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Development of Deep Learning

The article about
back propagation
published on Nature

Overcome the
difficulty in training
neural network
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inimage
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11%
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Applications of Deep Learning

Progress on Voice Field
» The recognifion rate has achieved 81% in noisy environment

and 94% in quiet environment.
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Applications of Deep Learning

Progress on Image Recognition Field

®» The image recognifion task has achieved 4.94% top-5 test

GT: horse cart
1: horse cart
2: minibus

3: oxcart
4:stretcher
5:half track

oucal
1: couca
2:indigo bunting
3:lorikeet
4: walking stick
5: custard apple

GT: torch

1:stage

2: spotlight
3:torch

4: microphone
5: feather boa

GT: birdhouse

1: birdhouse

2: sliding door

3: window screen
4: mailbox

5: pot

GT: komondor

1: komondor

2: patio

3: llama

4: mobile home

5: 0ld English sheepdog

GT: banjo
1: acoustic guitar
2: shoji

3: bow tie

4: cowboy hat

5: banjo

GT: forklift

1: forklift

2: garbage truck
3: tow truck

4: trailer truck
5: go-kart

yellow lady's slipr

w lady’s slipper

3: hen-of-the-woods
4: stinkhorn
5: coral fungus

g t

2: crash helmet
3:racer

4: sports car

5: motor scooter

Image Classification Task

error on the ImageNet 2012 classification dataset.
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The Roadmap of the Development

of Chinese NLP

Parameter Server  6:= 0+ af
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Pyramid of the Unit of Chinese NLP

Create Character

Low-level
Embedding

- Sequence
Labeling Tasks

Part-of-Speech Tagging

Semantic Role Labeling = : . Classifications
Named Entity Recognitio EDJ{ _____ : Regression
Parsing o
i ﬁ « Deep
Semantic
Sentence C&R Similarity
Document C&R Model Tasks

Embedding

Document Document Ranking
Sentence Ranking
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Three Functional Blocks of Neural Network

Input Sequence
4 A window: )
X HY BH >t 1R
or
A padding sentence:
&K B PH S 1R 4F <EOS>

or
A sequence.
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Lookup Table

il

radical or character
or word or phrase

Continuous Vector

.

Continuous Vector

Neural Network

Neural network
or
Conventional NN

or

Fixed-length Vector
[IVY IWV'IVY‘

Output Function

Softmax

or
Regression

AOY

Recurrent NN )

Fixed-length Vector
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Deep Learning in Language Model

» Probabilistic Language Model Heaps rules

» Definition:

Probabilistic distribution over
sequences of words.

log10 word size
O — N W N 00 O N

0 2 4 ) 8 10

= Proficiency: :
Y log10 document size

= Sparsity, Smoothing,

» Curse of dimension(Heaps rule: M(word size) T(document size)
M=kTT1b)

» | ost Semantic similarity

» Large & sparse input (Neural Network Nt




Deep Learning in Language Model

» Neural Language Model (Word Embedding)
» Definition:
Neural network based dense representation of words
» Advantages:
» | ow-dimensional dense vector(50~1000 dimensions).
» Conditional word probabilities = word embeddings.
®» Semantic/syntactic similarity exploited.

N
©9)

®» | ow-dimension & dense input. ( Neural Network )




Deep Learning in Language Model

» Word Embedding
» A |low-dimensional continuous vector representation for each word

» Captures the word meaning in a semantic space
4

- .

Features x

\ J
T

Number of Words D

| W W'

Lookup Table One-hot Vector Word Embedding
L e RdXD ei = RDXl Wi e RXm

L-e=w, e R™
» Common Neural Network based Word Embedding Approaches
» CBOW & Skip-gram
= SENNA embedding

» RNN language model based embedding




Common Neural Network based
Word Embedding Approaches

» CBOW

Input Window

- =

Lookup Table [I I I I I I}
—4 =

Word Embedding @ @ @ @

Sum

Softmax

[Mikolov et al., 2013a]




Common Neural Network based
Word Embedding Approaches

» Skip-gram
Input Window

Lookup Table [I I I I I I}

Word Embedding

Soffmax

[Mikolov et al., 2013a]




Common Neural Network based
Word Embedding Approaches

» SENNA

Input Window Negative Sample
=y

r
% |
Lookup Table [I I I I I I}
I
Word Embedding @ @ @

Concatenate da
—— |y
Non-linear Layer | |
Score ‘1’ u
Score(w[t_mz]) =U"6(W-a) ST—> §
+ — pE—
S*=Score(w, ,, W, |, W, W1, W,.,) S =Score(w,_,,w,_,, W' W, W)

Minimize the objective function: J = max(O,l —ST+ S‘) Update model until §* >1+ S~
[Ronan Collobert et al. 2011]



