

Towards Different Perspectives in Automatic Human-Computer **Conversational Systems**

#Go_ChatBots!!

Rui Yan, Peking University

http://www.ruiyan.me

Brief History

TV Voice Search

Task-specific argument extraction (e.g., Nuance, SpeechWorks) User: "I want to fly from Boston to New York next

Early 1990s

6

Keyword Spotting (e.g., AT&T) System: "Please say collect, calling card, person, third number, or operator"

IEMWATSON

Early 2000s

Intent Determination (Nuance's Emily™, AT&T HMIHY) User: "Uh…we want to move…we want to change our phone line from this house to another house"

Virtual Personal Assistants

Chatbots

Why Do We Need

- Get things done
 - E.g. set up alarm/reminder, take note
- Easy access to structured data, services and apps
 - E.g. find docs/photos/restaurants
- Assist your daily schedule and routine
 - E.g. commute alerts to/from work
- Be more productive in managing your work and personal life

APP->Bots

A bot is responsible for a "single" domain, similar to an app

Users can initiate dialogues instead of following the GUI design

GUI -> Conversational UI

GUI vs. CUI

	Website/APP's GUI	Msg's CUI	
Situation	Navigation, no specific goal	Searching, with specific goal	
Information Quantity	More	Less	
Information Precision	Low	High	
Display	Structured	Non-structured	
Interface	Graphics	Language	
Manipulation	Click	mainly use texts or speech as input	
Learning	Need time to learn and adapt	No need to learn	
Entrance	App download	Incorporated in any msg-based interface	
Flexibility	Low, like machine manipulation	High, like converse with a human	

Era of A.I.

- Conversation systems with A.I. prevail (>///<)</p>
 - Virtual personal assistant
 - Apple Siri/Microsoft Cortana/Google Now
 - ChatBot
 - Baidu Duer, Microsoft (Xiaobing, Rinna, Tay)
 - Yet to come: Facebook, Microsoft, more startups...

Conversation

• What is conversation

Given **q**, respond with **r**

• Why is it possible?

- It is all about timing
- Data-driven v.s. big data
 - 10 million is enough?

• Why is it challenging?

- Needless to mention
- Relevance
- Interestingness
- A lot of issues...

POSTER: 一把年纪的人居然近视了...求个眼镜做礼 物 (It is unbelievable to have myopia at an "old" age... Wish a pair of glasses as my gift!) **REPLIER 1:** 我送给你! (I will offer one for you!) **REPLIER 2:** 能恢复 Post: **POST:** (Can be 一年纪的人居然 一把年纪的人居然 求个眼镜做 近视了...求个眼镜做 礼物! (It is unbelievable to have vable to have an "old" age ... myopia at an "old" age ... Wish a pair of glasses as W pair of glasses as my gift!) my gift!) **REPLY: REPLY:** 我送给你! 能恢复的,别紧张 (I will offer one for you!) (Can be recovered. Relax.)

Background Knowledge

Machine learning ≈ looking for a function

Machine Learning

Deep learning is a type of machine learning approaches, called "neural networks".

A Single Neuron

A Single Neuron

How Does It Work?

A Layer of Neurons

Deep Neural Networks

Categorizations

Domain

- Open-domain
- Vertical domains

• How to obtain a reply?

- Retrieval-based methods
- Generation-based methods
- Combination of retrieval- and generation-based methods

Scenarios

- Single-turn conversation
- Multi-turn conversation
- Style
 - Passive conversation
 - Proactive conversation

Categorizations

Domain

- Open-domain
- Vertical domains

• How to obtain a reply?

- Retrieval-based methods
- Generation-based methods
- Combination of retrieval- and generation-based methods

Scenarios

- Single-turn conversation
- Multi-turn conversation
- Style
 - Passive conversation
 - Proactive conversation

RETRIEVAL-BASED CONVERSATION SYSTEM

Dataset

• Web provides opportunities with big data

• Social media, cQA, BBS forums

Post	
User A:	The first day at Hawaii. Watching sunset at the balcony with a big glass of wine in hand.
Responses	
User B:	Enjoy it & don't forget to share your photos!
User C:	Please take me with you next time!
User D:	How long are you going to stay there?
User E:	When will be your talk?
User F:	Haha, I am doing the same thing right now. Which hotel are you staying in?
User G:	Stop showing-off, buddy. We are still coding crazily right now in the lab.
User H:	Lucky you! Our flight to Honolulu is delayed and I am stuck in the airport. Chewing French
	fries in MacDonald's right now.

	post
去东方银座下馆子,还没落座就一肚子气,环境,服务,味道,没一样及格的。好歹也	算餐
饮品牌,连个最基本的毛血旺都做不好,急吼吼开那么多分店有毛用啊? 😇 😇 😇	
9月11日 19:27 来自iPhone窖户端 凸(1639) 转发(405) 收藏 评论(1	073)
全部 共同评论 认证用户 关注的人 共1073病	
* 工業体験出現、開催しば消しても知道なわた日本地の株式は、実施消費を注意を	response 1
丁丁的防险世界。网络1运说,毛血旺在很多知名川菜馆都除不好。不知道料它人是怎样,最是个美食狂热毒。不喜欢吃烧这个词,吃烧象是说垃圾回收桶,而喜欢美食折是有要求的环食;吃到些大名扁晶而又不美味的东西会很低怒的,非常理解和问题!(今天21:09)	
	response 2
展載87 V: 那是您老好的东西吃的多,我们乡里的何觉得蛮好还,哪裡(今天 17:59)	
	response 3
阿然90: 哈哈,你可算得(今天 13:52)	l r

Retrieval Process

Retrieval model: 2-stage retrieval

- Fast retrieval: fast matching
 - Post-response semantic matching (mapping to low-dimension vectors)
 - Post-response similarity (vsm)

Pre-

- Post-post similarity
- Linear match:

Input short-text

Deep Match

Essence

• Matching: inner-product of two representing feature vectors

$$\mathsf{match}(x, y) = < \Phi_{\mathcal{Y}}(x), \Phi_{\mathcal{X}}(y) >_{\mathcal{H}}$$
$$\mathsf{match}(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{y} = \sum_{m=1}^{D_x} \sum_{n=1}^{D_y} A_{nm} x_m y_n$$

