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Abstract. Previous studies normally formulate Chinese word segmentation as a 

character sequence labeling task and optimize the solution in sentence-level. In 

this paper, we address Chinese word segmentation as a document-level optimi-

zation problem. First, we apply a state-of-the-art approach, i.e., long short-term 

memory (LSTM), to perform character  classification; Then, we propose a global 

objective function on the basis of character classification and achieve global op-

timization via Integer Linear Programming (ILP). Specifically, we propose sev-

eral kinds of global constrains in ILP to capture various segmentation knowledge, 

such as segmentation consistency and domain-specific regulations, to achieve 

document-level optimization, besides label transition knowledge to achieve sen-

tence-level optimization. Empirical studies demonstrate the effectiveness of the 

proposed approach to domain-specific Chinese word segmentation. 

Keywords: Chinese word segmentation, Document-level, LSTM, ILP. 

1 Introduction 

The task of word segmentation is to segment the continuous text into isolated words. 

As a fundamental task in Natural Language Processing (NLP) for those languages with-

out word delimiters, e.g., Chinese [1], word segmentation has been applied as an essen-

tial pre-processing step for many NLP tasks, such as named entity recognition [2], event 

extraction [3], and machine translation [4].  

In the literature, most of popular approaches to Chinese word segmentation (CWS) 

are machine learning-based. In the early years, CWS is treated as a character classifi-

cation problem, i.e., classifying each Chinese character into a tag according to its posi-

tion in a word. For instance, position tag B stands for the beginning of a word and E 

stands for the end of a word. For convenience, we refer to this approach as character-

level word segmentation. As a representative, Xue [1] employs a maximum entropy 

model to CWS.  

In recent years, CWS is modeled as a sequence labeling problem where not only 
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the characters are classified to different position tags but also the transition probability 

between two nearby position tags are employed to achieve the  optimization in the sen-

tence. For example, a segmentation containing the “EE” subsequence will be consid-

ered impossible in the sentence-level optimization because transition probability from 

one E to another E is zero due to the fact that a character with tag E always follows a 

character with tag B or S. For convenience, we refer to this approach as sentence-level 

word segmentation. As a representative, Tseng [5] employs the well-known conditional 

random fields (CRF) model to CWS. 

However, although character-level and sentence-level word segmentation have 

achieved much success, they are incapable of handling challenges in domain-specific 

document-level CWS. Document-level segmentation approaches are especially necess- 

ary for domain-specific CWS, since domain-specific texts are often organized in docu- 

ment styles, such as judgments, patents, and scientific papers.    

In this paper, we address document-level challenges in domain-specific CWS. First, 

we apply a long short-term memory (LSTM) classification model to perform character 

classification and obtain the posterior probabilities belonging to all position tags. Then, 

we propose a global objective function on the basis on character classification and 

achieve global optimization via a joint inference approach, named Integer Linear Pro-

gramming (ILP). Besides various constrains on the label transition to achieve sentence-

level optimization, various kinds of constrains on segmentation consistency and do-

main-specific textual regulation are proposed to achieve document-level optimization. 

Empirical studies demonstrate the effectiveness of these constraints in document-level 

word segmentation. 

The remainder of this paper is organized as follows. Section 2 overviews related 

work on the Chinese word segmentation. Section 3 proposes the character-level and 

sentence-level approaches to CWS. Section 4 proposes our ILP-based approach to doc-

ument-level CWS. Section 5 presents the experimental results. Finally, section 6 gives 

the conclusion and future work. 

2 Related Work 

There has been an enormous amount of work in the research fields of Chinese word 

segmentation. Existing word segmentation approaches can be mainly categorized into 

three groups: character-based [5], word-based [6], and both word-and-character-based 

approaches [7]. This paper mainly focuses on the character-based approaches to CWS. 

The pioneer work by Xue [1] first models CWS as a character classification problem 

and subsequent studies further improve the tagging model into a character sequence 

labeling problem [5]. In the research line, many studies aim to improve the performance 

by various manners, such as feature expanding [8], active learning [9], and using dif-

ferent tag sets [10], with shallow learning models like CRF. 