Common Neural Network based
Word Embedding Approaches

» RNN based Language Model

r----

) [ I I I I:|Lool<up Table
:?\
v

! 4
1SR b )
) 4
4 V )
4 —>) 4
{ { -
) =
PPEC v | {IR)
v X 4
t yt
Input Layer: Hidden Layer: Output Layer:
one-hot vector word embedding one-hot vector
Dx1
x, eR”™ UeR"™ w,eR™ y, € R

w, = f(U-x, +W -Wt_l) f: Sigmoid function
Vi = 8(V'Wt) g Softmax function

[Tomas Mikolov et al. 2013]



Common Neural Network based
Word Embedding Approaches

» Summary of Three Embedding Approaches

» Both of CBOW and SENNA adopt Negative Sampling.
(Balanced training)

» Both of CBOW and SENNA based on Contextual
Window.

(Selective dilemma)

= RNN embedding based on Historical Sequence.
(Born with sequence processing)
(Imbalanced training)

(Bidirectional RNN embedding based on contextual sequence).




Neural Language Models
Comparison

®» Accuracies on Semantic-Syntactic Word Relationship test set
with 640-dim word vector, and the same training data.

Semantic-Syntactic Word
Model Relationship test set MSR Word

: : - Relatedness
Architecture Semantic Syntactic Test Set[20]

Accuracy [%]  Accuracy [%]
RNNLM 9 36 35
NNLM
(Bengio 2003) 23 53 47
CBOW 24 64 61
Skip-gram 55 59 56

O CBOW has the best syntactic and word relationship
Information. Skip-gram has the best semantic information.

[T Mikolov et al., 2013]




Neural Language Models
Comparison

» Accuracy on subset of the SSWR test, use word vectors from
CBOW. Frequent 30k words used.

Dlmen5|onc1||ty /

13.4 15.7  18.6 19.1 22.5 23.2

100 19.4 231 2/8 28.7 334 322
300 232 292 353 38.6 43.7 459
600 240 30.1 365 40.8 46.6 50.4

O Dimension: the larger, the better
O Training Words: the more, the better

[T Mikolov et al., 2013]




Neural Language Models
Comparison

» Comparison of models trained using the DistBelief
distributed framework.

Vector - Accuracy[%] Training time

Dimensi T:sg:g'sg [days x CPU

onality Syntactic cores]
6B

NNLM 100 34.2 64.5 50.8 14 x 180
CBOW 1000 6B 57.3 68.9 63.7 2 x 140
Skip-gram 1000 6B 66.]1 65.1 65.6 2.5x 125

O It is possible to train high-quality word vectors just using @
simple model.

O It is possible to obtain high-dimensional and accurate
word vectors from a large dataset.

[T Mikolov et al., 2013]




Neural Language Models
Comparison

» Comparison of models trained with the same data but
different epochs. Accuracy is reported on the full Semantic-
Syntactic data set.

MECIiDk Training Accuracy[7] el
Epoch | Dimensio Time

0.3

CBOW 300 783M 13.8 49.9 33.6

CBOW 1 300 1.6B 16.1 52.6 36.1 0.6

CBOW 1 600 783M 15.4 53.3 36.2 0.7
Skip-gram 1 300 783M 45.6 52.2 49.2 1
Skip-gram 1 300 1.6B 52.2 55.1 53.8 2
Skip-gram 1 600 783M 56.7 54.5 55.5 2.5

CBOW 3 300 783M 15.5 53.1 36.1 1
Skip-gram 3 300 783M 50.0 55.9 53.3 3

O Skip-gram has better representation, but need more training
time than CBOW.

[T Mikolov et al., 2013]




Common Neural Network based
Word Embedding Approaches

» Exfension of Word Embedding
= Motivation:

» Vocabulary of real-world big data tasks could be huge (Heaps
Rulelll)

>100M words in a modern commercial search engine.

» Common phrases are well represented, rare phrases are
terribly represented.

®» New words, misspellings, and word fragments frequently
OCCUL.

» Acftion:

» Find the proper sub-word embedding. (Based on language
itself)

» | efter trigram

» Radical ngram




Common Neural Network based
Word Embedding Approaches

» | etter TriGram Embedding
Example: cat = #cat# - #-c-a, c-a-t, a-t-#

(w/ word boundary mark #)
Uy

K
d'T Letter-trigrarn _
sl embedding matrix v(cat) = Z(acaf'k 1 L
\% J k=1 T
..1..0.. 1. 1. Count of LTG(K) T
#-c-a .. c-a-t.a-t-#

< # total letter-trigrams — in the word “cat”  u:The vector of LTG(k)

» FEvaluation Criterion (Collision Rate )= 0.004%

Vocabulary Size  Unigque LTG Observed Collision Number

40K 10306 2
500K 30621 22
SM 49292 179

[PS Huang et al. 2013]



Common Neural Network based
Word Embedding Approaches

» Experiments on the evaluation data set
henceforth(16510 query and each of them are related

to 15 urls)
___Models | _NDCG@I | NDCG@3 | NDCG@10 _
Word[—)LIanngrOm 0.342 0.410 0.486
Le’r’re[r)—IIlrli\c];rom 0.3642 0.425 0.498

O Lefter-trigram Embedding has the better performance
than Word-Unigram Embedding.

