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Abstract. This paper proposes a deep convolutional neural model for
character-based Chinese word segmentation. It first constructs position
embeddings to encode unigram and bigram features that are directly re-
lated to single positions in input sentence, and then adaptively builds up
hierarchical position representations with a deep convolutional net. In ad-
dition, a multi-task learning strategy is used to further enhance this deep
neural model by treating multiple supervised CWS datasets as different
tasks. Experimental results have shown that our neural model outper-
forms the existing neural ones, and the model equipped with multi-task
learning has successfully achieved state-of-the-art F-score performance
for standard benchmarks: 0.964 on PKU dataset and 0.978 on MSR
dataset.

1 Introduction

Chinese, as well as most east Asian languages, is written without explicit word
delimiters. Therefore, word segmentation becomes a preliminary but fundamen-
tal procedure that has to be executed before miscellaneous downstream syntactic
and semantic analysis. In the past two decades, many statistical methods have
been proposed to solve the problem of Chinese word segmentation (or CWS in
short), which can be categorized roughly into character-based and word-based
approaches.

The character-based models [17] treat word segmentation as a sequence la-
beling problem, where tags are used to indicate the relative position of characters
inside the words that they belong to. Tag prediction is usually made on the basis
of extracted features from local windows, inclusive of character identity features,
reduplication features [16], and history predictions of previous characters. One
disadvantage of character-based models exists in that they can only use limited
contextual information, and other valuable contextual information such as sur-
rounding words is hard to get included. To allow word information to be used
as features, word-based approaches [1,21] were proposed to rank candidate seg-
mented outputs directly, with the aid of semi-CRF or transition-based methods
where word-level features can be easily integrated.

These conventional statistical CWS methods, no matter character-based or
word-based, rely heavily to a large extent on the hand-crafted features. Re-
cently, with the upsurge of deep learning, there is a trend of applying neural



network models to NLP tasks, which adaptively learn important features from
word/character embeddings [2,12] trained on large quantities of unlabelled text,
and thus greatly reduce efforts of hand-crafted feature engineering [5]. Following
the trend, several neural models for word segmentation have been developed,
among which some are character-based [4, 10, 11, 13, 22], and others are word-
based [3, 9, 20]. These neural models have achieved competitive performance.

This paper follows the character-based approach, which has a simpler algo-
rithmic framework and prevails in the task of CWS. The contribution of this
paper is three-fold: (1) Deep convolutional network is applied to CWS, where
position embeddings are automatically constructed from the unigram and bi-
gram features directly related to positions (Section 2.1), and hierarchical posi-
tion representations are built up adaptively from position embeddings such that
the representation of each position has a large receptive field (Section 2.2). (2)
To utilize the large-scale unsupervised text corpus, character bigram embed-
dings that are pretrained on unsupervised corpus play an important role in the
construction of position embeddings (Section 2.1). The pretrained bigram em-
beddings can be thought of features at the midpoint from characters to words;
(3) We designed a homogeneous multitask learning framework for Chinese word
segmentation (Section 3), which treats each supervised dataset a different sep-
arate task. It is shown that the segmentation model built for one domain can
benefit from the dataset from other domain.

2 The Deep Convolutional Neural Model for CWS

The deep convolutional neural model (or DCN model in short) can be thought
of as an instantiation of a simple and straightforward deep neural architecture as
shown in Figure 1. The overall architecture takes a modular structure consisting
of three main modules, one stacked over another. Position Embedding Mod-
ule constructs a vector representation for each position in input sentence, called
position embedding, which is expected to encode the information that are directly
related to the position. Deep Representation Module adaptively constructs
hierarchical position representations to combine the lower-level representations
of each position and its surrounding positions into a higher-level representation
of the position. Tag Scoring Module assigns tag scores to each position based
on the top-level position representation from the deep representation module.