More recently, neural network approaches with deep learning models have attracted 

a great deal of attention. Some novel deep learning models have been adopted in CWS, 

such as, convolution neural network [11], tensor neural network [12], recursive neural 

network [13], long short-term memory (LSTM) [14], and gated recursive neural net-



work [15]. All these studies demonstrate that the deep learning models have achieved 

better segmentation results than the shallow learning models. 

Different from all above studies, this study performs CWS in a document level. In 

the first step, our approach applies the label classification approach by LSTM model 

proposed by previous studies [14] which represents the state-of-the-art performing ap-

proach. However, in the following step, our approach aims to obtain a global optimiza-

tion in the whole document, which has not been researched by any previous studies.  

The closest work to ours is a recent work by Li and Xue [16] which deals Chinese 

patent word segmentation.  However, their approach solves the problem by exploiting 

some document-level features and still applies sentence-level optimization learning 

model, i.e., CRF. In contrast, our approach optimizes the results with a document-level 

optimization learning model, i.e., ILP. Furthermore, their approach needs extra docu-

ment-level labeled data in the specific domain to train the learning model while our 

approach does not need any labeled data. 

3 Character-level and Sentence-level CWS 

Our approach to sentence-level CWS mainly consists of two steps. In the first step, we 

apply the LSTM neural network to perform character classification, classifying each 

character to a position tag, i.e., {B, M, E, S}. Specifically, B, M, and E represent the 

Begin, Middle, and End of a multi-character segmentation and S represents a Single 

character segmentation. In the second step, we define a global objective function with 

the character classification results and achieve global optimization via Integer Linear 

Programming. 

3.1 Character-level CWS with LSTM 

In this subsection, we propose the LSTM classification model. Figure 1 shows the 

framework overview of the LSTM model for character classification. Formally, the in-

put of the LSTM classification model consists of character unigram and bigram embed-

dings for representing the current character 
ix , i.e., 

                                               
1 1 2,...

i i i ii c c c cx v v v
  

                                              (1) 

Where 
i

d

cv R  is a d-dimensional real-valued vector for representing the character 

unigram 
ic  and 

1.i i

d

c cv

R  is a d-dimensional real-valued vector for representing the 

character bigram 
1,i ic c 

.   

Through the LSTM unit, the input of a character is converted into a new representa-

tion 
ih , i.e., 

                                                    ( )i ih LSTM x                                                    (2) 

Subsequently, the fully-connected layer accepts the output from the previous layer, 

weighting them and passing through a normally activation function as follows: 

                                         
* ( ) ( )T

i i ih dense h h b                                            (3) 
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Fig. 1. The framework overview of  the LSTM model for character-level CWS                                        

Where   is the non-linear activation function, employed “relu” in our model. 
*

ih  is the 

output from the fully-connected layer. 

The dropout layer is applied to randomly omit feature detectors from network during 

training. It is used as hidden layer in our framework, i.e., 

                                                      
* ( )d

i ih h D p                                                 (4) 

Where D  denotes the dropout operator, p
 denotes a tunable hyper parameter, and  

d

ih  denotes the output from the dropout layer. 

The softmax output layer is used to get the prediction probabilities, i.e., 

                                                ( )d d d

i iP softmax W h b                                        (5) 

Where 
iP  is the set of predicted probabilities of the character classification, dW is the 

weight vector to be learned, and the db  is the bias term. Specifically, 
iP  consist of the 

posterior probabilities of the current character belonging to each position tag {B, M, E, 

S}, i.e., 

                                                 , , , ,,  ,  ,  i i B i M i E i SP p p p p                                    (6)                                                 

3.2 Sentence-level CWS with ILP 

In this subsection, we optimize the obtained results from character classification with 

Integer Linear Programming (ILP). In the literature, ILP has been widely used in many  

NLP applications [17].                                                           

Specifically, the objective function in ILP is defined as follows: 



, , , ,

1 , , , ,

{ log ) log )
min

log ) log )}

N
i B i B i M i M

i i E i E i S i S

y p y p

y p y p

  

   


（- （-

（- （-
                       (7) 

Subject to: 

                                                              , {0,1}i By                                                  (8) 

                                                        , {0,1}i My                                                  (9) 

                                                              , {0,1}i Ey                                                (10) 

                                                              , {0,1}i Sy                                                (11) 

                                                , , , , 1i B i M i E i Sy y y y                                         (12)  

Where N  is total number of all characters in the sentence (or the document if applied 

in document-level word segmentation). ,i By  is a Boolean label, denoting whether the 

final result of current character is B ( ,i By =1) or not ( ,i By =0). , , ,, ,i M i E i Sy y y  denote the 

same meaning as ,i By .  