[PS Huang et al. 2013]




Common Neural Network based
Word Embedding Approaches

» Radical embedding

Oracle Bone Script | ¥ Ey W
ca. 1200-1050 BCE X = o)

A
Bronze Script %; ’ é}:] character
&A

ca. 800 BCE
Small Seal Script __'_} 2 __lj H4 dical
ca.220BCE | 3 H
Clerical Script e .
ca. 50 BCE Eﬁ Vv O VvV p pictogram
Regular Script
Y }:] -] | J—— —] )7]——  stroker

ca.200 CE
Decomposition of Chinese Characters

= Why is radical
» Radicalis the smallest semantic unit of Chinese

» Radicalis from the earliest pictograph of China

» Sufficient resources of radical decomposition in
Sogou.Inc

[Shi X. et al. 2015]




Common Neural Network based
Word Embedding Approaches

» Radical Embedding

Input Sentence EEX LR izacl

Input Window @ @i @

Lookup Table [I I I I I I}

Word Embedding @ @ @ @

Sum

Soffmax

[Shi X. et al. 2015]



Common Neural Network based
Word Embedding Approaches

®» Experiment of Radical Embedding on Short-Text Classifier

Sof’rmOx oli (z)=exp(zii) |
Fexp(zl) %1 4§ . R
y / B - 1 “SVM
] Nl Ik word
7% § , - B -  character
é‘% 2 ! J % radical
% ‘ - “wrdtrde

Finance Sports  Entertainment  Average chrrdc
100N 4 w DataSet: train set 400K, test set 40K.
N4 Data from SogouCA, SogouCS news
Lookup Layer
corpus.

Title

O Results show radical embedding performs a little bad, but the
composition of word+radical performs quite good.

[Shi X. et al. 2015]



Common Neural Network based
Word Embedding Approaches

=» Experiment of Radical Embedding on Chinese Word Segmentation

Input text Sentence: “How long is the great wall” NS HCRF “FNLM PSA = RdE
Chinese: “RIFHAZK” i
Character 93
Window 91
Radical 89
decomposition
’ +£,10 K® > RO 87
’ { { 05
=== BNER. EEED: BERD ”
edica BEEE BEEE ! EEE Precision  Recall F1-score
EEEE O EEEG EEE PKU data
Ilii;ﬁ;ii?\liiilll TR RRIARRENNY  anIRRRRRERREARR “CRF ®“FNLM = PSA “RdE
Radi;laeltl‘zzfstion < E Linpar E ) 5\5 -
O Tanh D)
C : Lingar : ) 03 - - g P
Reconstruct Character ‘/1 L 1 ‘\ﬁ 1 z; |
vector - g I - 5 87
| - « - « ]5 ‘ :
Precision Recall Fl1-score
Segment teurs MSRT Ll
etWor
[ Rew ] . i
——— o DataSet: 5.5M train set, 122K test sef.
data from (Emerson, 2005)

O Results show radical embedding performs almost the same good as

word embedding.
& [Shi X. et al. 2015]




Common Neural Network based
Word Embedding Approaches

®» Experiment of Radical Embedding on Chinese Word Segmentation

s T

—-%-— radical
r T T e —
[R(Q,D) =¢08(Yp,Vp) = HnyHﬁ}; ” } [R(Q, D)= coS(Yyps Vp) = M} “l i /v, d
o|ll'p

)_/

—_ / Vi
YolllVpr 3= , p
~ Ve o
[ s <
@ s8r s/ &
8 7/ -
4 R
%57- /-+ 7
- 7~
= *
K sl == .-
k-
+—4§!GIGIQI 5

10 50
perception of dataset(%)

DataSet: 95M frain sef,

W 137K test set, data from
BT user clickthrough log.

100*%N4E

\EZill  Lookup layer
300X100 32

- HRIHID G D
g RS i3

O Results show except that radical embedding performs almost the

same good as word embedding, radical embedding need more data
to learning.

[Shi X. et al. 2015]



Common Neural Network based
Word Embedding Approaches

= Thinking

» Flexible granularity: from
radical-ngram embedding to
character-ngram
embedding to word-ngram
embedding for Chinese NLP.

