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Outline

• Part 1: The transition of NLP to neural approaches
• Deep learning leads to paradigm shift in NLP
• The powers of deep learning
• Cast study of Deep Semantic Similarity Models

• Part 2: Neural machine reading models for question answering
• Part 3: Deep reinforcement learning for task-completion dialogue
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Traditional definition of NLP: the branch of AI

• Deal with analyzing, understanding and generating the languages that 
humans use naturally (natural language) 

• Study knowledge of language at different levels
• Phonetics and Phonology – the study of linguistic sounds
• Morphology – the study of the meaning of components of words
• Syntax – the study of the structural relationships between words
• Semantics – the study of meaning
• Discourse – they study of linguistic units larger than a single utterance 

[Jurafsky & Martin 10] 3



Traditional NLP component stack

1. Natural language understand (NLU): 
parsing (speech) input to semantic 
meaning and update the system state

2. Application reasoning and execution:
take the next action based on state

3. Natural language generation (NLG):
generating (speech) response from action

[Menezes & Dolan 17]
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Pragmatic definition: building computer systems

• Process large text corpora, turning information into knowledge
• Text classification
• Information retrieval and extraction
• Machine reading comprehension and question answering
• …

• Enable human-computer interactions, making knowledge accessible 
to humans in the most natural way

• Dialogue and conversational agents
• Machine translation
• …

5



Challenge of NLP: the diversity of natural language

Ambiguity
Example: I made her duck.

• I cooked waterfowl for her.

• I cooked waterfowl belonging to her.

• I created the plaster duck she owns.

• I caused her to quickly lower her head or body.

• I waved my magic wand and turned her into 
undifferentiated waterfowl.

Paraphrase
Example: How long is the X river?

• The Mississippi River is 3,734 km (2,320 mi) long.

• ...is a short river, some 4.5 miles (7.2 km) in length

• The total length of the river is 2,145 kilometers.

• … at the estimated length of 5,464 km (3,395 mi)…

• … has a meander length of 444 miles (715 km)…

• … Bali’s longest river, measuring approximately 75 
kilometers from source to mouth.

• The … mainstem is 2.75 miles (4.43 km) long 
although total distance from headwater source 
tributaries to the sea is 14 miles (23 km).

Many-to-many mapping btw symbolic
language and semantic meaning

[Jurafsky & Martin 10; Dolan 17] 6



Deep Learning (DL) leads to a paradigm shift in NLP: 
from symbolic to neural approaches

Traditional symbolic approaches
• Discrete, symbolic space
• Human comprehensible

• easy to debug
• Computationally inefficient

• Sensitive to ambiguity/paraphrase
• Cascaded models prone to error propagation 

and require careful feature engineering

Neural approaches
• Continuous, neural space
• Human incomprehensible

• hard to debug
• Computationally efficient

• Robust to ambiguity/paraphrase
• E2E learning leads to better performance and 

simplified systems 
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E2E approaches based on DL 

Discrete, symbolic space 
• Human comprehensible
• Input: 𝑥𝑥
• Output: 𝑦𝑦

Continuous, neural space
• Computationally efficient
• Input: ℎ𝑥𝑥
• Output: ℎ𝑦𝑦

𝒙𝒙 = 𝒇𝒇𝒆𝒆(𝒉𝒉𝒙𝒙;𝜽𝜽𝒆𝒆), Symbolic  Neural 
by embedding models / encoder

𝒚𝒚 = 𝒇𝒇𝒅𝒅(𝒉𝒉𝒚𝒚;𝜽𝜽𝒅𝒅), Neural  Symbolic 
by generative models / decoder 
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The powers of deep learning 

[Arul Menezes & Bill Dolan. 2017. The transition of natural language processing to neural methods. Unpublished report.] 9

1. End-to-end Learning
• Simplifies systems, reduces effort for feature engineering and localization

2. Strong Representation Power
• Due to novel DNN architectures and learning algorithms; leads to high accuracy in 

many tasks
3. Semantic Representation Learning

• Leads to a paradigm shift in NLP/IR: from symbolic to neural computation
4. New Applications and Experience

• E.g., link language to real-world signals such as images and machine state
5. Deep Reinforcement Learning

• Makes it possible to build intelligent agents for real-world applications such as goal-
oriented dialogue