The DCN model proposed in this paper is different from the existing neural
ones in several aspects:

– Deep convolutional network is used for CWS, which is able to automati-
cally construct best hierarchical representations for positions in sentence.
By convolution, the information at a position can flow to its adjacent po-
sitions bi-directionally. Deep convolutional network can provide sufficiently
large receptive fields. In contrast, most previous methods rely on shallow
networks that have only limited receptive field and work on the basis of
traditional window-based segmentation [10,13,22]
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Fig. 1. Deep neural network architecture for CWS

– Recent approaches make use of recurrent neural networks (typically, LSTM),
which have potentially infinite receptive field, to build the feature represen-
tation for positions in an input senntence. However, the sequential processing
mechanism of recurrent neural networks makes it too costly to build hier-
archical representations. On the contrary, the deep convolutional network is
suitable for the exploitation of modern multi-core computation ability such
as GPU.

– To model the tag-tag or tag-character interactions, some models explicitly
designed tag-related features, while others explicitly used tag-tag transition
probabilities in a viterbi-like decoder. In our model, it is assumed that the
induced position representations have naturally contains information about
the tags for positions, and therefore, the tag-related information can easily
flow implicitly between adjacent positions during their hierarchical represen-
tation learning process.

2.1 Position Embeddings

For each position j (1 ≤ j ≤ n) in a given input sentence s = c1 · · · cn of length

n, we would like to first represent it as a vector x
(0)
j of fixed size, called position

embedding. To distinguish it from position representation in Section 2.2, it is
required that a position embedding is constructed from features that are directly
related to the position, while a position representation is obtained by aggregating
features from the position and its surroundings.

As shown in Figure 2, the position embedding x
(0)
j at position j is the con-

catenation of its unigram embedding e
(u)
j and its bigram embedding e

(b)
j .

Unigram Embeddings Let Σ(u) denote the character unigram dictionary of
size |Σ(u)|, and M(u) denote the (character) unigram embedding matrix of size
d(u) × |Σ(u)|, where d(u) = 300 by default. Each character c ∈ Σ(u) has an
associated index ind(c) into the column of the embedding matrix.

Given a sentence of n characters, s = c1c2 . . . cn, where cj is the character

unigram at position j (1 ≤ j ≤ n). The unigram embedding e
(u)
j ∈ Rd(u)×1 at

position j can be obtained by applying a lookup-table operation on the unigram
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Fig. 2. Module for position embedding.

embedding matrix:

e
(u)
j = lookup(M(u), cj) = M(u) · eind(cj)

where eind(cj) is the one-hot representation of the character cj , i.e. a |Σ(u)|-
dimensional binary column vector that is zero for all elements except for the
element at the index ind(cj).

In our model, the character embedding matrix M(u) is randomly initialized,
and it will get trained via back propagation.

Bigram Embeddings Besides the unigram dictionary, we also have a character
bigram dictionary (denoted by Σ(b)) of size |Σ(b)|, and a character bigram em-
bedding matrix (denoted by M(b)) of size d(b)×|Σ(b)|. In our model, the character
bigram embeddings are pretrained on unsupervised corpus, and the dimension-
ality of these embeddings is set to 300 as default. Each bigram cc′ ∈ Σ(b) has an
associated index ind(cc′) into the column of the bigram embedding matrix.

Each position j in the input sentence s is directly related to two character
bigrams: the adjacent left character bigram cj−1cj and the adjacent right char-
acter bigram cjcj+1, which can be transformed into the left character bigram

embedding e
(lb)
j and the right character bigram embedding e

(rb)
j by looking-up

the bigram embedding matrix:

e
(lb)
j = M(b) · eind(cj−1cj)

e
(rb)
j = M(b) · eind(cjcj+1)

where eind(cc′) is a |Σ(b)|-dimensional binary column vector that is zero for all
elements except for the element at the index ind(cc′).



A convolutional layer with filter size 2, stride 1 and zero-padding is then used

to get the position bigram embedding e
(b)
j for each position j from its left and

right character bigram embeddings. Formally,

e
(b)
j = W(0)

[
e
(lb)
j e

(rb)
j

]
+ b(0)

where W(0) ∈ Rd(0)×d(b)×2 is a 3-way tensor, b(0) ∈ Rd(0)

is the bias vector,
and d(0) is the dimension of the position bigram embedding space (with 300 as
default value).

