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Abstract. The attention model has become a standard component in
neural machine translation (NMT) and it guides translation process by
selectively focusing on parts of the source sentence when predicting each
target word. However, we find that the generation of a target word does
not only depend on the source sentence, but also rely heavily on the
previous generated target words, especially the distant words which are
difficult to model by using recurrent neural networks. To solve this prob-
lem, we propose in this paper a novel look-ahead attention mechanism
for generation in NMT, which aims at directly capturing the dependency
relationship between target words. We further design three patterns to
integrate our look-ahead attention into the conventional attention model.
Experiments on NIST Chinese-to-English and WMT English-to-German
translation tasks show that our proposed look-ahead attention mecha-
nism achieves substantial improvements over state-of-the-art baselines.

1 Introduction

Neural machine translation (NMT) has significantly improved the quality of
machine translation in recent several years [10, 26, 1, 9], in which the attention
model increasingly plays an important role. Unlike traditional statistical machine
translation (SMT) [13, 4, 32] which contains multiple separately tuned compo-
nents, NMT builds upon a single and large neural network to directly map source
sentence to associated target sentence.

Typically, NMT adopts the encoder-decoder architecture which consists of
two recurrent neural networks. The encoder network models the semantics of
the source sentence and transforms the source sentence into context vector rep-
resentation, from which the decoder network generates the target translation
word by word. Attention mechanism has become an indispensable component in
NMT, which enables the model to dynamically compose source representation
for each timestep during decoding, instead of a single and static representation.
Specifically, the attention model shows which source words the model should
focus on in order to predict the next target word.

However, previous attention models are mainly designed to predict the align-
ment of a target word with respect to source words, which take no account of the
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Fig. 1. An example of Chinese-English translation. The English sentence is analyzed
using Stanford online parser1. Although the predicate “are pushing” is close to the word
“France”, it has a stronger dependency on the word “countries” instead of “France”.

fact that the generation of a target word may have a stronger correlation with
the previous generated target words. Recurrent neural networks, such as gated
recurrent units (GRU) [5] and long short term memory (LSTM) [8], still suffer
from long-distance dependency problems, according to pioneering studies [1, 12]
that the performance of NMT is getting worse as source sentences get longer.
Figure 1 illustrates an example of Chinese-English translation. The dependency
relationship of target sentence determines whether the predicate of the sentence
should be singular (is) or plural (are). While the conventional attention model
does not have a specific mechanism to learn the dependency relationship between
target words.

To address this problem, we propose in this paper a novel look-ahead at-
tention mechanism for generation in NMT, which can directly model the long-
distance dependency relationship between target words. The look-ahead atten-
tion model does not only align to source words, but also refer to the previous gen-
erated target words when generating a target word. Furthermore, we present and
investigate three patterns for the look-ahead attention, which can be integrated
into any attention-based NMT. To show the effectiveness of our look-ahead at-
tention, we have conducted experiments on NIST Chinese-to-English translation
tasks and WMT14 English-to-German translation tasks. Experiments show that
our proposed model obtains significant BLEU score improvements over strong
SMT baselines and a state-of-the-art NMT baseline.

2 Neural Machine Translation

Our framework integrating the look-ahead attention mechanism into NMT can
be applied in any conventional attention model. Without loss of generality, we use
the improved attention-based NMT proposed by Luong et al. [16], which utilizes
stacked LSTM layers for both encoder and decoder as illustrated in Figure 2.

The NMT first encodes the source sentence X = (x1, x2, ..., xm) into a se-
quence of context vector representation C = (h1, h2, ..., hm) whose size varies

1 http://nlp.stanford.edu:8080/parser/index.jsp.
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Fig. 2. The architecture of neural machine translation model.

with respect to the source sentence length. Then, the NMT decodes from the con-
text vector representation C and generates target translation Y = (y1, y2, ..., yn)
one word each time by maximizing the probability of p(yj |y<j , C). Next, we
briefly review the encoder introducing how to obtain C and the decoder ad-
dressing how to calculate p(yj |y<j , C).