State of the art results on NLP application-level tasks
Task Test set Metric Best non-

neural
Best neural Source

Machine Translation Enu-deu newstest16 BLEU 31.4 34.8 http://matrix.statmt.org

Deu-enu newstest16 BLEU 35.9 39.9 http://matrix.statmt.org

Sentiment Analysis Stanford sentiment bank 5-class Accuracy 71.0 80.7 Socher+ 13

Question Answering WebQuestions test set F1 39.9 52.5 Yih+ 15

Entity Linking Bing Query Entity Linking set AUC 72.3 78.2 Gao+ 14b

Image Captioning COCO 2015 challenge Turing test pass% 25.5 32.2 Fang+ 15

Sentence compression Google 10K dataset F1 0.75 0.82 Fillipova+ 15

Response Generation Sordoni dataset BLEU-4 3.98 5.82 Li+ 16a

[Menezes & Dolan 17]
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Deep Semantic Similarity Model (DSSM) 

• Compute semantic similarity between two text strings X and Y
• Map X and Y to feature vectors in a latent semantic space via deep neural net 
• Compute the cosine similarity between the feature vectors

Tasks X Y Ref
Web search Search query Web document Huang+ 13; Shen+ 14; Palangi+ 16

Entity linking Entity mention and context Entity and its corresponding page Gao+ 14b

Online recommendation Doc in reading Interesting things / other docs Gao+ 14b

Image captioning Image Text Fang+ 15

Machine translation Sentence in language A Translations in language B Gao+ 14a

Question answering Question Answer Yih+ 15

Sent2Vec (DSSM) http://aka.ms/sent2vec 11

http://dl.acm.org/citation.cfm?id=2505665
http://dl.acm.org/citation.cfm?doid=2661829.2661935
https://arxiv.org/abs/1502.06922
http://anthology.aclweb.org/D/D14/D14-1002.pdf
http://anthology.aclweb.org/D/D14/D14-1002.pdf
https://arxiv.org/abs/1411.4952
http://aclweb.org/anthology/P/P14/P14-1066.pdf
http://www.aclweb.org/anthology/P15-1128
http://aka.ms/sent2vec


hot dog

3. Semantic Representation Learning

Fast food

Dog racing
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ray of light

DSSM for entity linking
Ray of Light (Experiment)

Ray of Light (Song)

The Einstein Theory of Relativity
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DSSM: Compute Similarity in Semantic Space

Learning: maximize the similarity 
between X (source) and Y (target)

Representation: use DNN to extract 
abstract semantic features, 𝑓𝑓 or 𝑔𝑔 is a
• Multi-Layer Perceptron (MLP) if text is a 

bag of words [Huang+ 13]
• Convolutional Neural Network (CNN) if 

text is a bag of chunks [Shen+ 14]
• Recurrent Neural Network (RNN) if text is 

a sequence of words [Palangi+ 16]

𝑔𝑔(. )𝑓𝑓(. )
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DSSM: Compute Similarity in Semantic Space

Learning: maximize the similarity 
between X (source) and Y (target)

Representation: use DNN to extract 
abstract semantic representations

Convolutional and Max-pooling layer:
identify key words/concepts in X and Y

Word hashing: use sub-word unit (e.g., 
letter 𝑛𝑛-gram) as raw input to handle 
very large vocabulary
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neural (semantic) space

Implicit Supervised Information

X: auto body repair cost 
calculator software 

Y1: free online car body shop repair estimates 

Y2: online body fat percentage calculator 

Y3: Body Language Online Courses Shop

• Positive X-Y pairs are extracted from search click logs
• Negative X-Y pairs are randomly sampled
• Map X and Y into the same semantic space via deep neural net

Learning DSSM from Labeled X-Y Pairs

16



neural (semantic) space

Implicit Supervised Information

X: auto body repair cost 
calculator software 

Y1: free online car body shop repair estimates 

Y2: online body fat percentage calculator 

Y3: Body Language Online Courses Shop

• Positive X-Y pairs are extracted from search click logs
• Negative X-Y pairs are randomly sampled
• Map X and Y into the same semantic space via deep neural net
• Positive Y are closer to X than negative Y in that space

Learning DSSM from Labeled X-Y Pairs
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Learning DSSM from Labeled X-Y Pairs

• Consider a query 𝑋𝑋 and two docs 𝑌𝑌+ and 𝑌𝑌−
• Assume 𝑌𝑌+ is more relevant than 𝑌𝑌− with respect to 𝑋𝑋

• sim𝛉𝛉 𝑋𝑋,𝑌𝑌 is the cosine similarity of 𝑋𝑋 and 𝑌𝑌 in semantic space, 
mapped by DSSM parameterized by 𝛉𝛉

• Δ = sim𝛉𝛉 𝑋𝑋,𝑌𝑌+ − sim𝛉𝛉 𝑋𝑋,𝑌𝑌−
• We want to maximize Δ

• 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 Δ;𝛉𝛉 = log(1 + exp −𝛾𝛾Δ )
• Optimize 𝛉𝛉 using mini-batch SGD on GPU 0

5

10

15

20

-2 -1 0 1 2
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New Applications and Experience

Output of a neural conversation model trained on 250K Twitter conversations sparked by 
a tweeted photo

[Menezes & Dolan 17; Sordoni+ 15; Li+ 16a; MSR Data-Driven Conversation]

Neural approaches allow language models to be grounded in the world, i.e., link language 
to real-world signals such as images, machine state, sensor data from biomedical devices.

