The role of NLP in IR - How can NLP help IR?

Jian-Yun Nie

University of Montreal <u>nie@iro.umontreal.ca</u> <u>http://www.iro.umontreal.ca/~nie</u>

□ IR works mostly with texts

- Answer query "NLP conference", "NLPCC 2015" ...
- (Let us ignore criteria such as hyperlinks and focus on texts)

NLP

NLP: many different aspects

- Morphology
- Lexical analysis
- Phrase, collocation
- Parsing
- Semantic analysis
- Discourse analysis
- Machine translation, Question-answering, ...
- ••••

They help us to understand language and texts, ... thus should be useful for IR

Reality

- Only the simplest NLP techniques are used in IR
 - Stemming / lemmatization
 - \square E.g. computation \rightarrow comput
- More sophisticated NLP techniques have not been up to their promise
 - Parsing had limited impact
 - Noun phrases were less effective than "statistical" word pairs

Word sense disambig ation failed to impress IP

Goal of this talk

- What NLP techniques have been tried in IR?
- □ Why are they successful / unsuccessful?
- How can we make NLP more useful for IR?

Some exceptions

- □ QA: using both NLP and IR
- Cross-language IR: MT is effective for query translation

But let us focus on the core IR task

Successes of NLP in IR

Stemming

- Normalization of words
- Cut suffixes (computation \rightarrow comput)
- slight morphological transformation, E.g. Vowelization in Arabic

Lexical processing

- Decompounding in German
 - windenergie (wind-energy) \rightarrow wind energie
- Word segmentation in Chinese and Japanese
 - 杨柳青年画 = 杨柳青 年画 or 杨柳 青年 画
- Word stemming usually leads to higher recall (better MAP)
- Decompounding and word segmentation are important

Higher level NLP?

Noun phrases

- Computer science (NN NN)
- Board of directors (NN prep NN)
- Black Monday (ADJ NN)
- Intuition: phrases are less ambiguous than single words
 - Image: Image
 - Image: Image

□ Solution: use phrases as additional index Score(D,Q) = λ Score_{Word}(D,Q) + (1- λ) Score_{Phrase}(D,Q)

Early attempts [Fagan 1987] Experiments in Automatic

Phrase Indexing For Document Retrieval: A Comparison of Syntactic and Non-Syntactic Methods, Cornell University.

Syntactic phrases: follow some syntactic structures

- information system (NN NN)
- library of congress (NN prep NN)
- Non syntactic phrases: words frequently appear together at proximity
 - Ibrary of Smith college \rightarrow college-library, Smith-college

Non syntactic phrases > Syntactic phrases

Learning to segment a query: some attempts

Learn from human segmentation

- A set of queries segmented manually
 - -[book sale] in Chapters in [San Francisco]
 - -Obama [family tree]
- Train a model to segment queries
- Accuracy in query segmentation close to 90%

e.g. [Bergsma and Wang, 2007]

[Obama family] and tree

Obama's [family tree]

Disappointing results

- marginal (if any) over word-based method
- □ Why?
 - Human segmentation \neq utility for IR
 - [book sale] in Chapters
 - Is "book sale" better than "book" and "sale" in IR
- Key question: Should this expression in a query be founded in a relevant document?
- Should a relevant document contain "book sale"?
- Not all phrases correspond to fixed expressions
 - "Black Monday"
 - but not "NLP conference", "ps 2 games", "book sale"
- Many user queries are not grammatical

Parsing may be wrong

→ Obama [family tree]

Non-linguistic phrases in IR

- Markov Random Field model [Metzler and Croft 2005]
- Any consecutive words in a query as a phrase
 - library of Smith college library-smith, smith-college
- Combining retrieval scores of
 - Single words (bag-of-words)
 - Exact phrase
 - Phrase words at proximity

$$Score(D,Q) = \sum_{c \in T} \lambda_T f_T(c) + \sum_{c \in O} \lambda_O f_O(c) + \sum_{c \in U} \lambda_U f_U(c)$$

Generally outperform bag-of-words models

IR-specific query "Parsing"

- Detect useful statistical dependences for the intended uses
- ⇒ Goal: Use dependent terms as a phrase to be matched exactly or at proximity
- What dependencies should be used?

Detect useful dependent pairs for IR

$$\square \text{ Bendersky et al. 2010, WSDM}$$

$$P(D|Q) \stackrel{rank}{=} \sum_{i=1}^{k_u} w_i^t \sum_{q \in Q} g_i^u(q) f_T(q, D) + \sum_{i=1}^{k_b} w_i^b \sum_{q_j, q_{j+1} \in Q} g_i^b(q_j, q_{j+1}) f_O(q_j, q_{j+1}, D) + \sum_{i=1}^{k_b} w_i^b \sum_{q_j, q_{j+1} \in Q} g_i^b(q_j, q_{j+1}) f_U(q_j, q_{j+1}, D)(3)$$

q1 q2 q3 q4...