From Linear to Deep

r

Neural Network Structure

Connect with topic patterns

Matching architecture

Lu et al., NIPS'13

Convolutions

Convolutional sentence model

Convolutional Match

• ARC-I and ARC-II matching model

Recurrent Modeling

Question-Answer Matching

- Standard LSTM
 - Concatenation of the last vectors on both directions of the biLSTM
 - Average pooling over all the output vectors of the biLSTM
 - Max pooling over all the output vectors

CNN+RNN Match

Question-Answer Matching

- Convolutional LSTM
 - LSTM first, then convolution
 - Convolution first, then LSTM
 - Based on results: more or less the same

Tan et al., ACL'16

CNN+RNN Match + Attention

Question-Answer Matching

Attentive matching

Tan et al., ACL'16

Cosine

$$\mathbf{m}_{a,q}(t) = \mathbf{W}_{am}\mathbf{h}_{a}(t) + \mathbf{W}_{qm}\mathbf{o}_{q}$$

$$s_{a,q}(t) \propto \exp(\mathbf{w}_{ms}^{T} \tanh(\mathbf{m}_{a,q}(t)))$$

$$\tilde{\mathbf{h}}_{a}(t) = \mathbf{h}_{a}(t)s_{a,q}(t)$$

$$\mathbf{L} \quad \text{Attentive LSTM (avg-pooling K=1)}$$

$$M \quad \text{Attentive LSTM (avg-pooling K=50)}$$

$$\mathbf{K}_{a,k}(t) = \mathbf{h}_{a}(t)s_{a,q}(t)$$

$$\mathbf{K}_{a,k}(t) = \mathbf{h}_{a}(t)s_{a,q}(t)$$

$$\mathbf{K}_{a,k}(t) = \mathbf{h}_{a}(t)s_{a,q}(t)$$

$$\mathbf{K}_{a,k}(t) = \mathbf{h}_{a}(t)s_{a,q}(t)$$

Positional Matching

Recursive Matching

Fused recursive match

Recursive match

Wan et al., IJCAI'16

Liu et al., ACL'16

Matching with Topic Info

• Additional info might help!

• Topic, knowledge, etc

• Topic information

- Topic word generation: LDA
- Topic-aware neural network

Matching with Knowledge

Here comes the knowledge

- Prior knowledge of sentence
 - Tags, keywords, topics, entities, ...
- Fusion of knowledge gate
 - 3 channels: similarity, Bi-GRU match, Bi-GRU with knowledge match

Wu et al., arXiv'16

Multi-Turn Conversation

• 2 typical scenarios for a conversation system

- Single-Turn Conversation
- Multi-Turn Conversation

- Effectiveness
- Efficiency

Yan et al., CIKM'16

Re-ranking Framework

Off-line Process

Data preparation: access, cleaning, storage, and indexing

Online Process

- Search and retrieval
- Rankings
- Optimization: rank combination

Yan et al., CIKM'16

Matching

Rankers

- **Shallow Ranker**
 - Representations: term-level, topic-level, entity-level
 - Hand-crafted features: matching score (similarity, mutual information), translation probability, language model, term weighting, length, and fluency
- **Deep Ranker**
 - Word Embeddings

 - Convolution
 - Pooling

Yan et al., CIKM'16

Another View

OMG I got myopia Web Data at an "old" age ... Data crawling Really? Conversation repository in Yeah. Wish a pair of posting-reply pairs glasses as a gift. Search Retrieved candidate replies with postings Reformulated queries Selected response I will offer the glasses for you

Deep Neural Networks

Yan et al., SIGIR'16

Data

- Search and retrieval
- Contextual reformulation

Possible reformulations

Human-Computer Conversation A1: 天哪一把年纪的人居然近视了 (OMG I got myopia at such an "old" age) B1: 真的吗? (Really?) Ao:嗯哪。求个眼镜做礼物! (Yeah. Wish a pair of glasses as a gift.) B2:我送你眼镜! (I will offer the glasses for you!) Task Formulation User query: $q_0 = A_2$ **Context information:** $\mathbb{C}=\{c_1=A_1,c_2=B_1\}$ **Reformulated queries:** $q_1 = A_2 \boxplus A_1, q_2 = A_2 \boxplus B_1$ $q_3 = A_2 \boxplus A_1 \boxplus B_1, \ldots$ Top-1 ranked response: $r^{\star} = Reply_1$

Learning to Respond

Sentence pair matching

- f(q,r)
- g(q,p)
- h(q,q₀)

Representation

- Word embedding
- Bi-Directional LSTM
- Convolution
- Pooling
- Concatenation
- Matching

Yan et al., SIGIR'16
Deep Learning to Respond

Matching metric

Yan et al., SIGIR'16

Sum-Product Process

$$\mathcal{F}(q_0, r) = \sum_{i=0}^{|\mathcal{Q}|} \left(h(q_0, q_i) \sum_{p} \left(f(q_i, r) \cdot g(q_i, p) \right) \right)$$

Word Sequence Model

Response selection

Choose a response given contexts

Zhou et al., EMNLP'16

Multi-view Model

• Views: hierarchical

- Word sequence
- Utterance sequence

Zhou et al., EMNLP'16

Sequential Match Network

Context modeling with sequential utterances

- M1: match on the word-level
- M2: match on the segment-level (based on position)
- Convolution and pooling
- Matching sequence

Wu et al., arXiv'16

Add-On Component

StalementBreaker

Human-human conversation

Everyone leads the conversation!

