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Abstract. Without discourse connectives, recognizing implicit discourse
relations is a great challenge and a bottleneck for discourse parsing. The
key factor lies in proper representing the two discourse arguments as
well as modeling their interactions. This paper proposes two novel neural
networks, i.e., externally controllable LSTM (ECLSTM) and attention-
augmented GRU (AAGRU), which can be stacked to incorporate argu-
ments’ interactions into their representing process. The two networks
are variants of Recurrent Neural Network (RNN) but equipped with ex-
ternally controllable cells that their working processes can be dynam-
ically regulated. ECLSTM is relatively conservative and easily com-
prehensible while AAGRU works better for small datasets. Multilevel
RNN with smaller hidden state allows critical information to be gradu-
ally exploited, and thus enables our model to fit deeper structures with
slightly increased complexity. Experiments on the Penn Discourse Tree-
bank (PDTB) benchmark show that our method achieves significant per-
formance gain over vanilla LSTM/CNN models and competitive with
previous state-of-the-art models.

Keywords: implicit discourse relation classification, recurrent neural
network, sequence pair modeling

1 Introduction

A text span may connect to another span when there is a causal relation between
them or when they contrast each other. Such semantic relations are termed
rhetorical or discourse relations [5]. Discourse parsing, the process of which is to
understand the internal structure of a text and identify the discourse relations
in between its segments, is a fundamental task in Natural Language Processing
(NLP) since it benefits a lot of downstream applications such as information
retrieval, question answering and automatic summarization [11].

Discourse connectives (e.g. and, because, etc) are considered as one of the
most critical linguistic cues for discourse relations. Depending on whether there
are connectives in between text arguments, discourse relations can be categorized
into implicit and explicit ones. According to Pitler [3], an over 90% of accuracy
rate can be achieved in classifying the explicit relations, so that the bottleneck
of discourse parsing lies in recognizing implicit relations.



Conventional methods using one-hot representations [4, 7] and recent neu-
ral network (NN) models [13, 15] using dense real-value representations, despite
their differences in feature representations, all follow a strategy that decomposes
the process to two independent steps, modeling the two discourse arguments and
then modeling their interactions. Intuitively, these methods simulate the single-
pass reading process [19]. However, a large number of irrelevant components in
texts make crucial information easily concealed. Without specific learning
aims and guidances, single-pass reading is heavily affected by data
sparsity while still inadequate to capture comprehensive representa-
tions of the text arguments.

In order to solve the dilemma, we leverage the intuition that critical infor-
mation could be dynamically exploited through several passes of reading [19].
Specifically, we use previously obtained argument representations as guidance
and reread the texts to gradually get deeper and preciser understandings. Now,
let us check one real example to elaborate the new strategy.

[Arg1 ]: The World Psychiatric Association voted at an Athens parley to
conditionally readmit the Soviet Union.

[Arg2 ]: Moscow could be suspended if the misuse of psychiatry against dis-
senters is discovered during a review within a year.

[Implicit Connective]: However

[Discourse relation]: Contrast

In the above example, each argument is composed of multiple phrases con-
taining different meanings that without information from the other one we can
only allocate identical attentions to them. In the second stage of reading, we
have guidance and can retain only the most relevant parts, reaching the conclu-
sion that there exists a relation rather than no relation. In order to discriminate
different relation types, we further move to the third stage of reading where we
term the process of gradually capturing the most relevant information for clas-
sification as mutually guided sequence pairs modeling. Here, we use “sequence
pairs” rather than “argument pairs” to emphasize that the guidance mechanism
acts upon the sequential processing of words and our method can be generally
adopted on sequences-interaction related tasks.

We note that the key to implement the repeated reading strategy is finding
a proper model for the process of guided regenerating. Since Recurrent Neural
Network (RNN) is the most natural way to model sequence, we customize it
by equipping its internal computational unit with externally controllable gates.
Gated RNNs such as Long Short-Term Memory (LSTM) are not suitable for
naive stacking. Usually, outputs of lower-level LSTM are weighted and summed
and feed as input to higher-level LSTM to model the hierarchical structure of
articles [17]. Here, we take several layers of RNNs with their inputs directly con-
nected to the original text arguments and use lower layer’s outputs as higher
layer’s guidance to integrate them into a multilevel structure. In this paper, we
propose two novel recurrent neural networks to implement the strategy of mutu-



ally guided modeling. One is Externally Controllable Long Short Term Memory
(ECLSTM), whose internal gates can be controlled by externally supplied vec-
tor. The other is Attention-Augmented Gated Recurrent Unit (AAGRU), which
uses attention mechanism to augment traditional GRU. The difference between
ECLSTM and AAGRU lies in that AAGRU renders supplied vector stronger
controlling power and bears a simpler structure. In summary, this paper makes
the following contributions:

1. We propose stacked RNN to implement the repeated reading strategy and
prove its practicability in experiments.

2. We design ECLSTM as a conservative extension of LSTM and AAGRU as
a strengthened version. Their efficiencies are both empirically verified in
experiments and AAGRU exhibits better performance in small datasets.

