CCF ADL 2015 Nanchang Oct 11, 2015

Learning to Process Natural Language in Big Data Environment

Hang Li
Noah's Ark Lab
Huawei Technologies

Part 2: Useful Deep Learning Tools

Powerful Deep Learning Tools

- (Unsupervised) Neural Word Embedding
- Recurrent Neural Networks
- Convolutional Neural Networks
- Recursive Neural Networks

Neural Word Embedding

Neural Word Embedding

- Motivation
 - Representing words with lower-dimensional (100~)
 real-valued vectors
 - Unsupervised setting
 - As input to neural networks
- Tool: Word2Vec
- Method: SGNS (Skip-Gram with Negative Sampling)

Skip-Gram with Negative Sampling (Mikolov et al., 2013)

Input: occurrences between words and contexts

M	c_1	c_2	c_3	C_4	c_5
W_1	5		1	2	
W_2		2			1
W_3	3			1	

• Probability model: $P(D=1|w,c) = \sigma(\vec{w} \cdot \vec{c}) = \frac{1}{1+e^{-\vec{w} \cdot \vec{c}}}$ $P(D=0|w,c) = \sigma(-\vec{w} \cdot \vec{c}) = \frac{1}{1+e^{\vec{w} \cdot \vec{c}}}$

Skip-Gram with Negative Sampling

• Negative sampling: randomly sample unobserved pair w, c_N

$$\mathbf{E}_{c_{N\sim P}}[\log \sigma(-\vec{w}\cdot\vec{c}_N)]$$

Objective in learning

$$L = \sum_{w} \sum_{c} \#(w, c) \log \sigma(\vec{w} \cdot \vec{c}) + k \cdot \mathbf{E}_{C_N \sim P} \log \sigma(-\vec{w} \cdot \vec{c}_N)$$

• Algorithm: stochastic gradient decent

Interpretation as Matrix Factorization (Levy & Goldberg 2014)

Pointwise Mutual Information Matrix

Interpretation as Matrix Factorization

Word Representation: Neural Word Embedding (Mikolov et al., 2013)

Recurrent Neural Network

Recurrent Neural Network (RNN) (Mikolov et al. 2010)

Simple Recurrent Neural Network

$$h_{t} = f(h_{t-1}, x_{t}) = \sigma(W_{h}h_{t-1} + W_{x}x_{t} + b)$$

Long Term Short Memory (LSTM) (Hochreiter & Schmidhuber, 1997)

- Have a memory (vector) to memorize previous values
- Use input gate, output gate, forget gate
- Gate: element-wise product with vector with values in [0,1]

$$i_{t} = \sigma(W_{ih}h_{t-1} + W_{ix}X_{t} + b_{i})$$

$$f_{t} = \sigma(W_{fh}h_{t-1} + W_{fx}X_{t} + b_{f})$$

$$o_{t} = \sigma(W_{oh}h_{t-1} + W_{ox}X_{t} + b_{o})$$

$$g_{t} = \tanh(W_{gh}h_{t-1} + W_{gx}X_{t} + b_{g})$$

$$c_{t} = i_{t} \otimes g_{t} + f_{t} \otimes c_{t-1}$$

$$h_{t} = o_{t} \otimes \tanh(c_{t})$$

Gated Recurrent Unit (GRU) (Cho et al., 2014)

- Have a memory (vector) to memorize previous values
- Use reset gate, update gate

$$r_{t} = \sigma(W_{rh}h_{t-1} + W_{rx}X_{t} + b_{r})$$

$$z_{t} = \sigma(W_{zh}h_{t-1} + W_{zx}X_{t} + b_{z})$$

$$g_{t} = \tanh(W_{gh}(r \otimes h_{t-1}) + W_{gx}X_{t} + b_{g})$$

$$h_{t} = z_{t}h_{t-1} + (1 - z_{t})g_{t}$$

Recurrent Neural Network Language Model

Model

$$h_{t} = \sigma(W_{h}h_{t-1} + W_{x}x_{t} + b_{hx})$$

$$y_{t} = P(y_{t} = x_{t} \mid x_{1} \cdots x_{t-1}) = \operatorname{soft} \max(Wh_{t} + b)$$

Objective of Learning

$$\frac{1}{T} \sum_{t=1}^{T} -\log \hat{y}_{t}$$

Recurrent Neural Network (RNN) (Mikolov et al. 2010)

- On sequence of words
- Variable length
- Long dependency: LSTM or GRU

the cat sat on the mat

Convolutional Neural Network

Convolutional Neural Network (CNN) (Hu et al., 2014)