Li et al., IJCAI'16

Gossips and Impacts

Pilot study and state-of-the-art

Li et al., IJCAI'16

News media coverage

- Been reported within only 3 days after got published on arXiv
- UK DailyMail, The Stack, Headline Today, China Science, Peking University News and several others

首页新闻纵横专		Shut up, Al that co		国计算机 na Computer F		为计算领域的专业人士服务 Serving the professionals in computing
信息科	Or expan 音页 > 科技 新型人工智	 Silence Als are unable) 会员 数字图书馆 在 课程改革导教班报名通知	线培训 CCF学术空间 专业委员会 工作委员会 CCF奖励 学术评 《大数据管理系统和技术》讲习班开始报名
人机对话系统是 是以被动应答的形式	新11古 题 2016-04-20 13:47	 Researchers f Used a 'Bi-Pa and program f 			首页>>学会活动>>CCF 电子刊 talemateBreaker可	▷>☆章正文 「打破对话僵局引入新话题
新的话题应由双方交 兴趣时,需由机器主:	【环球科技综合报道】 携 人工智能(AI)系统——St	PUBLISHED: 21:12 GN	 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		来源: 3	开球网 作者: 发布时间: 2016年05月04日 浏览量: 66 8道,中国科研团队发明了主动开启对话的人工智能(AI)系统——
近日,北京大学 届博士毕业生)针对 再一味地被动应答。	adding the capa 该人工智能系统可以通过 stale, or stalls. T	Share	 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	相关	话题或别致的点子重启对话。	勤的对话氛围中解脱出来。 该人工智能系统可以通过识别装置打破对话僵持,以 假道指出,在该系统中,电脑针对用户的提问,搜索或者合成一个回答。一般认 专统AI是被动的,因为电脑只需回应就够了。
无趣的时刻,接着通 排序算法,以得到最 题,效果明显超出原	Approach to Au 报道指出,在该系统中,电 for the 25th Inte 机对话,所以传统AI是被 ² York city this Jul	Automatic human-co intelligence.	▶ 读者投稿			时主要面临两大难题,一是通过编程让StalemateBreaker识别出对话在何时陷入 er能够从资源库提取信息应用于对话中。
(StalemateBreaker conversation)为题	conversation sy:研究者在制造这种聊天机 to revive discou 对话在何时陷入停滞,另-	Al that can proactive The Al detects awky ideas or suggestion	CCF Weekly	ter _	Human: Computer:	以后叫你伊娃。(I will call you Eva.) 伊娃不是那个机器人动画片? (Isn't Eva a robot cartoon?)

Re-thinking

- Till now we ALREADY have a well-defined paradigm for conversational systems
 - Given a human utterance as a query, the system returns a response
 - The most standard situation: a single q to a single r
 - Some extensions: many q to a single r for multi-turn conversations [Yan et al., SIGIR'16]
 - Query suggestions is important in IR

A New Idea

What if

- we borrow the query suggestion solution in conversation systems?
- E.g. "response ranking" and "next utterance suggestion" simultaneously

Potential benefits

- From passive conversation mode to proactive conversation mode
- Brings information outside users' scope
- Improve conversational experiences
- Typical situations
 - Predict something that users might say next
 - New contents to talk about: people are open-minded in chit-chat

A New Task

Problem formulation

- Given a query q
- Retrieve a candidate response r
- Suggest a next utterance s
- A triple of {q,r,s}
- Given the candidate responses r and suggestions s, we learn to couple them together so as to rank a pair of (r, s) given q.
 - A ranking function

$$(r,s)^{\star} = \operatorname{argmax} \mathcal{F}((r,s)|q)$$

Dual-LSTM Chain Model

Model framework

Yan et al., SIGIR'17

Results

• Appropriateness

Component Evaluations

Model	p@1	MAP	nDCG	MRR	
Okapi BM25	0.272	0.253	0.302	0.169	Ι
	0.259	0.226	0.284	0.156	Π
	0.138	0.126	0.187	0.091	III
	0.394	0.294	0.421	0.232	Ι
ARC-II	0.387	0.291	0.415	0.217	Π
	0.255	0.201	0.278	0.142	III
	0.338	0.283	0.371	0.228	Ι
LSTM-RNN	0.351	0.300	0.366	0.237	II
	0.206	0.195	0.233	0.128	III
	0.435	0.322	0.409	0.308	Ι
MV-LSTM	0.410	0.313	0.414	0.301	II
	0.269	0.251	0.267	0.168	III
	0.416	0.328	0.429	0.301	Ι
Chain-LSTM	0.422	0.316	0.410	0.307	II
	0.261	0.246	0.298	0.183	III
	0.431	0.339	0.441	0.312	Ι
Dual-LSTM	0.442	0.326	0.437	0.319	Π
	0.425	0.315	0.419	0.303	III

Model	p@1	MAP	nDCG	MRR	
	0.422	0.326	0.432	0.304	Ι
-MLP	0.425	0.320	0.428	0.310	II
	0.271	0.248	0.313	0.216	III
	0.426	0.333	0.438	0.308	Ι
-Cell	0.430	0.331	0.422	0.317	II
	0.392	0.299	0.401	0.289	III
	0.431	0.339	0.441	0.312	Ι
Dual-LSTM	0.442	0.326	0.437	0.319	II
	0.425	0.315	0.419	0.303	III

GENERATION-BASED CONVERSATION SYSTEM

RNN Family

Recurrent Neural Networks

Sequence-to-Sequence

Attention Mechanism

Attention signal

$$c_{i} = \sum_{j=1}^{T_{x}} \alpha_{ij} h_{j}$$
$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_{x}} \exp(e_{ik})}$$
$$e_{ij} = v_{a}^{\mathsf{T}} \tanh(W_{a}s_{i-1} + U_{a}h_{j})$$

Bahdanau et al., ICLR'14

Neural Responding

Encoder-Decoder with Attention signal

• Decoder

Shang et al., ACL'15

 c_t

Neural Responding Machine

Encoder-Decoder with Attention signal

- More encoders: local schema
- Combinatory schema

Shang et al., ACL'15

Context-Sensitive Generation

- Encoder-Decoder with Contextual information
 - Concatenate each utterance c, m, r into a single sentence s
- Strengthening the context bias
 - Bag-of-words
 - Concatenation

Sordoni et al., NAACL-HLT'15

Hierarchical Language Model

• Hierarchy

- Word level
- Sentence level
- Auto-Encoder

Li et al., ACL'15

Hierarchical Encoder-decoder

• HRED (hierarchical recurrent encoder decoder)

Hierarchical architecture (two level)

Serban et al., AAAI'16

- a sequence of words for each utterance
- a sequence of utterances

Topic-Aware Generation

• TA-Seq2Seq (Topic Aware Seq2Seq)