For sentence-level CWS, the constraints implied in the label transition is proposed 

as following: 

(C1): Label transition constraints 

This type of constraints limits the position tags of two nearby characters. 4 cases are 

discussed according to the position tag of the current character. 

 Case (1.1):  

When the position tag of the current character is B, i.e., , 1i By  ,  the position tag of 

the next character could only be M or E, i.e., 1, 1, 1i M i Ey y   . Otherwise, when

, 0i By  , the position tag of the next character could be anyone, i.e.,  

1, 1, 0 or 1i M i Ey y   . Therefore, we obtain the following constraint: 

                                                  , 1, 1,( ) 0i B i M i Ey y y                                        (13) 

 Case (1.2):  

When the position tag of the character is M, we obtain the following constraint: 

                                                , 1, 1,( ) 0i M i M i Ey y y                                        (14) 

 Case (1.3): 

When the position tag of the character is E, we obtain the following constraint:           

                                                , 1, 1,( ) 0i E i B i Sy y y                                           (15) 

 Case (1.4): 

When the position tag of the character is S, we obtain the following constraint: 

, 1, 1,( ) 0i S i B i Sy y y                                       (16) 

4 Document-level CWS 

As mentioned in Introduction, although character-level and sentence-level word seg-

mentation have achieved much success, they are incapable of handling challenges in 

document-level CWS. 



 

Fig. 2. An example with inconsistent segmentation frequently occurred in character-level or 

sentence-level segmentation 

One challenge in document-level is how to achieve segmentation consistency in doc-

ument-level. That is, two text fragments with the same Chinese character sequence 

should have the same segmentation result as much as possible. Figure 2 shows an in-

stance frequently occurs in the character-level or sentence-level word segmentation  

where “黄和昌”(Hechang Huang) is recognized as a word in the first sentence but seg-

mented into two words, i.e., “黄”(Huang) and “和昌”(Hechang) in the second sentence. 

Such segmentation inconsistency should and only can be avoided in document-level. 

To tackle this challenge, we propose some constrains as follows: 

 (C2): Segmentation consistency constraints 

If two nearby Chinese characters 
1,i ic c 

are the same as another two nearby Chinese 

characters 1,j jc c   in a document, we constraint their position labels to be the same, i.e.,  

1 1  , ,i i j jWhen c c c c  , we have 

                      , , 1, 1,,  i B j B i B j By y y y                         (17) 

                                                , , 1, 1,,  i M j M i M j My y y y                                       (18) 

                                                , , 1, 1,,  i E j E i E j Ey y y y                                          (19) 

, , 1, 1,,  i S j S i S j Sy y y y                                            (20) 

Another challenge is the consideration of domain-specific textual regulations that 

are popular in document-level. Figure 3 shows an instance from a judgment (a decision 

law document of a court). In such text, plaintiffs and defendants are explicitly described 

in two lines in the front part. It is easy to capture such segmentation regulation from 

two textual patterns, i.e., “原告 NAME1, (Plaintiff NAME1,)” and “被告 NAME2, (De- 

fendant NAME2,)” where “NAME1” or “NAME2” denotes a person or an organization 

name. To tackle this challenge, we propose some constrains as follows: 

(C3): Textual regulation constraints    

In this study, a textual pattern is defined as following:        

Pattern=“Tri1+NAME+Tri2” 

E1:  

Segmentation result:  

黄和昌  与  被告  签订  协议  。  约定  被告  所借  黄  和昌  500

万  元 借款  分  三次  还  清  。  

Gold-standard segmentation:  

黄和昌  与  被告  签订  协议  。  约定  被告  所借  黄和昌  500

万  元 借款  分  三次  还  清  。 

 

(English Translation:  

Hechang Huang signed an agreement with the defendant. They 

were agreed that 500 million Yuan that borrowed from Hechang 

Huang to the defendant would be paid back in three times.) 