2 Related Work

The first formal study of implicit discourse classification dates back to Marcu and
Echihabi (2002) [1], which proposes a method for cheap acquisition of training
data. However, their idea, which deletes connectives in unambiguous explicit
patterns and treats the remaining spans as belonging to implicit relations, has
been proven to be inadequate to generate realistic examples [4]. The interest in
implicit discourse parsing surges since the release of PDTB [2], a resource of
annotated discourse relations including implicit ones.

Conventional methods for implicit relations classification use hand-crafted
linguistic features [4, 7]. Those methods, which make heavy use of word pairs,
suffer from data sparsity problems. Recently, unsupervised dense real-value word
representations are demonstrated to outperform previous one-hot representa-
tions [12, 21], and neural network models, which alleviate the need for traditional
extensive feature engineering, can achieve even better performance [13, 15].

Incorporating arguments’ interactions into their modeling processes is not a
new concept since the use of word pairs naively implements the strategy. Chen
[15] extends the naive methods by utilizing dense representations and contextual
informationinformation, which augments word vectors with contextual informa-
tion through a bidirectional LSTM neural network and generates pair-wise rep-
resentations with those newly calculated vectors. Liu and Li [19] proposes neural
networks, which consist of one bidirectional LSTM layer and multiple attention
layers, to mimic the repeated reading strategy. Rather than simply adding at-
tention layers, we merge attention mechanism in RNN units that enables our
model to fit deeper structures with little increased complexity.

Another notable line aims at building multi-model approaches and using ex-
ternal resources to help improve accuracy. Multi-task neural network model,
which share partial architecture for implicit discourse classification tasks of dif-
ferent corpora, is proposed to alleviate the shortage of labeled data [18, 16]. Qin
[20] proposes an adversarial network, which leverages implicit connectives man-
ually added in PDTB, as an regularization mechanism to adaptively regularize



parameters. Those approaches can be seen as integrated frameworks, and our
methods can be used as replacement parts.

3 Methods

The strategy proposed in this paper is to incorporate arguments’ interactions
into their modeling process to dynamically exploit critical information. Firstly,
each arguments are independently processed to get a general sense, then we
reprocess the argument pairs under the guidance of the general understanding
to get more relevant representations to the recognition task. The newly acquired
representations are then used as guidance for further processing. In practice, we
limit the upper bound of total guiding and reprocessing times to 2.
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Fig. 1: Architecture of the Model.

3.1 Model Architecture

The overall architecture of our model is illustrated in Figure 1. Let us take
(Args, y) as a pair of input and output, where Args = (Arg1, Arg2) is the
argument pair and y is the golden standard relation. The two arguments contain
different amounts of words:

Arg1 = [w1,1, w1,2, . . . , w1,L1
], Arg2 = [w2,1, w2,2, . . . , w2,L2

]

Initially, we associate each lemma in lemma vocabulary with a vector repre-
sentation el ∈ RDl and each part of speech (POS) tag in POS vocabulary with
a vector representation ep ∈ RDp . Firstly, words in arguments are converted to
word embeddings by concatenating their corresponding lemma vectors and pos
vectors:

xi,j = eL(wi,j) ⊕ eP (wi,j)

where xi,j ∈ RDe is word embedding vector of wi,j . L denotes the operation of
lemmatization, P represents the operation of POS tagging and De = Dl +Dp is
the dimension of word embedding.