Topic attention obtained from a pre-trained LDA model

Contextual LSTM

• Add the topic vector T

Ghosh et al., KDD'16 Workshop

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_{i} + W_{Ti}T)$$

$$f_{t} = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_{f} + W_{Ti}T)$$

$$c_{t} = f_{t}c_{t-1} + i_{t} \tanh(W_{xc}x_{t} + W_{hc}h_{t-1} + b_{c} + W_{Ti}T)$$

$$o_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_{t} + b_{o} + W_{Ti}T)$$

$$h_{t} = o_{t} \tanh(c_{t})$$

Conditional Generation Network

Memory type LSTM

$$\begin{pmatrix} \mathbf{i}_{j} \\ \mathbf{f}_{j} \\ \mathbf{o}_{j} \\ \mathbf{r}_{j} \end{pmatrix} = \begin{pmatrix} \text{sigmoid} \\ \text{sigmoid} \\ \text{sigmoid} \\ \text{sigmoid} \end{pmatrix} \mathbf{W}_{4n,3n} \begin{pmatrix} \mathbf{m}_{t} \\ \mathbf{w}_{j} \\ \mathbf{h}_{j-1} \end{pmatrix}$$

$$\hat{\mathbf{c}}_j = \tanh\left(\mathbf{W}_c(\mathbf{w}_j \oplus \mathbf{h}_{j-1})\right)$$

$$\mathbf{c}_j = \mathbf{f}_j \odot \mathbf{c}_{j-1} + \mathbf{i}_j \odot \hat{\mathbf{c}}_j + \mathbf{r}_j \odot \mathbf{m}_t$$

 $\mathbf{h}_j = \mathbf{o}_j \odot \tanh(\mathbf{c}_j)$

Wen et al., EMNLP'16

Conditional Generation Network

Hybrid type LSTM

$$\begin{pmatrix} \mathbf{i}_{j} \\ \mathbf{f}_{j} \\ \mathbf{o}_{j} \\ \mathbf{r}_{j} \end{pmatrix} = \begin{pmatrix} \text{sigmoid} \\ \text{sigmoid} \\ \text{sigmoid} \\ \text{sigmoid} \end{pmatrix} \mathbf{W}_{4n,3n} \begin{pmatrix} \mathbf{m}_{t} \\ \mathbf{w}_{j} \\ \mathbf{h}_{j-1} \end{pmatrix}$$

$$\hat{\mathbf{c}}_j = \tanh\left(\mathbf{W}_c(\mathbf{w}_j \oplus \mathbf{h}_{j-1})\right)$$

$$\mathbf{c}_j = \mathbf{f}_j \odot \mathbf{c}_{j-1} + \mathbf{i}_j \odot \hat{\mathbf{c}}_j$$

$$\mathbf{h}_j = \mathbf{o}_j \odot \tanh(\mathbf{c}_j) + \mathbf{r}_j \odot \mathbf{m}_t$$

Semantically Conditioned LSTM

Semantic Controlled LSTM

Wen et al., EMNLP'15

 $i_{t} = \sigma(\mathbf{W}_{wi}\mathbf{w}_{t} + \mathbf{W}_{hi}\mathbf{h}_{t-1})$ $f_{t} = \sigma(\mathbf{W}_{wf}\mathbf{w}_{t} + \mathbf{W}_{hf}\mathbf{h}_{t-1})$ $o_{t} = \sigma(\mathbf{W}_{wo}\mathbf{w}_{t} + \mathbf{W}_{ho}\mathbf{h}_{t-1})$ $\hat{\mathbf{c}}_{t} = tanh(\mathbf{W}_{wc}\mathbf{w}_{t} + \mathbf{W}_{hc}\mathbf{h}_{t-1})$ $\mathbf{r}_{t} = \sigma(\mathbf{W}_{wr}\mathbf{w}_{t} + \alpha\mathbf{W}_{hr}\mathbf{h}_{t-1})$ $\mathbf{d}_{t} = \mathbf{r}_{t} \odot \mathbf{d}_{t-1}$ $\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \mathbf{i}_{t} \odot \hat{\mathbf{c}}_{t} + tanh(\mathbf{W}_{dc}\mathbf{d}_{t})$ $\mathbf{h}_{t} = \mathbf{o}_{t} \odot tanh(\mathbf{c}_{t})$