®» More information, such as
morphology, synonym,
syntactic, etc. needs to
consider
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The Roadmap of the Development

of Chinese NLP

PLM(Probabilistic
Language Model)

*Sparse
representation
*Sparse feature,

imbalanced
learning
*Curse of
dimension
eLack of
Semantic
information
*High dimension
Unfit for Neural
network

idbcutpet = Plu, = i| combest)

NLM(Neural
Language Model)

*Dense
representation
*Sparse feature,
imbalanced

learning
*Curse of
dimension
*Semantic
information

* Fit for neural
network

RNN(Recurrent
Neural network)

*Robust
*Capable for
modeling
Complex
problem

* Arbitrary
complexity of
model

* Avoid the
feature
engineering

*Born with
sequence
property

Parameter Server  6:= 0+ af

;JQD[‘]DD\O
. 8 B8 B8
B8 BE B8
=6 8 0
PDP (Parallel
Distributed
Platform)

*Large data set
*Parallel
computing
*Widely
algorithm
supporting
*Scalable
capacity



Main Tasks of the Pyramid of Chinese NLP

Low-level
Embedding

Part-of-Speech Tagging
Semantic Role Labeling
Named Entity Recognitio
Parsing

—_—

Sentence C&R
Document C&R

Embedding

Document Document Ranking

Sentence Ranking

Ly =

Sequence
Labeling Tasks

Classification&
Regression
Tasks

Deep
Semantic
Similarity
Model Tasks



Main Tasks of Chinese NLP

Sequence Labeling Tasks
Named Enfity Recognition

Semantic Role Labeling

Segmentation

Part-of-Speech Tagging
Parsing

DSSM
C&R tasks

Document Ranking

Document C&R Sentence Ranking

Sentence C&R




Outline

» Background of Deep Learning
®» Deep learning for Chinese NLP
» Neural Language Model

» Fced-forward Neural Network

« The Common Models for Natural Language
Processing

« Sequence Labeling
» Classification & Regression
+ Deep Semantic Similarity Model
* The Typical Applications and Experiments

®» Recurrent Neural Network



The Common Models for Natural
Language Processing

» Seqguence Labeling Tasks

Sliding Window
Input Sequence [:<5>1'/%\9E E’\J: BH": ®R| & </s> l #window =3
% (]| X, | <s> 4K B > Label 0
Lookup Table I I I I I
P Y| &K B BEYE [ Label1 | y,
, A
Word Embedding Q X B9 BHYE 1B > Label 2 y21> 87
Concatenate | BEX R 4 [7] Label3 Iz;cor;zhon
Hidden Layers Xy 1R &F </s> | Label4
—
Softmax 1T 171711 ), — #tags
| y
fe(y xt) \

Word-level likelihood Sentence-level likelihood

’ Each word in a se i \ [
quence is .
considered independently! Consie QNS depenldency
S 0i) between word tags!
(y | xt’g 2 Ty l|x,) S(x[lzn]’y[lzn]’e) = Z(A)’Hyt +f(:)(y’ Ixt ))
So the word-level log-likelihood: So the sentence-level log-likelihood:

10gp(y | Xt,e) fa yl x logz ehll) logp(y[m],x[m],e) - S(x[lzn]’y[lzn]’e)_logz s('x[l:n]’i[l:n]’e)

Vifj]



The Common Models for Natural
Language Processing

» Classification & Regression Tasks

Input Sequence AKX B PR B &F

What's the
Padding Layer

padding layer ? AKX B FAY 1B 4F <EOS>
—_—

Lookup Table [I I I I I IJ
—

X1n]

ﬁ

N

Word Embedding @ <Wt> @ @ @ @ @
\ ar ,,__I__ -EI"I"EI' Convolution

Conco’rena’rel da

Max over time
)

Hidden Layers [ ]

—.——
— .

Softmax

|ny = #labels
The score for each label

ACE™




Same
length

Shorter
length

Longer
length

The Common Models for Natural
Language Processing

» Padding
Sequence with Fix the length Sequence with
different length E.g.: #length =5 the same length
SKX MW BEX R % SK W X R 53
iR 7 15 » iZik T Mg <EOS> <EOS>
FER & 2FE 8 Wz B2 7 b FEX = 2~FE ® Bz | B2

Original sequence Input of the neural network

Make it available for batch learning |

s



The Common Models for Natural
Language Processing

» DSSM
g |4t W =% 25 th wmE —B% U Jbm s E
~— . ——
It | =28 25 s —HE <E0s> <EOS> b3 #3 FE <E0s>