Learning weights from judged queries based on features

Variable dependencies (Shi and Nie, CIKM 2010, AIRS 2010)

Further extends the dependencies

Exact phrase (black Monday)

Proximity within window of size 2, 4, 8, 16 (book sale)

$$Score(D,Q) = \sum_{q_i \in Q} \lambda_U(q_i|Q) f_U(q_i,D) + \sum_{\substack{q_i q_{i+1} \in Q \\ + \sum_{w \in W} \sum_{q_i,q_j \in Q, i \neq j} \lambda_{C_w}(q_i,q_j|Q)} \lambda_B(q_i,q_{i+1}|Q) f_B(q_iq_{i+1},D)$$

Weights of different pairs trained on judged queries

Death from cancer – No dependency

Drug approval – proximity

20

Black Monday – exact phrase

Summary on Query "Parsing" for IR

- \Box Useful "phrases" for IR \neq linguistic phrases
 - Linguistic phrases are not always useful for IR
 - Useful "phrases" may not be linguistically motivated
 - Proximity expresses flexible contextual relation
- □ Training a "parser" of queries on IR data
- "phrase" as useful signals of form for IR

NLP is not limited to forms

- Morphology
- Lexical analysis
- Phrase, collocation
- Parsing
- Semantic analysis
- Also about Meaning
 - Word sense disambiguation
 - Semantic representations
 - ••••

Can NLP (about meaning) be useful for IR?

Form

Word sense disambiguation

- WSD is still challenging
 - Accuracy 70-80% for limited vocabulary
- [Sanderson 94] (SIGIR):
 - Disambiguation at 75% works even worse than nondisambiguation
 - To be useful for IR, WSD should reach 90%
- Manual disambiguation using Wordnet does not help in IR [Voorhees 1993]
- Why IR without disambiguation may work?
 - Skewed distribution of word senses: 80% cases with most common sense
 - Context-effect of other query terms (Java compiler)

Dealing with Meaning

- Traditional way:
 - Define word senses
 - Classify a word occurrence

- [Lyons 1981]: Discreteness in language is a property of form, not meaning.
- □ => Continuous representation of meaning

Semantic Representation

26

Latent semantic representation

LSI [Deerwester et al. 1990], LDA [Wei & Croft 2006]

- □ Some limited improvements
- Topics seem to be too coarse for IR

LDA example

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

Word embedding: Distributional representation

LM: predict the next word given the past: e.g., p(chases|the cat) = ?, p(says|the cat) = ?

Word2vec [Mikolov et al. 2013]

CBOW/Skip-gram Word Embeddings

Skip-gram

Continuous Bag-of-Words

Surprising capabilities

Determine word similarity

- □ cat ~ kitten
- musician~singer~artist

Analogy reasoning

King is to queen as

man to <u>woman</u>.

 $\blacksquare V_{king} - v_{queen} \approx v_{man} - v_{woman}$

[Image credits: Mikolov et al (2013) "Efficient Estimation of Word Representation in Vector Space", arXiv]

(Firth, J. R. 1959) You shall know a word by the company it keeps.

Generating query/doc. representation

- Generate word embedding for each word
- Sum up/average the embeddings as a global representation

Failure: Much worse than bag-of-words

pork tenderloin

Word embeddings

pork	
beef	0.735397
meat	0.717314
chicken	0.673912
sausage	0.599732
veal	0.588186
roast	0.567123
tenderloin	0.559435
sausages	0.557218
cooked	0.550576
lamb	0.539285

tenderloin	
filet	0.638106
sirloin	0.598938
loin	0.586353
roast	0.577229
steak	0.571505
pork	0.559435
venison	0.554806
grilled	0.552503
steaks	0.550434
chops	0.542049

Summing up embeddings

pork tenderloin	
pork	0.883016
tenderloin	0.883016
beef	0.678835
roast	0.647979
chicken	0.637563
veal	0.633223
meat	0.621922
sausage	0.615066
loin	0.609921
chops	0.607775

pork tenderloin

Words in rel. doc.

#pork tenderloin	
pork	790
tenderloin	495
recipes	422
recipe	214
food	176
sauce	130
minutes	112
meat	102
fat	101
add	87
low	85
roast	84
heat	83
cooking	81
easy	73
pepper	72
cook	65

Summing up embeddings

pork tenderloin	
pork	0.883016
tenderloin	0.883016
beef	0.678835
roast	0.647979
chicken	0.637563
veal	0.633223
meat	0.621922
sausage	0.615066
loin	0.609921
chops	0.607775

Obama family tree

Word embeddings

Query embedding

obama		family		tree		obama family tree	
barack	0.925472	, families	0.646008	trees	0.823568	family	0.736234
mccain	0.759077	relatives	0.615727	pine	0.528495	tree	0.690256
bush	0.757099	father	0.615119	oak	0.516302	obama	0.616687
clinton	0.70856	parents	0.613432	shrubs	0.489276	bush	0.569031
hillary	0.649792	mother	0.580256	planted	0.484893	trees	0.541988
kerry	0.614406	friends	0.578592	trunks	0.470876	friends	0.539409
rodham	0.613864	daughter	0.539657	bark	0.464572	barack	0.525719
biden	0.594085	son	0.538854	garden	0.462577	families	0.514836
gore	0.588598	wife	0.53823	fruit	0.462216	mother	0.509138
democrats	0.56083	home	0.533894	flower	0.460653	home	0.509013

Obama family tree

Words in rel. doc.