Encoder: The context vector representation C = (hl1, h
l
2, ..., h

l
m) are gener-

ated by the encoder using l stacked LSTM layers. Bi-directional connections are
used for the bottom encoder layer, and h1i is a concatenation of a left-to-right
−→
h 1

i and a right-to-left
←−
h 1

i ,

h1i =

[−→
h 1

i←−
h 1

i

]
=

[
LSTM(

−→
h 1

i−1, xi)

LSTM(
←−
h 1

i−1, xi)

]
(1)

All other encoder layers are unidirectional, and hki is calculated as follows:

hki = LSTM(hki−1, h
k−1
i ) (2)

Decoder: The conditional probability p(yj |y<j , C) is formulated as

p(yj |Y<j , C) = p(yj |Y<j , cj) = softmax(Wstj) (3)

Specifically, we employ a simple concatenation layer to produce an attentional
hidden state tj :

tj = tanh(Wc[s
l
j ; cj ] + b) = tanh(W 1

c s
l
j +W 2

c cj + b) (4)

where slj denotes the target hidden state at the top layer of a stacking LSTM.
The attention model calculates cj as the weighted sum of the source-side context
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vector representation, just as illustrated in the upper left corner of Figure 2.

cj =

m∑
i=1

ATT (slj , h
l
i) · hli =

m∑
i=1

αjih
l
i (5)

where αji is a normalized item calculated as follows:

αji =
exp(hli · slj)∑
i′ exp(h

l
i′
· slj)

(6)

skj is computed by using the following formula:

skj = LSTM(skj−1, s
k−1
j ) (7)

If k = 1, s1j will be calculated by combining tj−1 as feed input [16]:

s1j = LSTM(s1j−1, yj−1, tj−1) (8)

Given the bilingual training data D = {(X(z), Y (z))}Zz=1, all parameters of
the attention-based NMT are optimized to maximize the following conditional
log-likelihood:

L(θ) =
1

Z

Z∑
z=1

n∑
j=1

logp(y
(z)
j |y

(z)
<j , X

(z), θ) (9)

3 Model Description

Learning long-distance dependencies is a key challenge in machine translation.
Although the attention model introduced above has shown its effectiveness in
NMT, it takes no account of the dependency relationship between target words.
Hence, in order to relieve the burden of LSTM or GRU to carry on the target-side
long-distance dependencies, we design a novel look-ahead attention mechanism,
which directly establishes a connection between the current target word and the
previous generated target words. In this section, we will elaborate on three pro-
posed approaches about integrating the look-ahead attention into the generation
of attention-based NMT.

3.1 Concatenation Pattern

Figure 3(b) illustrates concatenation pattern of the look-ahead attention mech-
anism. We not only compute the attention between current target hidden state
and source hidden states, but also calculate the attention between current target
hidden state and previous target hidden states. The look-ahead attention output
at timestep j is computed as:

cdj =

j−1∑
i=1

ATT (slj , s
l
i) · sli (10)
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Fig. 3. Different architectures of look-ahead attention. (a) is the conventional attention
pattern as introduced in Eq. 4 of section 2. (b), (c) and (d) are our three approaches
which integrate look-ahead attention mechanism into attention-based NMT.

where ATT (slj , s
l
i) is a normalized item.

Specifically, given the target hidden state slj , the source-side context vector

representation cj , and the target-side context vector representation cdj , we employ
a concatenation layer to combine the information to produce an attentional
hidden state as follows:

tfinalj = tanh(Wc[s
l
j ; cj ; c

d
j ] + b) (11)

After getting the attentional hidden state tfinalj , we can calculate the condi-
tional probability p(yj |y<j , C) as formulated in Eq. 3.

3.2 Enc-Dec Pattern

Concatenation pattern is a simple method to achieve look-ahead attention, which
regards source-side context vector representation and target-side context vector
representation as the same importance. Different from concatenation pattern,
Enc-Dec pattern utilizes a hierarchical architecture to integrate look-ahead at-
tention as shown in Figure 3(c).

Once we get the attentional hidden state of conventional attention-based
NMT, we can employ look-ahead attention mechanism to update the previous
attentional hidden state. In detail, the model first computes the attentional
hidden state tej of conventional attention-based NMT as Eq. 4. Second, the model
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calculates the attention between the attentional hidden state tej and previous
target hidden states:

cdj =

j−1∑
i=1

ATT (tej , s
l
i) · sli (12)

Then, the final attentional hidden state is calculated as followed:

tfinalj = tanh(Wc2[tej ; c
d
j ] + b2) (13)

3.3 Dec-Enc Pattern

Dec-Enc pattern is the opposite of the Enc-Dec pattern, and it uses look-ahead
attention mechanism to help the model align to source words. Figure 3(d) shows
this pattern. We compute look-ahead attention output firstly as Eq. 10, and
attentional hidden state is computed by:

tdj = tanh(Wc1[slj ; c
d
j ] + b) (14)

Finally, we can calculate the attention between the attentional hidden state
tdj and source hidden states to get final attentional hidden state:

tfinalj = tanh(Wc2[tdj ; cej ] + b2) (15)

cej =

m∑
i=1

ATT (tdj , h
l
i) · hli (16)

where hli is source-side hidden state at the top layer.

4 Experiments

4.1 Dataset

We perform our experiments on the NIST Chinese-English translation tasks and
WMT14 English-German translation tasks. The evaluation metric is BLEU [21]
as calculated by the multi-blue.perl script.