N |

| Fixed-length Vector | | Fixed-length Vector

| None-linear Layers | | None-linear Layers

Measure the similarity @ T

V.V
cos(v,,v.)= 91 between semantic vectors cos(v,,v_)=

o

log 1+exp —0' cos VoV ) cos(v V. ))))J

Maximize The Ilkel|hood
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The Typical Applications: Sequence
Labeling

= Model Sliding window
Input Sequence [i-<-5;1'/‘\95 E’\J: IZEI%: R 7 </s> l #window =3
. Y (]| X, | <> 4K B [>| Label 0

" I II I I Y| SR B BHE 2| Label 1 |
Word Embedding Q 2 x| B B ] Label2 y)"‘m
Concatenate 9 X Bk R 4F 2| Label3 lcor;seiﬁon
Hidden Layers Xy AR %F </s> [>| Label4

Softmax |n -

fe y I x
Word-level likelihood Sentence- Ievel likelihood

ylxt

z », e ( I]yllle) z( yy+f9(y’|x))

So the word-level log-likelihood: So the sen’rence-level log-likelihood:
log p(y1%,,8)= f, (y1x,)log Y. ") 102P(3p 51 8) = 55y 301 6) ~Tor B 6)

Vi[l:n]

ylxt,G

[Collobert, R. et al., 2011]



Experiments on Sequence Labeling

» The tasks : Part-Of-Speech tagging (POS), Chunking
(CHUNK]), Named Entity Recognition (NER) and
Semantic Role Labeling (SRL)

» The experimental setup:

Data Training set Test set

Toutanova et al. WS Section 0-18 Sections 22-24

(2003) (129,654) 129,654

. Section 15-18 Section 20
Chunking CoNLL 2000 WSJ (211,727) 47 377

Eng.train Eng.testb
NER CoNLL 2003 Reuters 203,621 46,435

Sections 2-21 Section 23

SRL CoNLL 2005 WSJ +3 Brown sections

950,028 63 843

[Collobert, R. et al., 2011]



Experiments on Sequence Labeling

» The table reports supervised results with both the word-level log-
likelihood (WLL) and the sentence-level log-likelihood (SLL),
compared with the state-of-art system

A . POS | CHUNK | NER | SRL
pproac (PWA) | (F1) (F1) | (F1)

Bidirectional Graphical Model (Toutanova et 97 oy

al. 2003) i 94.29 ) i
CRF-based Model (Sha et al. 2003) '
Semi-Supervised Learning (Ando et al. 2005) } ; 89.31 }
Joint Inference Model (Koomen et al. 2005) - - - 77.92
NN+WLL 96.31 89.13 79.53 55.40
NN+SLL 96.37 90.33 81.47 70.99
NN+WLL+LM1 97.05 91.91 85.68 58.18
NN+SLL+LM1 97.10 93.65 87.58 73.84
NN+WLL+LM2 97.14 92.04 86.96 58.34
NN+SLL+LM?2 97.20 93.63 88.67 74.15

LM1: Wikipedia LM2: Wikipedia+Reuters RCV1

The NN performs a little worse than the state-of-art system but it is a
unified model.

O

O

The SLL performs better than the WLL, benefit from the use of context.

O

The initialization with LM significantly boosts the generalization
performance of the supervised networks .




The Typical Applications: Chinese
Word Segmentation

» Models

PSA (Perception-Style Algorithm) based Model [Zheng, X. et al. 2013]

* A modification of Collobert’s model, Viterbi algorithm is applied to
find the best tag path.

* A perception-style algorithm is applied to speed up.
MMTNN (Max-Margin Tensor Neural Network) [Wen, Z. et al. 2014]
*The tensor-based neural network model the interaction between tags
and context characters better.
*The Max-Margin criterion is applied instead of soffmax.

RAE (Radical Embedding) based Model [Shi, X. et al. 2015]

*The radical embedding is used instead of word embedding.

*The input space is compacted significantly while the results are
comparable.




The Typical Applications: Chinese
Word Segmentation

» PSA Model Sliding window

Input Sequence [ E-<5> 15 :95 Y BE: )t ;TCE gf </S>JX[M]

— t
Lookup Table |:I I I I I I]
—
Word Embedding @ @ Q
Concatenate ' '
~
| |

Hidden Layers

Output layer | [ I I In —#tags

LE EE]

. f;a(yllxl) fe(yzlxz) eee fe(yzlxz) "'f;;(yn—llxn—l) fe(ynlxn),
" Viterbi algorithm —_« _ - maxs(x . 9)
S('x[l:n]’y[l:n]’e) = Z(Aytlyt +fe (yt |'xt)) > y[l'n] = arg [1:n] )y [1n]®