Query embedding

#obama family tree		obama family tree	
obama	14807	family	0.736234
barack	6092	tree	0.690256
obamas	3252	obama	0.616687
family	2772	bush	0.569031
president	1797	trees	0.541988
chicago	1757	friends	0.539409
born	1584	barack	0.525719
times	1516	families	0.514836
michelle	1479	mother	0.509138
new	1374	home	0.509013
brother	1362		· · · · · · · · · · · · · · · · · · ·
robinson	1280		
dunham	1271		
kenya	1269		

Why?

Word2vec is trained to reproduce word context
 Context similarity ~ word sense similarity

Semantic similarity by human vs. for IR
 Human: Obama is similar to McCain and Bush
 ... but not for search

Success story: DSSM – Deep Structured Semantic Model

- Using click-through data for training
 - Encode relevance relationship between query-clicked document title

- Use letter 3-grams as input rather than words
 cat -> #-c-a c-a-t a-t-#
 - Reduce vocabulary size to about 30-50K

DSSM

DSSM for semantic embedding Learning

Initialization:

Neural networks are initialized with random weights

Huang, He, Gao, Deng, Acero, Heck, "Learning deep structured semantic models for web search using clickthrough data," CIKM, 2013

From [He et al. CIKM 2014 tutorial]

DSSM: train on click data

39

DSSM for semantic embedding learning

Training:

Results on Web search

Model	Input	NDCG@1
	dimension	%
BM25 baseline		30.8
Probabilistic LSA (PLSA)		29.5
Auto-Encoder (Word)	40K	31.0 (+0.2)
DSSM (Word)	40K	34.2 (+3.4)
DSSM (Random projection)	30K	35.1 (+4.3)
DSSM (Letter-trigram)	30K	36.2 (+5.4)

From He et al, CIKM 2014 tutorial

Hierarchical deep net for query suggestion and generation

[Sordoni et al. 2015] A hierarchical recurrent encoderdecoder for generative context-aware query suggestion, CIKM 2015)

- Learn to suggest/generate queries from query sessions
- Two layers:
 - Query embedding is generated from word embedding nonlinearly (recurrent NN)
 - Query session embedding is generated from query embeddings non-linearly

HRED architecture

Use query logs to train the model: Session: (query1, query2)

Useful for query suggestion

Examples of generated queries

Context	Synthetic Suggestions	
ace series drive	ace hardware ace hard drive hp officejet drive ace hardware series	Hard Drive Recovery
clevel and gallery \rightarrow lake erie art	cleveland indian art lake erie art gallery lake erie picture gallery sandusky ohio art gallery	

Table 1: HRED suggestions given the context.

ace series drive (on Google)

cooperindustries.com/content/public/en/crouse-hinds/products/industrial_control/explosionproof_vari 🔟 🕁 📔 🖻

ACE DG1 Series Explosionproof Variable Frequency Drives

+ Share

Size 1 (1 to 5 HP) Open

The only explosionproof VFD solution utilizing NEMA 7 with active cooling.

ACE Variable Frequency Drives are highly flexible AC drives designed specifically for hazardous locations. Can be mounted next to the motor in the classified area, providing significant installation cost savings - along with the traditional VFD benefits of energy savings, speed and torque control, and system diagnostics. Now available with Eaton's PowerXL DG1 drive, up to 100 HP!

- Complete Technical Specifications
- Locate Authorized Distributor
- Contact Local Sales Representative

Evaluation on AOL

- Next query prediction
- Incorporate HRED score as feature in a L2R model (LambdaMART) with 17 other pairwise and contextual features

Method	MRR	$\Delta\%$
ADJ	0.5334	-
Baseline Ranker	0.5563	+4.3%
+ HRED	0.5749	+7.8%/+3.3%

Table 3: Next-query prediction results. All improvements are significant by the t-test (p < 0.01).

Summary on query representation

- Models trained to reproduce the text (unsupervised learning) has limited success in IR
- Models trained on IR-specific data are more successful (DSMM, HRED)

→ A representation is useful for IR if it is trained to reproduce IR data (relevance)

Some remarks: NLP for IR

- Off-the-shelf NLP tools are not necessarily adapted to the need of IR
- IR works with reasonably meaningful features (words) + links + query logs
 - Much more meaningful than pixels
- It is difficult to create a better representation than words

Search result is not so bad

Search result is not so bad

How can NLP help IR?

- The NLP tools should be trained for IR tasks (relevance)
 - IR-specific query "parsing"
 - Representation trained on IR data

Karl Popper: Objects can become similar or dissimilar only in this way – by being related to needs and interests

Thank you

nie@iro.umontreal.ca