Example: Image Convolution

Filter Leow Wee Kheng

Example: Image Convolution

Feature Map

0	0	0	0	0
0	0	1	1	0
0	1	3	2	0
0	1	3	1	0
0	1	1	0	0

Convolution

 $z_i^{(l,f)} = \sigma(w^{(l,f)} \cdot z_i^{(l-1)} + b^{(l,f)})$ $f = 1, 2, \dots, F_l$ $z_i^{(l,f)}$ is output of neuron of type f for location i in layer l $w^{(l,f)}, b^{(l,f)}$ are parameters of neuron of type f in layer l σ is sigmoid function

 $z_i^{(l-1)}$ is input of neuron for location i from layer l-1 $z_i^{(0)}$ is input from cancatenated word vectors for location i $z_i^{(0)} = [x_i^T, x_{i+1}^T, \cdots, x_{i+h-1}^T]^T$

Filter → feature map
→ neuron

Max Pooling

$$\begin{split} z_i^{(l,f)} &= \max(z_{2i-1}^{(l-1,f)}, z_{2i}^{(l-1,f)}) \\ z_i^{(l,f)} &\text{ is output of pooling of type } f \text{ for location } i \text{ in layer } l \\ z_{2i-1}^{(l-1,f)}, z_{2i}^{(l-1,f)} &\text{ are input of pooling of type } f \text{ for location } i \text{ in layer } l \end{split}$$

Sentence Classification Using Convolutional Neural Network

Convolutional Neural Network (CNN) (Hu et al. 2014, Blunsom et al. 2014)

Recursive Neural Network

Recursive Neural Network (Socher et al., 2013)

Recursive Neural Network

$$score = U \cdot p$$

$$p = \tanh \left[W \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + b \right]$$

Learning of Recursive Neural Network

 The score of a tree is the sum of the scores of its nodes.

$$s(x, y) = \sum_{n \in nodes(y)} s(n)$$

Max margin parsing

$$L = s(x, y) - \max_{z \in Z(x)} \left(s(x, z) + \Delta(y, z) \right)$$

 $\Delta(y, z)$: penalty on incorrect tree

Z(x): greedily searched trees

Recursive Neural Network (RNN) (Socher et al. 2013)

Learning of Sentence Representation

Representation of Word Meaning

Representation of Sentence Meaning

Recent Breakthrough in Distributional Linguistics

- From words to sentences
- Compositional
- Representing syntax, semantics, even pragmatics

How Is Learning of Sentence Meaning Possible?

- Deep neural networks (complicated non-linear models)
- Big Data
- Task-oriented
- Error-driven and gradient-based

Natural Language Tasks

Classification: assigning a label to a string

$$S \longrightarrow C$$

Generation: creating a string

$$\rightarrow s$$

Matching: matching two strings

$$s,t \rightarrow \mathbf{R}^+$$

Translation: transforming one string to another

$$s \rightarrow t$$

Structured prediction: mapping string to structure

$$s \rightarrow s'$$

Natural Language Applications Can Be Formalized as Tasks

- Classification
 - Sentiment analysis
- Generation
 - Language modeling
- Matching
 - Search
 - Question answering
- Translation
 - Machine translation
 - Natural language dialogue (single turn)
 - Text summarization
 - Paraphrasing
- Structured Prediction
 - Information Extraction
 - Parsing

Learning of Representations in Tasks

Classification

$$S \longrightarrow r \longrightarrow c$$

Generation

$$\rightarrow s(r)$$

Matching

$$s, t \longrightarrow \mathbf{R}^+$$

Translation

$$s \rightarrow r \rightarrow t$$

Structured Prediction

$$s \rightarrow s' + r$$

Our Observation

- Unsupervised word-embedding (e.g., Word2Vec) is needed, only when there is not enough data for supervised word-embedding
- Convolutional Neural Network is suitable for matching tasks
- Recurrent Neural Network is suitable for generation tasks
- Not observed so far that Recursive Neural
 Network works better than the other two models

References

- Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernocký, and Sanjeev Khudanpur. Recurrent Neural Network based Language Model. *InterSpeech* 2010.
- Omer Levy, Yoav Goldberg, and Ido Dagan. Improving Distributional Similarity with Lessons Learned from Word Embeddings. TACL 2015 pp. 211-225.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean.
 Distributed Representations of Words and Phrases and Their Compositionality.
 NIPS 2013, pp. 3111-3119.
- Hochreiter, S., & Schmidhuber, J. Long Short-Term Memory. *Neural Computation*, 9(8), 1735-1780, 1997.
- Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv:1406.1078.
- Hu, B., Lu, Z., Li, H., & Chen, Q. Convolutional Neural Network Architectures for Matching Natural Language Sentences. NIPS 2014 (pp. 2042-2050).
- Blunsom, P., Grefenstette, E., & Kalchbrenner, N. (2014). A Convolutional neural network for modeling sentences. ACL 2014.
- Socher, Richard, John Bauer, Christopher D. Manning, and Andrew Y. Ng.
 "Parsing with compositional vector grammars." ACL 2013.

Thank you!

hangli.hl@huawei.com