vector ݓ א Թ to store weights for training pairs. Distance 
function is denoted as d ().൏ ܽ௧, ܾ௧ ൐ is the canonical components maximize the 
correlation in the local region around the ݐ௧௛anchor pair. Algorithm 2-1 describes 
the training state of LCCA. Obviously, during the training state, the q local region 
are independent. Therefore, the q iteration can be computed parallel which great 
increases the algorithm speed. In the predicating state , we calculate the distances 
between the query vector with candidate vectors in each local spaces thus we get q 
distance vectors. With Eq. (19). , we combine the local distance vectors into the fi-
nal distance vectors. Then we select the top k nearest candidate as the results for 
the query. 

Algorithm 2-1 LCCA training state 

 
Fig. 1. Local Method by Anchor Pairs 

Input: ܺ א Թ௡ൈ௥భ, ܻ א Թ௡ൈ௥మ, ݄ଵ, ݄ଶ,  ݍ
for all ݐ ൌ 1 … ,in parallel do ሺ݁௧ݍ ௧݂ሻ ؔ randomly selected traiing pair 

for  ݅ ൌ 1 ՜ ݊do ܭ௛భ௘೟ሾ݅ሿ ؔ ሺ1 െ ݀ሺ݁௧, ௜ܺሻଶሻ૚ௗሺ௘೟,௑೔ሻழ௛భ ܭ௛మ௙೟ሾ݅ሿ ؔ ሺ1 െ ݀ሺ ௧݂, ௜ܻሻଶሻ૚ௗሺ௙೟,௒೔ሻழ௛మ ݓ௜ ൌ  ௛మ௙೟ሾ݅ሿܭ ௛భ௘೟ሾ݅ሿܭ
end for ሺܽ௧, ܾ௧ሻ ൌ argmax௔೟,௕೟

ܽ௧் Σଵଶ௪ ௧ܾඥܽ௧் Σଵଵ௪ ܽ௧ඥܾ௧் Σଶଶ௪ ௧ܾ 
end for 
Output:൏ ܽ௧, ܾ௧ ൐, ݐ ൌ 1 …  ݍ

4 Experiment 

In this section, we perform experiments on two real world datasets to illustrate the 
performance of our algorithm. The task we set is cross modal information retrieval 
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task. Cross-modal information retrieval can match queries from one modality to data-
base entries from another modality. Each dataset contains training set and testing set, 
either set consists of paired vectors which are categorized into several classes. Based 
on LCCA and CCA, we measure the distance between a query of one modality to 
candidate result of the other modality. The performances are measured with mean 
average precision (MAP) which is widely used in information retrieval task. Since the 
Norm Correlation distance metric achieve the best performance in the experiments of 
Rasiwasiaet al. [15], we use this metric as our distance function in our later experi-
ments.The kernel we used is the Epanechnikov kernel which is mentioned above. In 
each of the following dataset, we also compare the influence of different region sizes 
for LCCA. 

4.1 Datasets 

 “Wikipedia” is a dataset assembled from Wikipedia’s “featured articles” by Rasi-
wasia et al. [15]. It contains 2866 documents which are random split into a training 
set with 2173 documents and a test set with 600 documents. The documents are ca-
tegorized into 10 categories. Each text is represented as a topic histogram over 10 
topics by LDA topic model, while each image is represented by a SIFT codebook 
of 128 codewords. 

 “Chinese Web Portal” is collected by ourselves from several popular web portal 
sites in China. It contains 7033 web documents of paired texts and images, which 
belong to 11 categories. These documents are randomly divided into two parts: 
70% for training set, and 30% for testing set. We use a popular Chinese segment 
tool IKAnalyzer1 to separate the documents into “bags of words” and use LDA to 
extract 30 latent features from each text. Images are also represented as SIFT his-
tograms by a SIFT codebook of 128 codewords.  

4.2 Results and Analysis 

Fig. 2. graphs the MAP performances achieved by LCCA and CCA. We set LCCA 
with two different local region size for each experiment. In “Wikipedia” dataset, we 
set the local region size to 2000 and 2100 for both image query evaluation and text 
query evaluation. The main tendency of LCCA grows with the increasing number of 
anchor points. Either in image queries or in text queries, LCCA always outperforms 
the CCA when there are more than ten anchors. Similar results appear in the “Chinese 
Web Portal” datasets, the main tendency of MAP scores increases with the increasing 
number of anchors.  
 
 
 
 

                                                           
1 From http://code. google. com/p/ik-analyzer 
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Wikipedia -Image Query Wikipedia -Text Query 

 
Chinese Web Portal-Image Query Chinese Web Portal-Text Query 

 
Fig. 2. MAP scores against the number of anchor points in different datasets. 