19

http://research.microsoft.com/apps/pubs/?id=241719
http://arxiv.org/abs/1510.03055
https://www.microsoft.com/en-us/research/project/data-driven-conversation/


Social Bots [MSR Data-Driven Conversation]

• The success of XiaoIce (小冰)
• Problem setting and evaluation

• Maximize the user engagement by automatically generating
• enjoyable and useful conversations

• Learning a neural conversation engine
• A data driven engine trained on social chitchat data [Sordoni+ 15; Li+ 16a] 
• Persona based models and speaker-role based models [Li+ 16b; Luan+ 17]
• Image-grounded models [Mostafazadeh+ 17]
• Knowledge-grounded models [Ghazvininejad+ 17]
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https://www.microsoft.com/en-us/research/project/data-driven-conversation/
http://research.microsoft.com/apps/pubs/?id=241719
http://arxiv.org/abs/1510.03055
https://arxiv.org/pdf/1603.06155.pdf
https://arxiv.org/abs/1701.08251
https://arxiv.org/abs/1702.01932


Outline

• Part 1: The transition of NLP to neural approaches
• Part 2: Neural machine reading models for question answering

• MindNet: a case study of symbolic approaches
• Neural approaches to MRC and QA
• ReasoNet: a case study of neural approaches
• Ongoing research: visualize the reasoning process in neural space

• Part 3: Deep reinforcement learning for task-completion dialogue
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Question Answering (QA) on Knowledge Base

Large-scale knowledge graphs
• Properties of billions of entities
• Plus relations among them

An QA Example:

Question: what is Obama’s citizenship?
• Query parsing: 

(Obama, Citizenship,?)
• Identify and infer over relevant subgraphs:

(Obama, BornIn, Hawaii)
(Hawaii, PartOf, USA)

• correlating semantically relevant relations:
BornIn ~ Citizenship

Answer: USA

22



Symbolic approaches to QA: production system 
https://en.wikipedia.org/wiki/Production_system_(computer_science)

• Production rules
• condition—action pairs
• Represent (world) knowledge as a graph

• Working memory
• Contains a description of the current state of the world in a reasoning process

• Recognizer-act controller
• Update working memory by searching and firing a production rule

• A case study: MSR MindNet [Dolan+ 93; Richardson+ 98]

23
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Case study of Question Answering with MindNet

• Build a MindNet graph from:
• Text of dictionaries
• Target corpus, e.g. an encyclopedia (Encarta 98)

• Build a dependency graph from query
• Model QA as a graph matching procedure

• Heuristic fuzzy matching for synonyms, named entities, wh-words, etc.
• Some common sense reasoning (e.g. dates, math)

• Generate answer string from matched subgraph
• Including well-formed answers that didn’t occur in original corpus

24



MindNet
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Fuzzy Match against MindNet

American actor John Wilkes Booth, who 
was a violent backer of the South during 
the Civil War, shot Abraham Lincoln at 
Ford's Theater in Washington, D.C., on 
April 14, 1865. 

Lincoln, Abraham

26

Input LF:

Who assassinated Abraham Lincoln?



Generate output string

“John Wilkes Booth shot Abraham Lincoln”
27



Worked beautifully!
• Just not very often…
• What went wrong?

• One major reason: paraphrase alternations

28

• The Mississippi River is 3,734 km (2,320 mi) long.

• …is nearly 86 km long…

• ...is a short river, some 4.5 miles (7.2 km) in length

• The total length of the river is 2,145 kilometres (1,333 mi).

• … at the estimated length of 5,464 km (3,395 mi)…

• …is a 25-mile (40 km) tributary of …

• … has a meander length of 444 miles (715 km)…

• … Bali’s longest river, measuring approximately 75 kilometers from source to mouth.

• The … mainstem is 2.75 miles (4.43 km) long although total distance from 
headwater source tributaries to the sea is 14 miles (23 km).

“How long is the X river?”