=1 i VY1

*

Lo (Y1 Vun)  %01) = (%0 Y1018) = (K- 301-0)  znomg, . ot . 2013




The Typical Applications: Chinese

Word Segmentation
» MMTNN Model

Input Sequence [rf-f-{_'/\ﬁq B 1 BEL 1E'< 4F </5>Jx[1_n]

—_——
Input Window 4 IZE S|y, b | Yeithe tag forx,

Lookup Table [I I I I I ITI I]

Character Embeddmg Tog Embedding

Concatenate [ | I la e R
—i
O[T E w
; o= h= g(aTV[leZ]a+Wa)
% oo 1

Tensor-based ® e e .
transformation (- V' eR

y W, € R

L - g: active function
. ——
Linear Layer T T n =#tags

Score for each tag: f@( lx,,y,_ 1)
The score of a tag sequence: S( Xin]» Vi) ) 2 fe v lx,y,_ 1)
. : Il
Minimize the object: 1(9)=;2i=llz‘(9)+§”9”2 Y; : correct tag sequence

where 1(6)= max( (x, ,§,9)+A(y,.,ﬁ))—s(x,.,yi,e) Y : highest scoring tag sequence

yeY(x;




The Typical Applications: Chinese
Word Segmentation

» RJE Model Sliding window

Input Sequence { |<5> w: 2 ’)TC% % </S>JX1;

e (1]

Decomposition & H “J s B H <eos> Az ][ <EOS>
Padding

Lookup Table [I I I I I__— I]
Radical Vector O %) O O O O O

Concatenate | I I|7_|_|
: Linear

)
Radical Inception Network ( Tanh )
( Linear )
Reconstructed
Character Vector
Concatenate l l
Hidden Layers [ |
—_—

Softmax _
| I I lny—#tags

« Given a sequence window, the network outputs the scores of all the
possible tags ‘S’, ‘B’, ‘I', ‘E’ for the character in the center of the window

[Shi, X. et al. 2015]




Experiments on Chinese Word
Segmentation

» Datfaset: PKU and MSR, as provided by (Emerson, 2005)

Doto | Approach | recision | ecal | P _

CRF 88.1 86.2 87.1

PKU PSA Model 92.8 92.0 92.4
MMTNN Model 93.7 93.4 93.5

RAE Model 92.6 92.1 92.3

CRF 89.3 87.5 88.4

MSR PSA Model 92.9 93.6 92.3
MMTNN Model 94.6 94.2 94.4

RAE Model 93.4 93.3 93.3

O Results show that the neural network models perform better
than the CRF-based model.

O The MMTNN model outperforms the other two models.

O The model based on radical embedding performs as good
as PSA model with less parameters.




The Typical Applications: Chinese
Short-text Classification

= Model
Input Sentence |/7\ X B PR Jt 1R %F I

Y

{

Lin]

Decomposion A N~ 7 — K H J v P H 2 JL 4 3 k& F

Lookup Table [I I I I I I}
1-D Convolution O QQ %;;QQ
Max-Pooling 3y II]I]V

{

¢

Hidden Layers [ ]

-
P

Softmax [ | |

'ny = #labels

The score for each label

AVE™



Experiments on Chinese Short-text
Classification

» Dataset: frain set 400K, test set 40K. Data from
SogouCA, SogouCS news corpus

9 | “LR
“SVM
N " word
: “ character
S 9 Ny
0 radical
“ wrd+rde
90
Finance Sports  Entertainment  Average chr+rde

O Result shows FNN model with embedding performs better
than the traditional methods, and the combination of

different embedding methods could improve the
performance.




The Typical Applications: Chinese
Search Ranking

= Model
Input Sequence 4. | It B EZ 25 ' WE —HIF bR 8% FE
g S A
Decompositon b =~ [0 /Neee [ HA T O QoeeeF db =~ O /Neee ™ —

et - e
ooeroe (I [TIITH [T
—— L  ——
1-D Convolution &Qp W @;@Q
— - —— ——
- HHHEE HEHE. HHE,
Max-Pooling IV b I‘V Vi I\" V’I

None-linear Layers l

Y=
~

Semantic Vector

Measure the similarity
between semantic vectors ’
k_)log(1+exp(—6(cos(vq,vl+)—cos(vq,vt_ ))))

Maximize the likelihood




Experiments on Chinese Search
Ranking

» Dataset: 95M train set, 137K test set, data from user
clickthrough log

62r

—-%-— radical
81| | — + — character ,. 4
~—word — = 3
/ - 7 "
g0} /// :
A .
) / /./
—~zal .
7/
© 58 S s .
2 e
8 P
® 57 =7
-
56k I T
-
£
551 AT
-~
y
5‘{ 1 J
1 5 100

10 50
perception of dataset(%)

O Result shows that with more data, the three kinds of

embedding methods almost achieve the same good
performance.