Let E(Argi) denote the process of transforming Argi’s words to their vector
representations, we have:

X1 = E(Arg1) = [x1,1, x1,2, . . . , x1,L1 ], X2 = E(Arg2) = [x2,1, x2,2, . . . , x2,L2 ]

Then we calculate the general-level representations of arguments as:

R
(0)
1 = g(0)(X1), R

(0)
2 = g(0)(X2)

In implementing g(0), we separately adopt one-dimensional CNN and bi-
LSTM with attention to compare their effects. Now we can obtain the level-1

guidance vector by concatenating R
(0)
1 and R

(0)
2 :

Guidance(1) = R
(0)
1 ⊕R

(0)
2

Having obtained the guidance vector, we re-calculate the representations of
the argument pairs:

R
(1)
1 = g

(1)
1 (X1, Guidance

(1)), R
(1)
2 = g

(1)
2 (X2, Guidance

(1))

where R
(1)
i is the level-1 representation for Argi. We adopt RNN with externally

controllable cells as g
(1)
i to enable guidance vector to control the sequential

processing of words in Argi. After K-th repeating of the guided level, we use
the newest representations derived from the top level to recognize the discourse
relation through a fully connected softmax layer:

P = softmax(Wp(R
(K)
1 ⊕R(K)

2 ) + bp)

3.2 General Sequence Pairs Modeling

The operations of general modeling the two arguments will be the same since
it conforms to common sense and reduces parameters. So we treat X1 and X2

obtained from the embedding-lookup layer as a unified form X = [x1, x2, . . . , xL].
Here we briefly introduce two methods, which are one-dimensional CNN with

max pooling and bi-LSTM with attention.

One-Dimensional Convolutional Neural Network has been broadly used
for modeling sequences. Filter matrices [W1,W2, . . . ,Wk] with variable sizes
[l1, l2, . . . , lk] are utilized to perform convolutional operations. The argument
embeddings will be transformed to sequences Cj :

Cj = [. . . , tanh(WjX[i:i+lj−1] + bj), . . . ], j ∈ [1, k]

where X[i:i+lj−1] = [xi, xi +1, . . . , xi + lj−1] is the convolutional window with lj
words. After convolution, argument vector is obtained by concatenating maximal
value of each sequence:

sj = max(Cj), R(0) = [s1, s2, . . . , sk]



Long-Short Term Memory Recurrent Neural Network is a variant of
RNN and broadly used for modeling sequences. The mechanism in LSTM is
showed as follows:

it = σ(Wixt + Uict−1 + bi), ft = σ(Wfxt + Ufct−1 + bf ),

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucct−1 + bc),

ot = σ(Woxt + Uoct + bo), ht = ot ◦ ct

where it, ft and ot are called input gate, forget gate and output gate. ct is the
cell-state vector that is used to store long-term information. ht is the output
vector.

We get annotations of words by using bidirectional LSTM to summarize
information from both directions:

−→
ht =

−−−−→
LSTM(xt),

←−
ht =

←−−−−
LSTM(xt), ht =

−→
ht ⊕

←−
ht , t ∈ [1, L]

Argument vector is then obtained through an attention layer:

αt =
exp(hTt u)∑

exp(hTt u)
, R(0) =

∑
αtht

3.3 Mutually Guided Sequence Pairs Modeling

Once guidance vector Guidance(k−1) ∈ R4Dk−1 is obtained, we can use it to
re-calculate argument vectors. Here, we propose two novel RNN networks with
externally controllable cells to implement the strategy of mutually guided mod-
eling. Since the same guidance vector is used for both arguments, the operations
for re-calculating new vector representations of the two arguments can not be
exactly the same. However, we can share most of parameters among them.

Externally Controllable LSTM (ECLSTM) is derived from LSTM by
adding mechanism to enable guidance vector to influence internal gates. In order
to maintain conciseness, we omit the (k) and (k− 1) superscripts and only take
Arg1 for example.

i1t = σ(Wix1,t + Uic1,t−1 + V 1
i Guidance+ bi)

f1t = σ(Wfx1,t + Ufc1,t−1 + V 1
f Guidance+ bf )

o1t = σ(Wox1,t + Uoc1,t−1 + V 1
o Guidance+ bo)

c1,t = f1t ◦ c1,t−1 + i1t ◦ tanh(Wcx1,t + Ucc1,t−1 + bc)

h1,t = o1t ◦ c1,t

where Wi,Wf ,Wo ∈ RDk×De , Ui, Uf , Uo ∈ RDk×Dk , V 1
i , V

1
f , V

1
o ∈ RDk×4Dk−1

and bi, bf , bo ∈ RDk . The parameters without superscript 1 are shared between
processing of Arg1 and Arg2. The parameters not shared between two arguments



are those directly multiplied with guidance vector. So, V 1
i , V 1

f and V 1
o are used

exclusively in processing of Arg1 and V 2
i , V 2

f and V 2
o are used exclusively in

processing of Arg2.
ECLSTM slightly differs from the original LSTM to retain most advantages

of LSTM. However, since guidance vector has to interact with inputs and hid-
den states to generate gates’ values, the active mechanism of guidance vector’s
influence is quit unclear.