 

https://en.wikipedia.org/wiki/Court


 

Fig. 3. An example from a judgment text 

Where Tri1 and Tri2 are two trigger character sequences and NAME is a character se-

quence with variable length. We define that, in this pattern, Tri1, Tri2, and NAME are 

segmented to be three words.       
This type of constrains is domain-specific and document-level. In judgments, we 

first use some rules to segment the whole document into several parts. Then, we focus 

on some popular textual patterns in the front part of a judgment. Specifically, we adopt 

some textual patterns as shown in Table 1. 

Table 1. Some textual patterns in the front part of a judgment 

Tri1 NAME Tri2 

被告（Defendant） NAME1 ， 

原告（Plaintiff） NAME2 ， 

代理人（Attorney） NAME3 ， 

代表人（Attorney） NAME4 ， 

These patterns are recognized with some regular expressions. Then, we obtain the 

begin index and end index of the character sequence of Tri1, NAME, or Tri2, which are 

denoted as q and r. The constraint to segment this character sequence to be word is 

given as following: 

, 1q By                                                 (21) 

                  , 1r Ey                                                 (22) 

, 1 where k My q k r                                   (23) 

5 Experimentation 

In this section, extensive experiments are carried out to evaluate the proposed ILP-

based approach to domain-specific CWS. 

E2: 

民 事 裁 定 书 

（2016）川1425民初404号 

原告吕某某，男。委托代理人王刚，某律师事务所律师 

被告黄某某，女。委托代理人张可，某律师事务所律师 

本院…… 

(English Translation: 

Civil Judgment 

(2016) Chuan Civil Trial Num. 1425 

   Plaintiff Moumou Lv, Male. Attorney Gang Wang, lawyer of Some 

Lawyer Office. 

   Defendant Moumou Huang, Female. Attorney Ke Zhang, lawyer of 

Some Lawyer Office. 

   This Court……) 



5.1 Experimental Settings 

Data Sets: We use two data sets for evaluation. One is from OntoNotes 5.0 which con-

tains six domains: BN, BC, NW, MZ, TC, and WB [18]. The data has been split into 

three data sets: training, development and test data. The other one is a domain-specific 

data set which is collected from (http://wenshu.court.gov.cn/) and annotated by our-

selves according to the OntoNotes [18] word segmentation guideline. It contains two 

domains: Contract and Marriage and each domain contains 100 documents. 

Embeddings: We use word2vec (http://word2vec.googlecode.com/) to pre-train char-

acter unigram and bigram embeddings using the two data sets.  

Hyper-parameters: The hyper-parameter values in the LSTM model are tuned accord-

ing to performances in the development data.  

Evaluation Measurement:  The performance is evaluated using the standard precision 

(P), recall (R) and F score.  

Significance test:  T-test is used to evaluate the significance of the performance differ-

ence between two approaches. 

5.2 Experimental Results on Character-level and Sentence-level CWS 

In this subsection, we test our LSTM with ILP-based approach to character-level and 

sentence-level CWS. The training and test data are both from OntoNotes5.0 [18].  

For comparison, we implement following approaches to CWS: 

 CRF-Char (Character-level): This is a shallow learning approach which 

employs conditional random fields (CRF) as the classification algorithm. In the 

implementation, we apply the tool of CRF++ (http://crfpp. sourceforge. net) and 

both character unigrams and bigrams are used. The length of the character context 

window is 2. Note that both the training and development are merged as training 

data for CRF learning.  

 CRF-Sen (Sentence-level): This is similar to CRF-Char except adding a label 

transition feature which is employed to optimize the segmentation results of each 

sentence. In the implementation, a special feature named “B” is added in the 

feature template. It is exactly the approach by Tseng [5] which represents the most 

popular one to CWS before the deep learning approaches appear.  

 LSTM-Char (Character-level): This is a deep learning approach which employs 

LSTM as the classification algorithm. This approach is illustrated in Section 4.1 

and it is similar to the state-of-the-art approach to CWS, namely LSTM-1, by 

Chen [14] but missing the sentence inference step.  

 LSTM-Sen (Sentence-level): This is exactly the state-of-the-art approach to 

CWS, namely LSTM-1, by Chen [14].  

 LSTM-ILP(C1)  (Sentence-level): This is our approach to CWS which employs 

    ILP to optimize the results of each sentence. Since the optimization is performed 

in a sentence rather than a document, only the first type of constrains, namely C1, 

is leveraged. 