Symbolic Space 

- Knowledge Representation
- Explicitly store a BIG but incomplete 

knowledge graph (KG) 
- Words, relations, templates
- High-dim, discrete, sparse vectors

- Inference
- Slow on a big KG
- Keyword/template matching is sensitive to 

paraphrase alternations 
- Human comprehensible but not computationally 

efficient

Neural Space

- Knowledge Representation
- Implicitly store entities and structure of KG in a 

compact way that is more generalizable
- Semantic concepts/classes
- Low-dim, cont., dense vectors shaped by KG

- Inference
- Fast on compact memory
- Semantic matching is robust to paraphrase 

alternations
- Computationally efficient but not human 

comprehensible yet
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Symbolic Space
- UI: human readable I/O
- Leverage traditional symbolic approaches as 

pre/post processing
- Keyword matching
- Ontology based models
- e.g., doc/passage/entity search/ranking

Neural Space     

Question: Symbolic  Neural 
by embedding models / encoder

Answer: Neural  Symbolic 
by generative models / decoder 

From symbolic to neural computation
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Case study: ReasoNet with Shared Memory

• Production Rules Shared memory encodes 
task-specific knowledge

• Long-term memory: encode KB for answering all 
questions in QA on KB

• Short-term memory: encode the passage(s) which 
contains the answer of a question in QA on Text

• Working memory  Hidden state 𝑺𝑺𝒕𝒕 Contains a 
description of the current state of the world in a 
reasoning process

• Recognizer-act controller  Search controller
performs multi-step inference to update 𝑆𝑆𝑡𝑡 of a 
question using knowledge in shared memory

• Input/output modules are task-specific

[Shen+ 16a] 31

https://arxiv.org/abs/1611.04642


KB relation paths in symbolic vs. neural spaces

Symbolic Space

Neural Space

[Shen+ 16a]

https://arxiv.org/abs/1611.04642


Search controller for KB QA

[Shen+ 16a]

https://arxiv.org/abs/1611.04642


Training samples from KG:
(Obama, BornIn, Hawaii)
(Hawaii, PartOf, USA)
…
(h, r, t)

…
(Obama, Citizenship,?)->(USA)

(Obama, Citizenship, ?)

(USA)

Embed KG to memory vectors 

Joint learning of Shared Memory and Search Controller 

34

Citizenship

BornIn



Training samples from KG:
(Obama, BornIn, Hawaii)
(Hawaii, PartOf, USA)
…
(h, r, t)

…
(Obama, Citizenship,?)->(USA)

(Obama, Citizenship, ?)

Joint learning of Shared Memory and Search Controller 

35
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Shared Memory: long-term memory to store learned 
knowledge, like human brain
• Knowledge is learned via performing tasks, e.g., update memory to answer new questions 
• New knowledge is implicitly stored in memory cells via gradient update
• Semantically relevant relations/entities can be compactly represented using similar vectors.
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ReasoNet (Shen+ 16a)

The Knowledge Base Question Answering Results on WN18 and FB15K 
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Visualization of Reasoning in MRC Models
 Translate Natural Language to Image
Multi-step Image Editing via Dialogue

“A white sofa by 
the green wall”

“There is a blue vase 
by the foot of the 
sofa”

“A living room”



First Step: Let there be Color, and Shape!

Task 1: Text-guided Image Colorization

BW Image Color Image

RGB-depth Image Segmentation

Task 2: Text-guided Image Segmentation chair garbage wall

fire dis ceiling cabinet

“The flower has purple petals with a white stamen” 

“At the middle of the kitchen lies a blue chair. 
The upper cabinet has a black microwave.
There is a black garbage can on the left of the blue chair. 
There is a white garbage can on the right of the blue chair. 
On its left there is a red fire distinguisher."



Multi-Modal ReasoNet
The flower has purple petals with a white stamen 

BW Image Color Image

Multimodal ReasoNet



Outline

• Part 1: The transition of NLP to neural approaches
• Part 2: Neural machine reading models for question answering
• Part 3: Deep reinforcement learning for task-completion dialogue

• Dialogue as RL
• Case study 1: InfoBot with end-to-end learning RL
• Case study 2: Composite task completion bot with Hierarchical RL
• Ongoing research: subgoal discovery for hierarchical RL
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Multi-turn (goal-oriented) dialogue

(Spoken) Language 
Understanding State Tracking

Dialog PolicyNatural Language 
Generation / Synthesis

“Find me a
Bill Murray movie”

Request(movie;
actor=bill murray)

Dialog Manager

Request
(release_year)

“When was it
released”

Knowledge Base

42



(Deep) Reinforcement Learning for Dialogue

Language 
understanding

Language 
(response) 
generation

Dialogue 
Manager
𝑎𝑎 = 𝜋𝜋(𝑠𝑠)

Collect rewards
(𝑠𝑠,𝑎𝑎, 𝑟𝑟, 𝑠𝑠𝑠)

Optimize
𝑄𝑄(𝑠𝑠,𝑎𝑎)

User input (o)

Response

𝑠𝑠

𝑎𝑎

Application State Action Reward

Task Completion Bots 
(Movies, Restaurants, …)

User input + Context Dialog act + slot_value Task success rate
# of turns

Info Bots
(Q&A bot over KB, Web etc.)