Generation Overview

Case studies

Wen et al., EMNLP'15

#	Example Dialogue Acts and Realizations from SF Restaurant Domain
1	inform(name="red door cafe", goodformeal="breakfast", area="cathedral hill", kidsallowed="no")
	red door cafe is a good restaurant for breakfast in the area of cathedral hill and does not allow children .
	red door cafe is a good restaurant for breakfast in the cathedral hill area and does not allow children .
	red door cafe is a good restaurant for breakfast in the cathedral hill area and does not allow kids .
	red door cafe is good for breakfast and is in the area of cathedral hill and does not allow children.
	red door cafe does not allow kids and is in the cathedral hill area and is good for breakfast.
2	informonly(name="dosa on fillmore and kiss seafood", pricerange="expensive", near="lower pacific heights")
	there is no place other than dosa on fillmore and kiss seafood that are expensive near to lower pacific heights .
	dosa on fillmore and kiss seafood is the only expensive restaurant near lower pacific heights .
	the only listed restaurant near lower pacific heights in the expensive price range is dosa on fillmore and kiss seafood.
	i apologize, dosa on fillmore and kiss seafood is the only expensive restaurant near lower pacific heights.
	i apologize, dosa on fillmore and kiss seafood are the only expensive restaurants near lower pacific heights.
#	Example Dialogue Acts and Realizations from SF Hotel Domain
# 3	inform(type="hotel",count="182",dogsallowed="dontcare")
	inform(type="hotel",count="182",dogsallowed="dontcare") there are 182 hotels if you do not care whether dogs are allowed.
	inform(type="hotel",count="182",dogsallowed="dontcare")
	inform(type="hotel",count="182",dogsallowed="dontcare") there are 182 hotels if you do not care whether dogs are allowed.
	inform(type="hotel",count="182",dogsallowed="dontcare") there are 182 hotels if you do not care whether dogs are allowed. there are 182 hotels if you do not care whether they allow dogs.
	inform(type="hotel",count="182",dogsallowed="dontcare") there are 182 hotels if you do not care whether dogs are allowed. there are 182 hotels if you do not care whether they allow dogs. 182 hotels are available if dogs allowed or not is not an issue.
	inform(type="hotel",count="182",dogsallowed="dontcare") there are 182 hotels if you do not care whether dogs are allowed. there are 182 hotels if you do not care whether they allow dogs. 182 hotels are available if dogs allowed or not is not an issue. there are 182 hotels if allowing dogs or not is not an issue.
3	inform(type="hotel",count="182",dogsallowed="dontcare") there are 182 hotels if you do not care whether dogs are allowed. there are 182 hotels if you do not care whether they allow dogs. 182 hotels are available if dogs allowed or not is not an issue. there are 182 hotels if allowing dogs or not is not an issue. there are 182 hotels if whether dogs are allowed does not matter. informonly(name="red victorian bed breakfast",acceptscreditcards="yes",near="haight",hasinternet="yes") red victorian bed breakfast is the only hotel near haight and accepts credit cards and has internet.
3	inform(type="hotel",count="182",dogsallowed="dontcare") there are 182 hotels if you do not care whether dogs are allowed. there are 182 hotels if you do not care whether they allow dogs. 182 hotels are available if dogs allowed or not is not an issue. there are 182 hotels if allowing dogs or not is not an issue. there are 182 hotels if whether dogs are allowed does not matter. informonly(name="red victorian bed breakfast",acceptscreditcards="yes",near="haight",hasinternet="yes") red victorian bed breakfast is the only hotel near haight and accepts credit cards and has internet. red victorian bed breakfast is the only hotel near haight and has internet and accepts credit cards.
3	inform(type="hotel",count="182",dogsallowed="dontcare") there are 182 hotels if you do not care whether dogs are allowed. there are 182 hotels if you do not care whether they allow dogs. 182 hotels are available if dogs allowed or not is not an issue. there are 182 hotels if allowing dogs or not is not an issue. there are 182 hotels if whether dogs are allowed does not matter. informonly(name="red victorian bed breakfast",acceptscreditcards="yes",near="haight",hasinternet="yes") red victorian bed breakfast is the only hotel near haight and accepts credit cards and has internet. red victorian bed breakfast is the only hotel near haight and has internet and accepts credit cards. red victorian bed breakfast is the only hotel near haight that accept credit cards and offers internet.
3	inform(type="hotel",count="182",dogsallowed="dontcare") there are 182 hotels if you do not care whether dogs are allowed. there are 182 hotels if you do not care whether they allow dogs. 182 hotels are available if dogs allowed or not is not an issue. there are 182 hotels if allowing dogs or not is not an issue. there are 182 hotels if whether dogs are allowed does not matter. informonly(name="red victorian bed breakfast",acceptscreditcards="yes",near="haight",hasinternet="yes") red victorian bed breakfast is the only hotel near haight and accepts credit cards and has internet. red victorian bed breakfast is the only hotel near haight and has internet and accepts credit cards.

Language Generation

- Constrained language generation
- Models: Backward/Forward Language Modeling
 - sep-B/F v.s. syn-B/F v.s. asyn-B/F

Extensions & Applications

Step I

Step II

Step III

Generate the middle part

as additional input

Backward generation

with the second constraint

Extensions

- **Constraints of phrases**
- Constraints of multi-terms

- **Applications**

Forward generation

Two-step conversation generation

A phrase specified in

advance as the constraint

Words generated by the

Words generated by the forward generator

backward generator

- Step 1: keyword generation
- Step 2: Backward/Forward language generation

Mou et al., arXiv'15

generated in Step I

Two constraints that may not be consecutive

- Words in the middle
- Words in backward sequence
- Words in forward sequence

<eos> deep convolutional neural networks

deep convolutional neural networks for

object detection

2-Step Conversation

• Overview

- Step I: predict a keyword using PMI
- Step II: sequence generation with the predicted keyword
- Keyword prediction
 - For a query word and a reply word:

$$PMI(w_q, w_r) = \log \frac{p(w_q, w_r)}{p(w_q)p(w_r)} = \log \frac{p(w_q|w_r)}{p(w_q)}$$

• For all the words in the query

$$PMI(w_{q_1} \cdots w_{q_n}, w_r) = \log \frac{p(w_{q_1} \cdots w_{q_n} | w_r)}{p(w_{q_1} \cdots w_{q_n})}$$
$$\approx \log \frac{\prod_{i=1}^n p(w_{q_i} | w_r)}{\prod_{i=1}^n p(w_{q_i})} = \sum_{i=1}^n \log \frac{p(w_{q_i} | w_r)}{p(w_{q_i})} = \sum_{i=1}^n PMI(w_{q_i}, w_r)$$

 PMI prefers a word that is most "mutually informative" with the query
 Mou et al., COLING'16

Content Introducing

Generation Process

- Backward sequence
- Forward sequence

$$p\left(\begin{array}{c} \frac{r_{k-1}\cdots r_1}{r_{k+1}\cdots r_m} \cdot \left| r_k, q \right.\right) = \prod_{i=1}^{k-1} p^{(\mathrm{bw})}(r_{k-i}|r_k, q, \cdot) \prod_{i=1}^{m-k} p^{(\mathrm{fw})}(r_{k+i}|r_k, q, \cdot)$$

Content Introducing Case

Case studies

	Chinese	English (translated)
Query	李有男友公开过了	It's known that Li^{\dagger} has a boyfriend.
Grountruth	都已经分了之前李的贴吧都在讨论了	Broken up. There's discussion in her Tieba. [‡]
seq2seq	我是男的	I am a male
seq2BF_	我的男友	My boyfriend
seq2BF+	有绯闻男友	Has a rumored boyfriend
Query	人大复试飘过	Passed second-round exam of Renming Univ.
Grountruth	这么牛,什么专业	Cool, what's your major
seq2seq	我也是!	Me too!
seq2BF_	我也是!	Me too!
seq2BF+	分数是什么	What is your score
Query	挺漂亮的 祝福祝福	So beautiful, congratulations
Grountruth	下手慢了哈。现在	You're late till now
seq2seq	谢谢	Thank you
seq2BF_	是的,谢谢	Yes, thank you
seq2BF+	谢谢夸奖	Thank you for praising
Query	我要换头像了!	Want to change a photo
Grountruth	打算换成什么啊~	What do you like
seq2seq	我是你的头像	I'm in your photo
seq2BF_	我是你的头像	I'm in your photo
seq2BF+	第一张 图像 是谁	Who is in your first photo

Implicit Content Introducing

- Hard constraint vs soft constraint
- Does the constraint word really need to exist, explicitly?