The use of pretrained bigram embeddings in CWS is based on the following
consideration:
– If position j is in the middle of a multi-character word, it is likely that cj−1cj

and cjcj+1 share similar contexts in the unsupervised corpus, and thus have
similar embeddings to some degree.

– If position j is at the begin (or end) of a multi-character word, it is unlikely
that cj−1cj and cjcj+1 share similar contexts and thus their embeddings are
dissimilar to each other.

2.2 Deep Representation Module

To build up the hierarchical feature representation for character-based CWS,
we adopt a deep convolutional representation module which consists of multiple
stacked convolutional blocks.

Each convolutional block is a weighted layer followed by a ReLU nonlinearity
activation, as shown in Figure 3.

x(l−1)

Weight

ReLU

x(l)

Fig. 3. Structure of a convolutional block

Because the task at present is to perform character-based CWS, we have to
preserve the temporal resolution throughout the module. Therefore, we make
the following design choices:

– The filter size in each convolutional block is set to a fixed integer S (by
default, S = 3), with padding such that the temporal resolution is preserved;

– The stride is set to 1 in each convolutional block (otherwise, the temporal
resolution would be reduced);

– We do not use any down sampling (pooling layer) between adjacent convolu-
tional blocks, because the functionality of pooling is to reduce the temporal
dimensions.



Let L denote the number of convolutional blocks in the module. The working
mechanism of the l-th convolutional block (1 ≤ l ≤ L) is described below:
– A convolutional layer with F filters is performed by taking the dot-product

between each filter (or kernel) matrix and each window of size S in the
input sequence x(l−1), resulting in F scalar values for each position j in
input sentence. By default, the value of F is set to 600 for all convolutional
layers in this module.

– Next, a batch normalization layer goes immediately after the convolutional
layer. It normalizes the output of the convolutional layer to zero mean and
unit variance, and then transforms it linearly.

– Finally, a element-wise ReLU activation function is applied, so negative ac-
tivations are discarded.
Stacking L layers of such convolution blocks together results in a receptive

field of ((S − 1)× L+ 1) positions of the original input sentence. The receptive
field of the units in the deeper layers of a convolutional network is larger than the
receptive field of the units in the shallow layers. Deep neural networks can adap-
tively learn how to best combine the lower-level representations of S positions
into a higher-level representation in a hierarchically layer-by-layer manner.

2.3 Tag Scoring Module

After processed by the deep convolutional network, each position j is represented

by a vector x
(L)
j of size F . The tag scoring module transforms each position

representation from a F -dimensional vector x
(L)
j into a K-dimension vector of

tag scores yj . The tag set used is {‘B’, ‘M’, ‘E’, ‘S’}, and hence K = 4, where
‘S’ denotes a single character word, while ‘B’, ‘M’ and ‘E’ denotes the begin,
middle and end of a multi-character word respectively.

A two-layer feed-forward neural network implements the module:

yj = f2

(
g
(
f1

(
x
(L)
j

)))
where f2 and f1 are two affine transformations, and g is a element-wise ReLU
activation.

Specifically, we have:

hj = ReLU
(
W(s,1) · x(L)

j + b(s,1)
)

and
yj = W(s,2) · hj + b(s,2)

where W(s,1) is a matrix of size F × F , b(s,1) is a vector of size F , W(s,2) is a
F ×K matrix, and b(s,2) is a vector of size K.

2.4 Dropout

Dropout is an effective technique to regularize neural networks by randomly
drop units during training. It has achieved a great success when working with



feed-forward networks [14], convolutional networks, or even recurrent neural net-
works [18]. In the DCN model, dropout is applied to both the output of point
embedding module and the input of the final layer in the deep representation
module, with the same dropout rate.