Outline

» Background of Deep Learning
®» Deep learning for Chinese NLP
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» Recurrent Neural Network



The Roadmap of the Development
of Chinese NLP

PLM (Probabilistic
Language Model)

eSparse
representation
*Sparse feature,
imbalanced
learning
e Curse of
dimension
eLack of
Semantic
information
*High dimension
Unfit for Neural
network

idh cutpek = Play = 1| comtest)
|
)

. S——

W
l tanh

NLM(Neural

Language Model)

*Dense
representation

eSparse feature,

imbalanced
learning
*Curse of
dimension
*Semantic
information
*Fit for neural
network

nas
Iresten Loverss

FNN (Feedforwar

d Neural Network)

*Robust
*Capable for
modeling
Complex
problem

* Arbitrary
complexity of
model

* Avoid the
feature
engineering

* Unfit for
sequence task

Parameter Server  §:= 0 + aff

0000040

of |\
w BE BE BB
v EE BE B8
m e & &
s L) L) L
PDP(Parallel
Distributed
Platform)

*Large data set
*Parallel
computing
*Widely
algorithm
supporting
*Scalable
capacity



From Feed-forward Neural Network
to Recurrent Neural Network

» Motivation

ENIN N RNN \
* Has to use fixed « The context length
length confext was extended to
* Lack any form indefinite
of memory « The ability to
g ) . memorize b
Output units Output units
Hidden units - 1 » ‘ 1 Hidden unifs
\\

Cc—— [ (
Input units Input units s Context units ,/

L
S L 4
s-.-——




From RNN to Long Short Term Memory

» Moftivation

NN S Y \

* Input weight

>+ Input Gate

conflict
« Qutput weigh Solving .+ Output Gate
conflict strategy

. Vanishing gradient .+ Constant Error Carousel
. y, \ y,

The key difference
between the two

Memory
Block

LSTM just replace the hidden units in
RNN with the memory block !

[ Hochreiter and Schmidhuber ,1997 ]




Memory Block in LSTM

h X h,_

1 A
it =0 (Wxi’xt + Whiht—l + Wcict—l + bM Ot =0 (onxt + Whoht—l + Wcoct + bo k /

Input gate Output gate 0,
C

h, = o, tanh(c,)
¢, = fc,, +i tanh(W_x, + W, h_ +b,)

he” "t-1

Forget gate

/‘ \ f=0(W,x +W,h_ +W.c_ +b,)

ht—l Xy

o usudlly the logistic sigmoid



From LSTM 1o Bidirectional LSTM

» Moftivation

INIY N Bidirectional LSTM

Only able to make

use of previous * Make useofthe |
context! contextual information!

\, S \ S

e ~'v

i | Backward

Forward Layer
Layer

Forward
Layer
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Main Tasks of Chinese NLP

Sequence Labeling Tasks
Named Enfity Recognition

Semantic Role Labeling

Segmentation

Part-of-Speech Tagging
Parsing

DSSM
C&R tasks

Document Ranking

Document C&R Sentence Ranking

Sentence C&R




Common RNN Models for Natural
Language Processing

» Sequence Labeling Tasks N
The probability of tags for “3¢”

#nodes = #tags

Softmax layer

Hidden Layer

Word Embedding

f
Lookup Table [I I I I I
-~

Input Sequence 4 > X > B —>| ¢

Fort=1ton,do h = H(’xt’ht—l’ct_l)

y, = f(W,h+b,)  f:sigmoid function

hy" "t




Common RNN Models for Natural
Language Processing

» Classification Tasks  the probability of labels for “4 BSR4
#nodes = #labels

Softmax Layer

Mean pooling Layer

Hidden Layer

Word Embedding

Lookup Table

Input Sequence

Fort=1ton,do h=H(W,x +W,h  +b,)

t hh” "t-1
y=f(W,h,+b,)
H:tanh orRelu f:sigmoid function




Common RNN Models for Natural
Language Processing

» DSSM
log(l + exp(—G (cos(vq U ) - cos(vq Ve ))))
K- Maximize the likelihood

between semantic vectors

$SeMANtiC VECTOrS g

Forward layer —> —>

Hidden Layer
Word Embedding

—— -
oopTae — [UIRNN I Iy o o

—r—
input Sequence ¢ 4t | i |l =& ol = | 5w b —mw | o[ e | s | min




Common RNN Models for Natural
Language Processing —Bidirectional LSTM

The probability of tags
for “3¢t” #nodes = #tags
\ )

Output Layer ’ ' ' @ ‘ ‘
Backward Layer ‘ l .
Forward Layer ‘ i‘ ““ i
Word Embedding ’ @ ’ Ae @ (
Lookup Table [I I I I I I}