Soft Constraint

• Two ways to inject information

• Model

- Standard GRU
- Cue word GRU
- Fusion units

Yao et al., EMNLP'17

Illustrations

• An example query

Query	班主任还拍了我超级丑的照片已被笑死.(上镜)		
(Cue word)	The teacher took a photo of me; it was really ugly	Related Criterion	Labels
	and people laughed at me. (Photogenic)		
Reply 1	谁的照片? Whose photo?	Logic Consistency	Unsuitable
Reply2	什么时候拍的? When did he took the photo?	Implicit Relevance	Neutral
Reply3	抱抱。Give you a hug.	Implicit Relevance	Neutral
Reply4	我拍照也都是巨丑的! My photos are also ugly!		Suitable

Diversity in Conversation

- A well-known problem for conversation generation
 - Diversity-promoting

• Maximum mutual information criterion

Standard objective

 $\hat{T} = \operatorname*{arg\,max}_{T} \left\{ \log p(T|S) \right\}$

MMI objective

$$\log \frac{p(S,T)}{p(S)p(T)}$$

Li et al., NAACL'16

Input: What are you doing?				
-0.86 I don't know.	-1.09 Get out of here.			
-1.03 I don't know!	 1.09 I'm going home. 			
-1.06 Nothing.	-1.09 Oh my god!			
-1.09 Get out of the way.	-1.10 I'm talking to you.			
Input: what is your name?				
 -0.91 I don't know. 				
-0.92 I don't know!	-1.55 My name is Robert.			
-0.92 I don't know, sir.	 1.58 My name is John. 			
-0.97 Oh, my god!	-1.59 My name's John.			
Input: How old are you?				
-0.79 I don't know.				
-1.06 I'm fine.	-1.64 Twenty-five.			
 1.17 I'm all right. 	-1.66 Five.			
-1.17 I'm not sure.	-1.71 Eight.			

Diversity in Conversation

• MMI objective

$$\hat{T} = \arg\max_{T} \left\{ \log p(T|S) - \log p(T) \right\}$$

Penalty parameter

 $\hat{T} = \arg\max_{\underline{T}} \left\{ \log p(T|S) - \lambda \log p(T) \right\}$

Bayes theorems

 $\log p(T) = \log p(T|S) + \log p(S) - \log p(S|T)$

Final representation

$$\begin{split} \hat{T} &= \operatorname*{arg\,max}_{T} \left\{ (1-\lambda) \log p(T|S) \right. \\ &+ \lambda \log p(S|T) - \lambda \log p(S) \right\} \end{split}$$

 $= \underset{T}{\arg \max} \left\{ (1 - \lambda) \log p(T|S) + \lambda \log p(S|T) \right\}$

Input: What are you doing?

- 1. I've been looking for you.
- 2. I want to talk to you.
- 3. Just making sure you're OK.

Input: What is your name?

1. Blue!

- 2. Peter.
- 3. Tyler.
- Input: How old are you?
- 1. Twenty-eight.
- 2. Twenty-four.
- 3. Long.

Li et al., NAACL'16
Persona in Conversation

• What is persona and why?

- Motivation examples
- Incoherent personality makes it impossible for current systems to pass the Turing test
 - Embedding based persona

message	Where do you live now?
response	I live in Los Angeles.
message	In which city do you live now?
response	I live in Madrid.
message	In which country do you live now?
response	England, you?
message	Where were you born?
response	I was born in Canada.
message	Where are you from?
response	England, you?
message	Where did you grow up?
response	I grew up in Texas.
message	How old are you?
response	16 and you?
message	What's your age?
response	18.
message	What is your major?
response	I'm majoring in psychology
message	What did you study in college?
response	English lit.

Li et al., NAACL'16

Emotion in Conversation

• Emotion is important

- Emotion classification
- Emotion fusion

Zhou et al., arXiv'17

Speaker Model

• What is persona and why?

Li et al., ACL'16

- Persona as additional input
- Possible benefits: inference in persona

 $\begin{vmatrix} f_t \\ o_t \\ l_t \end{vmatrix} = \begin{vmatrix} \sigma \\ \sigma \\ tanh \end{vmatrix} W \cdot \begin{bmatrix} h_{t-1} \\ e_t^s \\ v_i \end{vmatrix}$

Model Extension

Speaker-addressee model

- Speaker vector
- Addressee vector

$V_{i,j} = \tanh(W_1 \cdot v_i + W_2 \cdot v_2)$

Li et al., ACL'16

Reranking

- Persona fit?
- Message fit?
- Length penalty

	Where is your hometown?
baseline	I was born in Canada.
userl	I'm from England.
user2	I'm from Manchester.
user3	I'm from Liverpool.
user4	England. You?
user5	My hometown.
user6	I'm from Texas.
user7	I'm from LA.
user8	England.
user9	I was born here.
user10	I was born in the us.

 $\log p(R|M, v) + \lambda \log p(M|R) + \gamma |R|$

User1	
message	Where is your hometown?
response	I'm from England.
message	Where are you from?
response	I'm from England.
message	In which city do you live now?
response	I live in London.
message	In which country do you live now?
response	
message	What is your major?
response	Business. You?
message	What did you study in college?
response	I did business studies.
message	How old are you?
response	I'm 18.
message	
response	

Semantically Conditioned LSTM

• Affect-LM: customizable affective text generation

Ghosh et al., ACL 2017

Conditional VAE

Conditional Variational Auto Encoder (CVAE)

zhao et al., ACL'17

$$\mathcal{L}(\theta, \phi; x, c) = -KL(q_{\phi}(z|x, c) || p_{\theta}(z|c)) + \mathbf{E}_{q_{\phi}(z|c, x)}[\log p_{\theta}(x|z, c)] \leq \log p(x|c)$$

Knowledge-Guided CVAE (kgCVAE)

$$egin{aligned} \mathcal{L}(heta,\phi;x,c,y) &= -KL(q_{\phi}(z|x,c,y)\|P_{ heta}(z|c)) \ &+ \mathbf{E}_{q_{\phi}(z|c,x,y)}[\log p(x|z,c,y)] \ &+ \mathbf{E}_{q_{\phi}(z|c,x,y)}[\log p(y|z,c)] \end{aligned}$$

Conditional VAE

Conditional Variational Autoencoder

zhao et al., ACL'17

$$\log p(x_{bow}|z,c) = \log \prod_{t=1}^{|x|} \frac{e^{f_{x_t}}}{\sum_j^V e^{f_j}}$$