Furthermore, in order to make the model robust to unknown character un-
igrams or bigrams, it also drops a position randomly 20% of the time during
training.

2.5 Tag Prediction and Word Segmentation

Given the tag scores for a position j, the prediction t̂j is the tag with the highest
predicted tag score:

t̂j = arg max
k

yj,k

where yj,k is the predicted score of tag k at position j.
After all positions have their tags predicted, the sentence is segmented in

a simple heuristic way: A character with tag ‘B’ or ‘S’ will start a new word,
while a character with tag ‘M’ or ‘E’ will append itself to the previous word. As
a result, the potential inconsistencies in predicted tags are resolved in a near-
random manner. For example, the inconsistent adjacent predictions “BMB” will
be implicitly changed to “BEB”, “BBS” to “BES”, etc.

2.6 Model Training

Given the training sentences and ground truth {si, ti}Ni=1, our goal is to learn
the parameters that minimize the cross-entropy loss function:

L(Θ) =
1∑N

i=1 |si|

N∑
i=1

|si|∑
j=1

ti,j log
exp yi,j,ti,j∑
k exp yi,j,k

where Θ is the set of all parameters, ti,j denotes the gold tag for the position j
in sentence si, yi,j,k denotes the score of tag k for the position j in si.

Here, as a rule of thumb, we do not include a L2-regularization term in the
loss function because both dropout and batch normalization have been used to
regularize our model.

We used Adam [7] to train our models with a learning rate of 0.001, a first
momentum coefficient β1 = 0.9, and a second momentum coefficient β2 = 0.999.
Each model was trained for 50 epochs with minibatch size of 16 sentences.

3 Multi-task Learning

Multi-task learning usually can obtain better generalization ability by making
part of a model be shared across tasks. Previous related work mainly focused
on jointly modeling heterogeneous multi-tasks such as word segmentation, POS
tagging or dependency parsing [8].



Here, we are concerned about homogeneous multi-tasks, all for word segmen-
tation. Suppose that there are multiple supervised datasets for CWS, it is not a
good idea to merge them into a single large one, because of the following reasons:

– Different datasets may be used for different NLP tasks, while different NLP
tasks may require different segmentation criteria.

– Different datasets may be annotated according to different segmentation
standards. For example, the PKU dataset used a standard derived from the
Chinese government standard for text segmentation in computer application,
while the MSR dataset was segmented according to Microsoft’s internal stan-
dard.
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Fig. 4. MT-DCN: A multi-task model for CWS.

Instead, we treat each dataset as a separate task and propose a multi-task
model for CWS (called MT-DCN) in Figure 4. For illustration, only two CWS
datasets are used here. The common part at the bottom of the model is shared
by the two CWS tasks, and as a result, the unigram and bigram embedding
matrices and the deep convolutional network for build up hierachical position
representations (together with the corresponding parameter) are all shared by
the two tasks. Besides this shared common part, the two tasks have their own
specific parts at the top of the model, which are different from each other. The
task-specific part is expected to encode the special factors of the corresponding
task.

At training time, we divide the two training datasets into a same number
of minibatches (1500 minibatches by default), and alternately update one task-
specific part with a minibatch from the corresponding dataset. Note that the
common part is always updated for each minibatch, no matter which dataset
it comes from. At prediction time, which task-specific part to use depends on
where the data comes from.



4 Experiments

To evaluate our models, we used two widely used benchmark datasets, PKU and
MSR, provided by the Second SIGHAN International Chinese Word Segmenta-
tion Bakeoff [6]. The segmentation results are evaluated by the F-scores.

To make the comparison fair, we converted the Arabic numbers and English
characters in the testing set of PKU corpus from half-width form to full-width
form, because they are in full-width form in the training set. This conversion is
commonly performed before segmentation in related research work. Except this
conversion, we did not make any preprocessing on the datasets.

We implemented the models in Python with Theano (http://deeplearning.
net/software/theano/) and Lasagne (http://lasagne.readthedocs.io). We
used word2vec to derive the embeddings of character bigrams pretained on Chi-
nese Wikipedia corpus1.