Due to the space limitation, we report the results of three domains including BN, BC, 

and NW. Table 2(a) - Table 2(c) show the performances of different approaches to CWS 

http://wenshu.court.gov.cn/


Table 2. Performances of different approaches to CWS (Tested on OntoNotes 5.0) 

(a) Performances of different approaches to CWS (Test domain: BN, OOV rate: 0.065) 

 P R F ROOV 

  CRF-Char 0.934 0.934 0.934 0.669 

CRF-Sen 0.950 0.948 0.949 0.755 

LSTM-Char 0.939 0.940 0.939 0.682 

LSTM-Sen 0.952 0.955 0.953 0.757 

 LSTM-ILP(C1) 0.952 0.955 0.953 0.757 

(b) Performances of different approaches to CWS (Test domain: BC, OOV rate: 0.075) 

 P R F ROOV 

  CRF-Char 0.928 0.936 0.932 0.674 

CRF-Sen 0.944 0.949 0.946 0.750 

LSTM-Char 0.935 0.942 0.938 0.707 

LSTM-Sen 0.949 0.951 0.950 0.773 

 LSTM-ILP(C1) 0.948 0.948 0.948 0.768 

(c) Performances of different approaches to CWS (Test domain: NW, OOV rate: 0 .084) 

 P R F ROOV 

  CRF-Char 0.928 0.925 0.927 0.677 

CRF-Sen 0.952 0.947 0.949 0.799 

LSTM-Char 0.934 0.939 0.936 0.682 

LSTM-Sen 0.956 0.956 0.956 0.791 

 LSTM-ILP(C1) 0.955 0.954 0.954 0.785 

in these three domains. From these tables, we can see that the OOV rates in the three 

domains are in the range of 0.065-0.084, which are all less than 0.1. The low OOV rate 

in these three domains. In all domains, the segmentation performances are more than 

90% in terms of F score.  

In character-level CWS, LSTM-Char generally performs better than CRF-Char in 

terms of F score and OOV Recall.  

In sentence-level CWS, LSTM-Sen performs better than CRF-Sen in three domains 

in terms of F score and in two domains in terms of OOV Recall. Averagely, LSTM-

Sen outperforms CRF-Sen in terms of F score, although the improvement is slight. Our 

approach LSTM-ILP(C1) performs comparable to LSTM-Sen. This result confirms                                            

that, in sentence-level CWS, our approach achieves the state-of-the-art performances. 

5.3 Experimental Results on Domain-specific Document-level CWS 

 

In this subsection, we test our LSTM with ILP approach to CWS in document-level  



CWS. The training data is from OntoNotes 5.0 while the test data is from the judgments. 

For comparison, besides the approaches in the above subsection, we implement fol-

lowing approaches to CWS: 

 LSTM-Sen+Regulation-Rule: a straight-forward approach to incorporating 

domain-specific regulation knowledge for CWS. In this approach, we first 

perform LSTM-Sen to CWS and then we apply simple rules to recognize words 

with all textual patterns to refine the results from LSTM-Sen. 

 LSTM-ILP(C2) (Document-level): This is our approach to CWS which employs 

ILP to optimize the results in the whole document. Only the second type of 

constrains, i.e., segmentation consistency constraints, is used.  

 LSTM-ILP(C3) (Document-level): In the same spirit to LSTM-ILP(C2), only 

the third type of constrains, i.e., textual regulation constraints, is used. 

 LSTM-ILP(Ci+Cj) (Sentence-level and Document-level):  This is our approach 

to CWS which employs ILP to optimize the results in the whole document. Both 

the i-th and the j-th types of constrains are used. 

 LSTM-ILP(C1+C2+C3) (Sentence-level and Document-level): This is our 

approach to CWS which employs ILP to optimize the results in both the sentence-

level and document-level. That is to say, all types of constrains are used. 

Table 3 and Table 4 show the performances of different approaches to CWS tested 

on the second data set. From these two tables, we can see that the OOV rates in the two 

domains are in the range of 0.165-0.186, which is much higher than those in the last 

experiment. The high OOV rate is due to the fact that the training and test data are from 

different domains.  