Mechanism Aware Generation

Mechanism-aware Neural machine for Dialogue Generation

Zhou et al., AAAI 2017

Mechanism Aware Generation

$$\sum_{(\boldsymbol{x},\boldsymbol{y})\in\mathcal{D}^c} \log p(\boldsymbol{y}|\boldsymbol{x}) = \sum_{(\boldsymbol{x},\boldsymbol{y})\in\mathcal{D}^c} \log \sum_{i=1}^M p(m_i|\boldsymbol{x}) p(\boldsymbol{y}|m_i,\boldsymbol{x})$$

$p(\boldsymbol{y}, m_l | \boldsymbol{x}) = p(m_l | \boldsymbol{x}) p(\boldsymbol{y} | m_l, \boldsymbol{x})$

Questions	Mechanism 1	Mechanism 2	Mechanism 3	Mechanism 4
我要坐地铁回家	好的,路上注意安	真是个不错的选择	坐车去哪里	坐车一定要注意安
I take subway back	Ok, be safe on the	That's a good choice	Where are you going	Be careful on the
home	subway		on the subway	subway
生活中怎样感到开心 快乐	开心就来和我聊天	看来你今天心情很 不错	有什么开心的事情	和我聊天就很开心
How do I feel happy in my life		You seem to be happy today	What are the happy things you have experieced	Talk with me and you will be happy
明天考试、求安慰	好好复习就好了	我会为你加油的	你要去哪里试试	我会一直安慰你的
I have a test tomorrw,	Just work hard on the	I will stand by you	Where are you taking	I will always be on
and I need some solace	reviews		the test	your side
上班好累啊	那就好好休息	要懂得劳逸结合	你是不是累了	上班就是这样
The work is really hard	Take a good rest	You need to balance work and life	Are you tired	That is work

Interactive learning of grounded verb semantics

She and Chai ACL 2017

 \mathcal{E}_i Initial Environment: ... Has(Kettle1,WATER) ^Grasping(Kettle1) ... \mathcal{L}_i command: Boil the water. v_i boil(WATER)

Example 2
Example 2
Example 2
Example 3
Example 4

The acquired verb representation (i.e., a goal state hypothesis): boil(x): Status(x,TempHigh)

An example of acquiring state-based representation for verb semantics

environment \mathcal{E}_i

a language command \mathcal{L}_i

primitive action sequence $\overline{\mathcal{A}}_i$

final environment \mathcal{E}'_i that results from the execution of $\overrightarrow{\mathcal{A}'_i}$ in \mathcal{E}_i

KB stands for knowledge base

 θ_E stands for Interaction Strategy for Execution

 θ_D stands for Interaction Strategy for Learning

Interactive learning of grounded verb semantics

She and Chai ACL 2017

Only demonstration(She and Chai, 2016)	Interactive learning (this work)
Execution Example	Execution Example
H1: Boil the water.	H1: Boil the water.
R 1: (select a hypothesis and execute the action accordingly)	R1: I see a silver object on the table, is that a pot?
H2: (provide true/false feedback on whether the execution is	H2: Yes.
correct)	R2: Should I leave the pot on the stove after boil?
	H3: Yes.
	R3: Ok. (select a hypothesis to execute)
	H4: Thank you.
Learning Example	Learning Example
H3: Boil the water.	H5: Boil the water.
R3: I don't know how to boil, could you show me an example?	R5: I don't know how to boil, could you show me an example?
H4: (human shows the robot how to achieve the corresponding	H6: Ok. (demonstrate the task, at the end put the pot on a
action through a sequence of primitive actions)	<i>heat pad</i>)
R4: (indicate the acceptance and induce a hypothesis to rep-	R6: So after boiling something, should I put it on a heat pad?
resent verb semantics)	H7: No, you don't have to.
	R7: I see. (induce goal state hypothesis)

Modeling the future direction by RL

- Conversation between two virtual agents
- Explore the space of possible actions while learning to maximize expected reward

Idea of adversarial training: GAN

GAN in NLP

Languages are different from images

- Consecutive distributions vs. discrete distributions
- SeqGAN
 - NO intermediate reward
 - Policy: to maximize the expected reward of the whole sequence after generation
 - Generator and discriminator

GAN in Conversation

Seq2SeqGAN

- With the input sequence, using the idea of SeqGAN
- Generative model with discrimination via policy
- Reward with every generation step

Adversarial evaluation

Input	tell me how long have you had this falling sickness ?
Vanilla-MLE	i 'm not a doctor .
Vanilla-Sample	well everything you did was totally untrue .
REINFORCE	i don 't know how long it 's been .
REGS Monte Carlo	A few months, I guess .
Input	so i had the doctors test sammy 's response to conditioning .
Vanilla-MLE	sammy wrote the test sammy wrote the test .
Vanilla-Sample	objects pick objects up objects objects objects objects
REINFORCE	i 'm not sure that 's relevant .
REGS Monte Carlo	so he took the pills .
Input	what are you going to do ?
Vanilla-MLE	i 'm going to the movies .
Vanilla-Sample	get him outta here first !
REINFORCE	i 'm going to get you .
REGS Monte Carlo	i 'm going to get you a new car .
Input	they fear your power your intellect .
Vanilla-MLE	you 're the only one who knows what 's going on .
Vanilla-Sample	when they are conquered and you surrender they will control all of us .
REINFORCE	i 'm afraid i 'm not ready yet .
REGS Monte Carlo	i 'm not afraid of your power .

Li et al., EMNLP'17

GENERATION + RETRIEVAL CONVERSATION SYSTEM

Motivation

• Why

- Retrieval is not enough?
- Generation is not enough as well?
- Retrieval + generation framework

Methodology

Generation process

• Component ensemble

Song et al., arXiv'16

	Utterance (Translated)	Reranked
Query	这款手机的拍照效果真不错 (This mobile phone's photo effect is pretty good.)	
Retrieved	所以好心动 (I really have a crush on it.)	
biseq2seq	心动不如行动 (Rushing for it rather than having a crush on it.)	\checkmark
seq2seq	哈哈 (Haha)	
Query	有给孕妇推荐的保健品啥的么? (Could you please recommend some health products for pregnant woman?)	
Retrieved	打算上孕妇装? (Do you want metarnity clothes?)	
biseq2seq	打算买护肤品么? (Do you want some skin care products?)	\checkmark
seq2seq	不好意思 (I'm sorry.)	