-

Input Sequence 4 > X > BH > 3¢ 1R —)E
¢
h +b

» Sequence Labeling Tasks

For =1 to n, do f_l; = H( E Fort=nto 1, do i/l_t : H(x; ’h_;+1’ct—1)

Forallt, do ¥, = f(W,;yht +W,h, y) where f is a soffmax function
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Typical Applications: Chinese Semantic

ROle LObe“ng The score of tags for ‘S’.
» Model #nodes = #tags

Linear Layer

Nonlinear Layer

Bidirectional
LSTM RNN

Nonlinear Layer

Word Representation ‘ ‘ ‘ a ‘ X[ 1:n]
Lookup Table [I I I I If I}

B =
Input Sequence B 2 & 2 AT —2 T 2 KE
The score of x,) along the path Y, : S( Xi1n12 Viing > )=2f9 Y, |x

So the sentence-level log-likelihood: 10gp(y[lzn],x[m],9) ( ) logz ( P )
Vil [Zhen W., 2015 ]



Experiments on Chinese Semantic
Role Labeling

» Dataset: CPB 1.0 for Chinese Semantic Role Labeling

____ Method | FI(%) _

Syntactic Model [Xue, 2008] 71.90

CNN Model [Collobert and Weston, 2008] 74.05
Shallow Parsing Model [Sun et al. 2009] 7412
Multi-predicate Model [Yang and Zong, 2014] /5.31
BRNN+Random Initialization 77.09
BRNN+Standard Pre-training /7.2]

O The BRNN model significantly outperforms previous state-of-art
methods even with all parameters randomly inifialized. Also,
pre-fraining has a good effect on the performance.

[Zhen W., 2015 ]




Typical Applications: Web Document
Retrieval

» NModel

Measure the similarity q ¢

. cos(v,,v,)=
between semantic vectors ° ¢

log(l - exp(—O' (cos(vq Vo ) - cos(vq Ve ))))
/- Maximize the likelihood .\
vy Ty
V-
t

$SemMantiC VECTOrs g

TTa VY, TV,
Forward Layer —> —> —>
Hidden Layer
Word Embedding
T T
I‘-—

TR TTITI

-

e sl —aw | | e b s | T

Lookup Table

HN&#

L
!

Ir

Input Sequence 4| 4t > B3 al

[Cooke A., 2015 ]



Experiments on Web Document
Retrieval

» Task: Web Document Retrieval Task, evaluating the
ranking performance

30.4% 32.7% 38.5%

BM25 30.5% 32.8% 38.8%

PLSA 30.8% 33.7% 40.2%

DNN DSSM (nhid=288/96), 2 Layers 31.0% 34.4% 41.7%
CLSM (nhid=288/96), 2 Layers 31.8% 35.1% 42.6%
RNN DSSM (nhid=288), 1 Layer 31.7% 35.0% 42.3%
LSTM DSSM (ncell=%96), 1 Layer 33.1% 36.5% 43.6%

O The LSTM DSSM significantly outperforms all the other models.

[Cooke A., 2015 ]




The Typical Application :

F

Machine Translation
Output B | | R [ | 4F | | <EOCS>
Layer o 250) D cose voe ‘\‘["vx", [v"x”‘ B e

Hidden

Layer

Word

Embedding . :
Lookup

Table

Input - .
Sequence sunlight |eee| foday <EOS> 4|/\9§ > IR 3 4F

» Step 1. obtaining the fixed-dimensional representation v of the input
sequence (x,....x;) given by the last hidden state of the LSTM.

» Step 2. computing the probability of y,..-.¥. with a standard LSTM-LM
formulation whose initial hidden state is set to the representation v of

-
p(yl,...,yT, | xl,...,xT)z Hp(yt | v,yl,...,yt_l)
t=1

[Sutskever, llya, et al. 2014]



Training

» The modelis frained by maximizing the log of a correct
translation T given the source sentence S:

1
— 2 log p(T'1S)
|S| (7.5)es

» Once fraining is complete, the model produce translation

by finding the most likely translation according to the
LSTM:

T = argmax p(T |S)
T

» Then the most likely franslafion can be searched by a
simple left-to-right beam search decoder.

[Sutskever, llya, et al. 2014]




Experiments on Machine
Translation
» Dataset: WMT' 14 English to French dataset

_______ Method | TestBLEUscore

Baseline System based on Moses 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

O The results show that the LSTM system performs better than
the system based on Moses.

[Sutskever, llya, et al. 2014]




The Typical Application :
Machine Translation

» An alternative model
e} [=]

Output Layer

Hidden Layer

Word Embedding
Lookup Table

Input Sequence

Output Layer

Concatenate
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Word
Embedding “'
Lookup
e ﬂllll 1

Input
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