For Chinese-English, our training data consists of 630K sentence pairs ex-
tracted from LDC corpus2. We use NIST 2003(MT03) Chinese-English dataset
as the validation set, NIST 2004(MT04), NIST 2005(MT05), NIST 2006(MT06)
datasets as our test sets. Besides, 10M Xinhua portion of Gigaword corpus is
used in training language model for SMT.

For English-German, to compare with the results reported by previous work [16,
25, 34], we used the same subset of the WMT 2014 training corpus3 that contains
4.5M sentence pairs with 116M English words and 110M German words. The
concatenation of news-test 2012 and news-test 2013 is used as the validation set
and news-test 2014 as the test set.
2 The corpora include LDC2000T50, LDC2002T01, LDC2002E18, LDC2003E07, LD-

C2003E14, LDC2003T17 and LDC2004T07.
3 http://www.statmt.org/wmt14/translation-task.html
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4.2 Training Details

We build the described models modified from the Zoph RNN4 toolkit which is
written in C++/CUDA and provides efficient training across multiple GPUs.
Our training procedure and hyper parameter choices are similar to those used
by Luong et al. [16]. In the NMT architecture as illustrated in Figure 2, the
encoder has three stacked LSTM layers including a bidirectional layer, followed
by a global attention layer, and the decoder contains two stacked LSTM layers
followed by the softmax layer.

In more details, we limit the source and target vocabularies to the most
frequent 30K words for Chinese-English and 50K words for English-German.
The word embedding dimension and the size of hidden layers are all set to 1000.
Parameter optimization is performed using stochastic gradient descent(SGD),
and we set learning rate to 0.1 at the beginning and halve the threshold while
the perplexity go up on the development set. Each SGD is a mini-batch of 128
examples. Dropout was also applied on each layer to avoid over-fitting, and the
dropout rate is set to 0.2. At test time, we employ beam search with beam size
b = 12.

4.3 Results on Chinese-English Translation

We list the BLEU scores of our proposed model in Table 1. Moses-1 [11] is the
state-of-the-art phrase-based SMT system with the default configuration and a
4-gram language model trained on the target portion of training data. Moses-
2 is the same as Moses-1 except that the language model is trained using the
target data plus 10M Xinhua portion of Gigaword corpus. The BLEU score of
our NMT baseline, which is an attention-based NMT as introduced in Section
2, is about 4.5 higher than the state-of-the-art SMT system Moses-2.

Table 1. Translation results (BLEU score) for Chinese-to-English translation. “†”:
significantly better than NMT Baseline (p < 0.05). “‡”: significantly better than NMT
Baseline (p < 0.01).

System MT04 MT05 MT06 Ave

Moses-1 31.08 28.37 30.04 29.83
Moses-2 33.13 31.38 32.63 32.38
NMT Baseline 38.96 34.95 36.65 36.85

Concatenation pattern 39.43† 35.40† 36.93 37.25†
Enc-Dec pattern 39.61† 36.50‡ 37.23† 37.78‡
Dec-Enc pattern 39.00 36.36‡ 37.01† 37.46‡

For the last three lines in Table 1, Enc-Dec pattern outperforms concatena-
tion pattern and even Dec-Enc pattern, which shows Enc-Dec pattern is best

4 https://github.com/isi-nlp/Zoph RNN
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approach to take advantage of look-ahead attention. Moreover, our Enc-Dec
pattern gets an improvement of +0.93 BLEU points over the state-of-the-art
NMT baseline, which demonstrates that the look-ahead attention mechanism is
effective for generation in conventional attention-based NMT.

Effects of Translating Long Sentences A well-known flaw of NMT model
is the inability to properly translate long sentences. One of the goals that we
integrate the look-ahead attention into the generation of NMT decoder is boost-
ing the performance in translating long sentence. We follow Bahdanau et al. [1]
to group sentences of similar lengths together and compute a BLEU score per
group, as demonstrated in Figure 4.
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Fig. 4. Length Analysis - translation qualities(BLEU score) of our proposed model
and the NMT baseline as sentences become longer.

Although the performance of both the NMT baseline and our proposed model
drops rapidly when the length of source sentence increases, our Enc-Dec model
is more effective than the NMT Baseline in handling long sentences. Specifically,
our proposed model gets an improvement of 1.88 BLEU points over the baseline
from 50 to 60 words in source language. Furthermore, when the length of input
sentence is greater than 60, our model still outperforms the baseline by 1.04
BLEU points. Experiments show that the look-ahead attention can relieve the
burden of LSTM to carry on the target-side long-distance dependencies.