EVALUATION

Automatic Evaluation

- Automatic evaluation is crucial to the research of language generation tasks such as:
 - Machine translation
 - BLEU, NIST, METEOR, ...
 - Shared tasks for evaluation metrics in WMT
 - Text summarization
 - ROUGE, Pyramid, ...
 - Dialog systems
 - ????

Typically Used Metrics in Dialog Systems

Human evaluation (widely used)

- Pair-wise
- Point-wise

Automatic evaluation metrics

- BLEU [Ritter et al., 2011; Li et al., 2015; Sordoni et al., 2015; Song et al., 2016]
- Information: entropy, perplexity [Serban et al. 2016 and Mou et al. 2016]
- **Diversity**: distinc-1, distinc-2 [Li et al., 2015]
- Average response length [Serban et al. 2016, Mou et al.
 2016]

How NOT to Evaluate Dialogue Systems

- Liu et al. (2016) show the weak correlation of existing metrics (e.g., BLEU, ROUGE and METEOR) with human judgments for dialog systems
 - Significant diversity in the space of valid replied to a given input.
 - Utterances are typically short and casual in open-domain dialog systems.

Liu et al., EMNLP'16

ADEM Model

Figure 2: The ADEM model, which uses a hierarchical encoder to produce the context embedding c.

 Predict a score of a reply given its query (context) and a ground truth reply.

It requires massive human-annotated scores to train the network

Lowe et al., ACL'17

ADEM Results

Context	Reference re- sponse	Model responses	Human score	ADEM score
photo to see my television de-	yeah it was me .	1) i'm not sure. i just don't know what to do with it.	3	1.602
but go to - some. some on $\langle url \rangle$ - hehe $\langle url \rangle \rightarrow$ it really was you? i thought	haha i 'd kinda for- gotten about it it was filmed a while	2) you heard the horsepower productions remix of lee scratch perry's 'exercising' off his 'mighty upsetter' album?	1	1.513
ppl were recognizing someone	ago	you wont chug a fuzzy peach navel	1	1.744
who looked like you! were the oysters worth the wait?		4) they were!	5	3.274
just beat call of duty!! \rightarrow want	im in kenmore at	1) i'm gonna get a new phone some moro	1	1.848
a cookie? \rightarrow yes!! \rightarrow come	the moment	2) no way man.	5	4.265
get it		 wow i just got a free pizza coupon! get yours before theres no more! <url></url> 	1	0.921
		i'm going to go to the mall.	1	2.634
am i out of twitter jail yet? test-	any news on meet-	1) i'm not sure if i'm going to be able to get it.	3	1.912
ing \rightarrow yeah. i posted bail \rightarrow thanks. i am a right chatter	ing our user ? i go to the us on fri-	 good to see another mac user in the leadership ranks 	4	1.417
weetbox on sundays. same happened last sunday lol	day and i don 't want to miss any-	 awww poor baby hope u get to feeling better soon. maybe some many work days at piedmont 	2	1.123
	thing arranged	4) did you tweet too much?	5	2.539

Higher correlations compared with BLEU and ROUGE

RUBER

 RUBER: a Referenced metric and Unreferenced metric Blended Evaluation Routine for open-domain dialog systems

RUBER Results

Metrics		Retrieval (Top-1)		Seq2Seq (w/ attention)	
		Pearson(p-value)	Spearman(p-value)	Pearson(p-value)	Spearman(p-value
Inter ennetator	Human (Avg)	0.4927(<0.01)	0.4981(<0.01)	0.4692(<0.01)	0.4708(< 0.01)
Inter-annotator		0.5931 (< 0.01)	0.5926(<0.01)	0.6068(<0.01)	0.6028(<0.01)
	BLEU-1	0.2722(<0.01)	0.2473(< 0.01)	0.1521(<0.01)	0.2358(<0.01)
	BLEU-2	0.2243 (< 0.01)	0.2389(<0.01)	-0.0006(0.9914)	0.0546(0.3464)
Referenced	BLEU-3	0.2018 (< 0.01)	0.2247(<0.01)	-0.0576(0.3205)	-0.0188(0.7454)
Referenceu	BLEU-4	0.1601 (< 0.01)	0.1719(<0.01)	-0.0604(0.2971)	-0.0539(0.3522)
	ROUGE	0.2840 (< 0.01)	0.2696(<0.01)	0.1747 (< 0.01)	0.2522(<0.01)
	Vector pool (s_R)	0.2844 (< 0.01)	0.3205(<0.01)	0.3434 (< 0.01)	0.3219(<0.01)
Unreferenced	Vector pool	0.2253(<0.01)	0.2790(<0.01)	0.3808(<0.01)	0.3584(<0.01)
Unielelenceu	NN scorer (s_U)	0.4278 (< 0.01)	0.4338(< 0.01)	0.4137(<0.01)	0.4240(<0.01)
	Min	0.4428 (< 0.01)	0.4490(<0.01)	0.4527(<0.01)	0.4523(< 0.01)
RUBER	Geometric mean	0.4559 (< 0.01)	0.4771(<0.01)	0.4523(<0.01)	0.4490(<0.01)
RUBER	Arithmetic mean	0.4594 (<0.01)	0.4906 (< 0.01)	0.4509(<0.01)	0.4458(<0.01)
	Max	0.3263 (< 0.01)	0.3551(<0.01)	0.3868(<0.01)	0.3623(< 0.01)
One Annotator		1 2 Score (Group 1)	1.0 a.0.8 S.0.6 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 a.0.0 b.0.0 a.0.0 b.0.		o i Human Score
(a) Human (1 vs. res	(b) Human (c) 1.0 0.8 0.6	Gropu 1 vs. Group 2)	(c) BLEU	-2	(d) Rouge

Where Are We?

- We are doing well, enough?
- Users have really high expectations

Still A Long Way to Go

• How is AI in NLP now?

There is still a long way to go

Expectations

• What can we expect in the future?

- Dialogue challenges
 - Multi-turn understanding
 - Semantic understanding
- Data challenges
 Vertical domains
- Intelligence challenges
 - Reasoning
 - Evolution

Thank You

Q & AEmail to