4.1 Empirical Comparison with Other Models

Table 1. Comparison of F-scores with other state-of-the-art CWS systems.

Neural Models PKU MSR Non-neural Model PKU MSR

Zheng et al. [22] 92.8 93.9 Zhang and Clark [21] 95.1 97.2

Pei et al. [13] 95.2 97.2 Sun et al. [15] 95.4 97.4

Ma and Hinrichs [10] 95.1 96.6 Zhang et al. [19] 96.1 97.4

Cai and Zhao [3] 95.5 96.5

Zhang et al. [20] 95.7 97.7

Liu et al. [9] 95.7 97.6

Our models

DCN 95.9 97.7 MT-DCN 96.4 97.8

Table 1 summarizes the F-scores of DCN and MT-DCN on the testing datasets
of PKU and MSR. Compared with state-of-the-art neural or non-neural models,
we have the following observations:
– The DCN model substantially outperforms the other existing character-

based neural models inclusive of [22], [13], and [10]. It also obtains observ-
able higher F-score than the word-based neural models inclusive of [3], [20],
and [9]. In addition, it outperforms two cutting-edge non-neural models
of [21] and [15], and is competitive to the model of [19];

– The MT-DCN model achieves the best performance on both datasets among
all the compared models, neural or non-neural. With multi-task strategy, the
F-score improvement on PKU is more than that on MSR. Possible reason is
that the MSR dataset is much larger.

1 https://dumps.wikimedia.org/zhwiki/20161120/zhwiki-20161120-pages-
articles.xml.bz2



4.2 Learning Curves of DCN Model
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Fig. 5. The learning curve of our DCN model

Figure 5 shows that the training precedure converges quickly. After the first
epoch, the F-score is 94.2 on PKU testing set, and 94.8 on MSR testing set. Just
after 10 epoches, the F-scores have been very near to their best.

4.3 Contributions of Techniques

Table 2. Technique contributions in MT-DCN
Model Precision Recall F-measure

MT-DCN model 96.7 96.1 96.4

- Mulitask(msr) 96.3 95.6 95.9
- Bigrams 96.5 95.6 96.0
- Dropout 96.5 95.9 96.2

In MT-DCN model, there are three main working techniques: multi-task,
pretrained bigram embeddings, and dropout. To investigate their contributions,
we removed each of them from the model, the results are shown in Table 2. The
dropout is relatively weak, and multitask and pretrained bigram are comparable
in effect. Conclusion can be drawn that data and features are most crucial to
CWS.

4.4 Shallow versus Deep Representations

To investigate the effect of the deep convolutional network used in the deep
representation module, we replaced it with a shallow one with only a single con-
volutional layer. With the filter size varying (or equivalently, the size of receptive



Table 3. Comparison of shallow representations and deep representations on PKU
dataset.

Size of receptive field
3 5 9 13 17

Shallow 95.3 95.5 95.3 95.1 95.2

Deep 95.3 95.7 95.8 95.8 95.9

field), the F-scores on PKU testing data are shown in the “Shallow” row. It
can be observed that the best performance occurs when the filter size is set to 5,
which coincides with the fact that most previous neural models claimed the best
context window size to be 5. The “Deep” row lists the results of our DCN model
with varying number of convolutional layers in {1, 2, 4, 6, 8}, with corresponding
receptive field size in {3, 5, 9, 13, 17}. Observable improvement is still made when
the model is going deeper from 6 to 8. Therefore, the use of deep network has
gained about 0.4 (from 95.5 to 95.9) of F-score over the shallow network.

5 Conclusion

In this paper, we propose a deep convolutional neural model for Chinese word
segmentation. It uses position embeddings to encode the information directly
related to single positions, and then builds up hierarchical position representa-
tions adaptively with a deep convolutional network. The model outperforms the
other state-of-the-art neural models. In addition, a multi-task strategy is used
to enhance the neural model, which improves the performance furtherly.
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