Target Alignment of Look-ahead Attention The conventional attention
models always refer to some source words when generating a target word. We
propose a look-ahead attention for generation in NMT, which also focuses on
previous generated words in order to predict the next target word.
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Fig. 5. Target Alignment of Look-ahead Attention.

We provide two real translation examples to show the target alignment of
look-ahead attention in Figure 5. The first line is blank because it does not have
look-ahead attention when generating the first word. Every line represents the
weight distribution for previous generated words when predicting current target
word. More specifically, we find some interesting phenomena. First, target words
often refer to verb or predicate which has been generated previously, such as the
word “was” in Figure 5(a).

Second, the heat map shows that the word “we” and the word “looking” have
a stronger correlation when translating the Chinese sentence as demonstrated
in Figure 5(b). Intuitively, the look-ahead attention mechanism establishes a
bridge to capture the dependency relationship between target words. Third,
most target words mainly focus on the word immediately before the current
target word, which may be due to the fact that the last generated word contains
more information in recurrent neural networks. We can control the influence of
the look-ahead attention like Tu et al. [27] to improve translation quality and
instead we remain it as our future work.

4.4 Results on English-German Translation

We evaluate our model on the WMT14 translation tasks for English to German,
whose results are presented in Table 2. We find that our proposed look-ahead
attention NMT model also obtains significant accuracy improvements on large-
scale English-German translation.

In addition, we compare our NMT systems with various other systems includ-
ing Zhou et al. [34] which use a much deeper neural network. Luong et al. [16]
achieves BLEU score of 19.00 with 4 layers deep Encoder-Decoder model. Shen
et al. [25] obtained the BLEU score of 18.02 with MRT techniques. For this work,
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Table 2. Translation results (BLEU score) for English-to-German translation. “‡”:
significantly better than Baseline(p < 0.01).

System Architecture Voc. BLEU

Existing systems

Loung et al. [16] LSTM with 4 layers+dropout+local att. 50K 19.00
Shen et al. [25] Gated RNN with search + MRT 50K 18.02
Zhou et al. [34] LSTM with 16 layers + F-F connections 160K 20.60

Our NMT systems

This work Baseline 50K 19.84
This work Enc-Dec pattern 50K 20.36‡

our Enc-Dec look-ahead attention NMT model with two layers achieves 20.36
BLEU scores, which is on par with Zhou et al. [34] in term of BLEU. Note that
Zhou et al. [34] employ a much larger depth as well as vocabulary size to obtain
their best results.

5 Related Work

The recently proposed neural machine translation has drawn more and more
attention. Most of the existing approaches and models mainly focus on designing
better attention models [16, 19, 20, 28, 18], better strategies for handling rare and
unknown words [17, 14, 24], exploiting large-scale monolingual data [3, 23, 33],
and integrating SMT techniques [25, 7, 35, 30].

Our goal in this work is to design a smart attention mechanism to model the
dependency relationship between target words. Tu et al. [28] and Mi et al. [19]
proposed to extend attention models with a coverage vector in order to attack the
problem of repeating and dropping translations. Cohn et al. [6] augmented the
attention model with well-known features in traditional SMT. Unlike previous
works that attention models are mainly designed to predict the alignment of a
target word with respect to source words, we focus on establishing a direct bridge
to capture the long-distance dependency relationship between target words. In
addition, Wu et al. [31] lately proposed a sequence-to-dependency NMT method,
in which the target word sequence and its corresponding dependency structure
are jointly constructed and modeled. However, the target dependency tree ref-
erences are needed for training in this model and our proposed model does not
need extra resources.

Very Recently, Vaswani et al. [29] proposed a new simple network architec-
ture, Transformer, based solely on attention mechanisms with multi-headed self
attention. Besides, Lin et al. [15] presented a self-attention mechanism which
extracts different aspects of the sentence into multiple vector representations.
And the self-attention model has been used successfully in some tasks including
abstractive summarization and reading comprehension[22, 2]. Here, in order to
alleviate the burden of LSTM to carry on the target-side long-distance depen-
dencies of NMT, we propose to integrate the look-ahead attention mechanism
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into the conventional attention-based NMT which is used in conjunction with a
recurrent network.

6 Conclusion

In this work, we propose a novel look-ahead attention mechanism for generation
in NMT, which aims at directly capturing the long-distance dependency rela-
tionship between target words. The look-ahead attention model not only aligns
to source words, but also refers to the previous generated words when generat-
ing the next target word. Furthermore, we present and investigate three patterns
to integrate our proposed look-ahead attention into the conventional attention
model. Experiments on Chinese-to-English and English-to-German translation
tasks show that our proposed model obtains significant BLEU score gains over
strong SMT baselines and a state-of-the-art NMT baseline.
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