Attention-Augmented Gated Recurrent Unit (AAGRU) is proposed
because the influence of guidance vector to the gates in ECLSTM is quit limited.
We strengthen the dominance of guidance vector by incorporating attention
mechanism into GRU that we can reduce parameters in one single layer and stack
more guided layers without increasing complexity. Specifically, we sequentially
process each word in Argi as below:

ui = tanh(V i
uGuidance+ bu)

rit = σ(Wrxi,t + Urci,t−1 + br)

c̃i,t = tanh(Wcxi,t + Uc(r
i
t ◦ ci,t−1) + bh)

ait = σ(c̃Ti,tui)

ci,t = (1− ait) ◦ ci,t−1 + ait ◦ c̃i,t
hi,t = ait ◦ ci,t

Here, we still omit the (k) and (k − 1) superscripts to maintain conciseness
and superscript i and subscript i have the same meaning that the variable is
exclusive for Argi, i ∈ {1, 2}. In AAGRU, the original update gate of GRU is
replaced by the attention gate ait. We first generate attention vector ui for Argi,
then ui is used to perform inner product with temporal cell-state vector c̃i,t to
calculate attention gate’s value. Obtaining output hi,t by multiplying cell-state
vector ci,t with attention gate ait is to alleviate imbalance introduced by the
fierce mechanism.

To get the new annotations of words, we summarize information from both
sides as conducted in bi-LSTM:

−→
hi,t = −→gi (xi,t),

←−
hi,t =←−gi (xi,t), hi,t =

−→
hi,t ⊕

←−
hi,t, t ∈ [1, Li]

Here gi represents ECLSTMi and AAGRUi. Then we get argument vectors
by simply summing word vectors:

Ri =
1

Li

∑
t

hi,t, Ri ∈ R2Dk .

3.4 Model Training

After the hierarchical architecture of our model is detailed and implemented,
we train our model to minimize the cross-entropy error between y the golden



standard relations and P the outputs of the softmax layer as well as the L2
regularization of arguments:

L(θ) =
1

m

m∑
k=1

(
−
∑
j

ykj logPkj

)
+
λ

2
θT θ

Dropout operations are applied between each layers and the keeping ratio is set
to be 0.5. The model is trained end to end through standard back-propagation.
We adopt AdamOptimizer [14] with initial learning rate of 0.001 for optimization
process.

4 Experiments

4.1 Settings

Penn Discourse Treebank (PDTB) is a manually annotated corpus. We evalu-
ate our model on this corpus. The classification granularity of PDTB has three
levels and the first level contains four kinds of relations, namely Comparison,
Contingency, Expansion and Temporal. To compare with prior works, we fol-
low traditions that formulate the implicit discourse classification tasks as four
one-versus-other binary classification problems. Data is divided into three sets,
respectively training set (sections 2-20), validation set (sections 0-1) and testing
set (sections 21-22). Since positive samples in Temporal are quit limited, we aug-
ment training data of Temporal by exchanging the positions of Arg1 and Arg2
in it.

We use Stanford NLP Toolkit [9] to conduct tokenization, lemmatization and
part-of-speech tagging. The embedding vectors of lemmas are initialized with
pre-trained vectors provide by Glove [10]. To prevent from overfitting, in model
training, we do not update lemma embedding vectors in the first ten epochs and
then use validation set to conduct early stopping.

The dimensions of lemma embeddings and POS embeddings are 300 and 50
respectively. When using CNN as the general feature extractor, we utilize three
groups of filters with window sizes of (2, 4, 8) and their filter numbers are all set
to 256. So the dimension of general level’s output is 768. When using LSTM as
the general modeling method, D0 the dimension of each unidirectional LSTM is
set to 50 that the dimension of general level’s output is 100. The dimensions of
next two guided levels’ outputs are set to 100, which means Dk the output size
of the unidirectional RNN variants is 50.

4.2 Results

We set our model with different stacked layers and components and their per-
formances are compared in Table 1.

The basic CNN and LSTM models perform the worst. By stacking guided
layers, we get significant performance gains. We also witness that stacking more
ECLSTM degenerates performance. It may be because ECLSTM contains a lot



Table 1: Models with variable layers measured by F1 scores (%).