When only one type of document-level constrains is employed, the LSTM model 

with ILP, i.e., LSTM-ILP(C2) or LSTM-ILP(C3), performs significantly better than 

LSTM-Char in terms of F score (p-value<0.001), which verifies the effectiveness of 

using the document-level constrains, i.e., i.e., C2 or C3.  

When two types of document-level constrains are employed, the LSTM model with 

ILP, i.e., LSTM-ILP (C1+C2), LSTM-ILP (C1+C3) and LSTM-ILP (C2+C3), perform 

significantly better than that of using only one (p-value<0.001). 

When both the sentence-level and document-level constrains are employed, our app- 

roach, i.e., LSTM(C1+C2+C3), performs best. Especially, in the Contract domain, our 

approach achieves a gain of 8.9% over LSTM-Char in terms of F score, which is rather  

impressive. Even compared to the state-of-the-art approach LSTM-Sen, our approach 

significantly improves the F score from 0.841 to 0.915 (with a gain of 7.4%, p-

value<0.001). Moreover, our approach outperforms LSTM-Char or LSTM-Sen in 

terms of OOV Recall by a wide margin. 

It is worthy to note that LSTM-Sen+Regulation-Rule is a very strong baseline, which 

implies that regulation rules are very effective for segmenting judgment text. Neverthe-

less, our approach based on ILP with all constrains significantly outperforms LSTM- 

Sen+Regulation-Rule in both domains in terms of F score (p-value<0.001). Especially, 

in the Contract domain, the improvement of our approach over LSTM-

Sen+Regulation-Rule is rather impressive, reaching 4.4% in terms of F score. 

 



Table 3. Performances of different approaches to CWS 

(Test domain:  Contract, OOV rate: 0.186) 

Table 4. Performances of different approaches to CWS 

(Test domain: Marriage, OOV rate: 0.165) 

6 Conclusion 

This paper proposes a novel approach to domain-specific CWS which adopts Integer 

Linear Programming to optimize the character-classification results from the LSTM 

model. One major advantage of our approach is its convenience to incorporate various 

kinds of sentence-level and document-level segmentation knowledge, such as label 

transition, segmentation consistency, and domain-specific textual regulations, by for-

mulating them as mathematical constrains in ILP. Empirical studies show that our ILP-

based approach with each kind of constrains consistently improves the segmentation 

performance. Moreover, when two or three kinds of constrains are leveraged, the seg-

mentation performance could be further apparently improved. 

In our future work, we would like to improve our approach by trying some other 

kinds of constrains to leverage more kinds of segmentation knowledge to correct the 

segmentation errors. Furthermore, we would like to test our approach in much more 

other specific domains, such as scientific and patent documents.  

 P R F ROOV 

LSTM-Char 0.816 0.837 0.826 0.735 

LSTM-Sen 0.816 0.867 0.841 0.777 

LSTM-Sen+ Regulation-Rule 0.856 0.887 0.871 0.804 

LSTM-ILP(C1) 0.837 0.874 0.855 0.795 

LSTM-ILP(C2) 0.828 0.843 0.835 0.747 

LSTM-ILP(C3) 0.845 0.860 0.853 0.756 

LSTM-ILP (C1+C2) 0.845 0.880 0.862 0.809 

LSTM-ILP (C1+C3) 0.867 0.896 0.881 0.814 

LSTM-ILP (C2+C3) 0.888 0.891 0.889 0.820 

LSTM-ILP (C1+C2+C3) 0.909 0.922 0.915 0.866 

 P R F ROOV 

LSTM-Char 0.879 0.875 0.877 0.804 

LSTM-Sen 0.896 0.898 0.897 0.866 

LSTM-Sen+ Regulation-Rule 0.909 0.900 0.905 0.894 

LSTM-ILP(C1) 0.891 0.887 0.889 0.847 

LSTM-ILP(C2) 0.883 0.874 0.878 0.806 

LSTM-ILP(C3) 0.884 0.878 0.881 0.816 

LSTM-ILP (C1+C2) 0.910 0.903 0.906 0.873 

LSTM-ILP (C1+C3) 0.903 0.894 0.898 0.868 

LSTM-ILP (C2+C3) 0.894 0.882 0.888 0.834 

LSTM-ILP (C1+C2+C3) 0.919 0.908 0.913 0.894 
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