Question + Context Clarification questions,
Answers

Relevance of answer
# of turns

Social Bot 
(XiaoIce)

Conversation history Response Engagement(?)



A user simulator for RL and evaluation

• Robustness: automatic action 
selection based on uncertainty 
by RL

• Flexibility: allow user-initiated 
behaviors

• Reproducibility: a R&D setting 
that allows consistent 
comparisons of competing 
methods 

[Li+ 17] https://github.com/MiuLab/TC-Bot 44

https://arxiv.org/abs/1612.05688
https://github.com/MiuLab/TC-Bot


InfoBot as an interactive search engine

• Problem setting
• User is looking for a piece of information from one or more tables/KBs
• System must iteratively ask for user constraints (“slots”) to retrieve the 

answer

• A general rule-based approach
• Given current beliefs, ask for slot with maximum uncertainty
• Works well in most cases but,

• Has no notion of what the user is likely to be looking for or likely to know
• No principled way to deal with errors/uncertainty in language understanding

45



InfoBot as an interactive search engine

Natural 
Language 

Understanding 
(NLU)

State Tracker/
Belief Tracker

Dialog Policy

Natural 
Language 
Generator 

(NLG)

Database

User simulator

Agent

User
Utterance

Acts/Entities

Dialog State

Dialog ActSystem
Response

Query

Results
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Deep Reinforcement Learning

Agent

User
Utterance

Acts/Entities

Dialog State

Dialog ActSystem
Response

NLU State Tracker

Dialog PolicyNLG

Reward

Backprop

Database

Query

Results

Not Differentiable!

User simulator
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End-to-End Learning [Dhuwan+ 17]

Agent

User
Utterance

Acts/Entities

Dialog State

Dialog ActSystem
Response

NLU State Tracker

Dialog PolicyNLG

Reward

Backprop

Database

Soft
Attention

Full Distribution
over DB

Backprop

Backprop

BackpropBackprop

Reinforcement
Learning

User simulator

https://arxiv.org/abs/1609.00777


Dual Exploration
• Agent should explore actions as well as KB outputs

• Share similarities with RL Neural Turing Machines (NTU)

• Optimizing expected return

• via REINFORCE



Result on IMDB using KB-InfoBot w/ simulated users

Agent Success Rate Avg Turns Avg Reward

Rule-Soft 0.76 3.94 0.83
RL-Hard 0.75 3.07 0.86
RL-Soft 0.80 3.37 0.98
E2E-RL 0.83 3.27 1.10
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Results on real users
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Composite task completion bot with Hierarchical RL 
[Peng+ 17]

Travel Assistant

Book Flight

Book Hotel

Reserve 
Restaurant

Actions

“subtasks”

Naturally solved by 
hierarchical RL

52

https://arxiv.org/abs/1704.03084


A hierarchical policy learner

Similar to HAM [Parr & Russell 98] and hierarchical DQN [Kulkarni+ 16]
53

https://people.eecs.berkeley.edu/%7Erussell/classes/cs294/f05/papers/parr+russell-1998.pdf
https://arxiv.org/abs/1604.06057


Results on simulated and real users

54



Subgoal discovery for HRL: 

divided and conquer 



The 4-room game



Summary
• The transition of NLP to neural approaches
• Neural approaches to MRC and QA

• Knowledge representation and search in neural space
• A case study: ReasoNet w/ long-term memory
• Ongoing research: visualize the reasoning process in neural space
• Learn more at Deep Learning for Machine Reading Comprehension

• An intelligent, human-like, open-domain conversational system
• Dialogue as RL
• Case study 1: InfoBot with end-to-end learning RL
• Case study 2: Composite task completion bot with Hierarchical RL
• Ongoing research: subgoal discovery for hierarchical RL
• Learn more at Deep RL for goal-oriented dialogues

57

https://www.microsoft.com/en-us/research/project/deep-learning-machine-reading-comprehension/
https://www.microsoft.com/en-us/research/project/deep-reinforcement-learning-goal-oriented-dialogue/


Contact Information:
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