Comparison Contingency Expansion Temporal

CNN Only 33.05 50.92 63.51 28.42
CNN+ECLSTM 39.33 54.71 69.51 33.44
CNN+AAGRU 38.23 52.41 65.07 29.05
CNN+ECLSTM+ECLSTM 38.47 52.65 66.99 28.59
CNN+AAGRU+AAGRU 38.69 55.47 69.41 32.40

LSTM Only 36.11 53.04 67.23 27.74
LSTM+ECLSTM 39.08 53.97 68.33 32.49
LSTM+AAGRU 38.77 53.35 66.81 30.14
LSTM+ECLSTM+ECLSTM 37.39 54.08 67.89 27.42
LSTM+AAGRU+AAGRU 40.03 56.38 70.10 32.85

of parameters that it begin to overfit. AAGRU with reinforced controlling power
and less parameters can continually improve performance by stacking more lay-
ers. In our experiments, we find that the model with LSTM as general level and
two stacked AAGRU as guided levels achieves the best over-all performance.

Table 2: Comparisons of different models measured by F1 scores (%).

Comparison Contingency Expansion Temporal

Zhou et al., 2010 31.79 47.16 70.11 20.30
Park and Cardie, 2012 31.32 49.82 - 26.57
Rutherford and Xue, 2014 39.70 54.42 70.23 28.69
Braud and Denis, 2015 36.36 55.76 67.42 29.3
Zhang et al., 2015 34.22 52.04 69.59 30.54
Wu et al., 2016 37.07 42.37 66.84 23.81
Liu et al., 2016 37.91 55.88 69.97 37.17
Qin et al., 2017 40.87 54.56 72.38 36.20

CNN+ECLSTM 39.33 54.71 69.51 33.44
LSTM+AAGRU+AAGRU 40.03 56.38 70.10 32.85

We compare our models with previously state-of-the-art models and the re-
sults are listed in Table 2. The main ideas of those baselines are introduced as
follows:

– (Zhou et al., 2010) [6] inserts discourse connectives between arguments with
the use of a language model and use these predicted implicit connectives as
additional features in a supervised model.

– (Park and Cardie, 2012) [7] provides a systematic study of linguistic features
and identifies new feature combinations that optimize F1-score.

– (Rutherford and Xue, 2014) [8] employs Brown cluster pairs and coreference
patterns as features and trains a maximum entropy classifier.



– (Braud and Denis, 2015) [12] uses low-dimensional representations based on
Brown clusters and word embeddings and other hand-crafted features to
identify implicit discourse relations.

– (Zhang et al., 2015) [13] proposes a shallow convolutional neural network,
which contains only one hidden layer and captures max, min and average
information.

– (Wu et al., 2016) [16] incorporates data from corpus with different languages
via a multi-task neural network model to alleviate the shortage of labeled
data.

– (Liu et al., 2016) [18] proposes a convolutional neural network embedded
multi-task learning system to combine different discourse corpora.

– (Qin et al., 2017) [20] proposes an adversarial network, which leverages im-
plicit connectives manually added in PDTB, as an regularization mechanism
to adaptively regularize parameters.

From the comparison results, we can conclude that our model is better in recog-
nizing Comparison and Contingency and comparative with the best models in
classifying Expansion and Temporal.
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(b) Contigency Example

Fig. 2: Visualization of Intermediate Weights. (a) is an example of the Com-
parison relation and (b) is an example of Contingency. Each one contains two
figures for its two arguments respectively. Each figure illustrate three layers of
weights that correspond to the attention weights of general level and the values
of attention gates in the next two AAGRU layers.

4.3 Discussion

We have quantitatively analyzed the attention weights in the general level and
the values of attention gates in the guided levels of the LSTM+AAGRU+AAGRU
model. Some examples are visualized in Figure 2. More blue the grid means the
word is paid less attention than average, while more red means more atten-
tion is paid. We find that general level focuses on proper nouns, terminologies
and time-related phrases, which are generally most informative components for
getting the general sense of a text. The first guided level tends to focus on com-
ponents which are neglected by general level and can be seen as a complement of



general level. The second guided level, which is also the final level to generate ar-
gument representations, is relatively similar to general level. It is more accurate
and comprehensive than the general level that it can be seen as a refinement of
general level. It discards components which are paid attention by general level
but inessential for classifying the relation and allocates extra attention to those
verbs and adjectives which are neglected but important.

5 Conclusion

We incorporate arguments’ interactions into their modeling process to dynami-
cally exploit critical information for implicit discourse classification. We designed
ECLSTM and AAGRU, two variants of recurrent neural network units with ex-
ternally controllable gating mechanism, to regenerate argument representations
under the guidance of previous obtained argument vectors. Our experiments
demonstrate that performance can be greatly promoted by applying the guided
regenerating strategy. Due to the shortage of labeled data, we stacked only two
AAGRU layers to get the best performance. Through visualization we show that
relevant information are gradually complemented and refined layer by layer.
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