5 Conclusions 

We presented a novel local approach for canonical correlation analysis. Our proposed 
algorithm is called Local Canonical Correlation Analysis (LCCA) which can be easily 
implemented for parallel computing. The performance is evaluated in two different 
real world datasets. Our experiments indicate that LCCA outperforms the standard 
CCA in the cross modal information retrieval task. We also analyze LCCA’s perfor-
mance in terms of its locality (required training points in each local region) and num-
ber of required anchor points. Since the basic idea of LCCA is construct local regions 
and apply weighted CCA in the local region, our future work is plan to investigate the 
performance by applying other existing non-linear CCA(e.g. kernel CCA) in the local 
region. 

Acknowledgements. This work is supported by National High-tech R&D Program of China 
(863 Program) (No. SS2015AA011809 ), Science and Technology Commission of Shanghai 
Municipality (No. 14511106802), and National Natural Science Foundation of China (No. 
61170007). We are grateful to the anonymous reviewers for their valuable comments. 

0 5 10 15 20 25 30 35 40 45 50
0.32

0.34

0.36

0.38

0.4

0.42

0.44

Number of Anchor Points

M
AP

 S
co

re

 

 

CCA
4000pointsLCCA
4500pointsLCCA

0 5 10 15 20 25 30 35 40 45 50
0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

Number of Anchor Points

M
AP

 S
co

re

 

 

CCA
2000pointsLCCA
2100pointsLCCA

0 5 10 15 20 25 30 35 40 45 50
0.32

0.34

0.36

0.38

0.4

0.42

0.44

Number of Anchor Points

M
AP

 S
co

re

 

 

CCA
4000pointsLCCA
4500pointsLCCA

0 5 10 15 20 25 30 35 40 45 50
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Number of Anchor Points

M
AP

 S
co

re

 

 

CCA
4000pointsLCCA
4500pointsLCCA



 A Local Method for Canonical Correlation Analysis 435 

References 

1. Akaho, S.: A kernel method for canonical correlation analysis (2006). arXiv preprint 
cs/0609071 

2. Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. In: 
Proceedings of the 30th International Conference on Machine Learning, pp. 1247–1255 
(2013) 

3. Asoh, H., Takechi, O.: An approximation of nonlinear canonical correlation analysis by 
multilayer perceptrons. In: ICANN 1994, pp. 713–716. Springer (1994) 

4. Bach, F.R., Jordan, M.I.: Kernel independent component analysis. The Journal of Machine 
Learning Research 3, 1–48 (2003) 

5. Barnard, K., Duygulu, P., Forsyth, D., De Freitas, N., Blei, D.M., Jordan, M.I.: Matching 
words and pictures. The Journal of Machine Learning Research 3, 1107–1135 (2003) 

6. Bießmann, F., Meinecke, F.C., Gretton, A., Rauch, A., Rainer, G., Logothetis, N.K.,  
Müller, K.R.: Temporal kernel CCA and its application in multimodal neuronal data  
analysis. Machine Learning 79(1–2), 5–27 (2010) 

7. Bishop, C.M.: Pattern recognition and machine learning. Springer (2006) 
8. Costa Pereira, J., Coviello, E., Doyle, G., Rasiwasia, N., Lanckriet, G.R., Levy, R.,  

Vasconcelos, N.: On the role of correlation and abstraction in cross-modal multimedia re-
trieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(3), 521–535 
(2014) 

9. Dhillon, P., Foster, D.P., Ungar, L.H.: Multi-view learning of word embeddings via CCA. 
In: Advances in Neural Information Processing Systems, pp. 199–207 (2011) 

10. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning. Springer series 
in statistics, vol. 1. Springer, Berlin (2001) 

11. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An over-
view with application to learning methods. Neural Computation 16(12), 2639–2664 (2004) 

12. Hsieh, W.W.: Nonlinear canonical correlation analysis by neural networks. Neural Net-
works 13(10), 1095–1105 (2000) 

13. Kambhatla, N., Leen, T.K.: Dimension reduction by local principal component analysis. 
Neural Computation 9(7), 1493–1516 (1997) 

14. Lee, J., Kim, S., Lebanon, G., Singer, Y.: Local low-rank matrix approximation. In: Pro-
ceedings of the 30th International Conference on Machine Learning, pp. 82–90 (2013) 

15. Rasiwasia, N., Costa Pereira, J., Coviello, E., Doyle, G., Lanckriet, G.R., Levy, R., Vas-
concelos, N.: A new approach to cross-modal multimedia retrieval. In: Proceedings of the 
International Conference on Multimedia, pp. 251–260. ACM (2010) 

16. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. 
Science 290(5500), 2323–2326 (2000) 

17. Thompson, B.: Canonical correlation analysis. Encyclopedia of Statistics in Behavioral 
Science (2005) 

18. Vinokourov, A., Cristianini, N., Shawe-Taylor, J.S.: Inferring a semantic representation of 
text via cross-language correlation analysis. In: Advances in Neural Information 
Processing Systems, pp. 1473–1480 (2002) 

19. Wand, M.P., Jones, M.C.: Kernel smoothing. CRC Press (1994) 
20. Zheng, N., Loizou, G., Jiang, X., Lan, X., Li, X.: Computer vision and pattern recognition 

(2007) 


