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Abstract. The technique of random projection is one of dimension reduction,
where high dimensional vectors in RD are projected down to a smaller sub-
space in Rk. Certain forms of distances or distance kernels such as Euclidean
distances, inner products [10], and lp distances [12] between high dimensional
vectors are approximately preserved in this smaller dimensional subspace. Word
vectors which are represented in a bag of words model can thus be projected
down to a smaller subspace via random projections, and their relative similar-
ity computed via distance metrics. We propose using marginal information and
Bayesian probability to improve the estimates of the inner product between pairs
of vectors, and demonstrate our results on actual datasets.

1 Introduction

Suppose we have N documents and D words in our language. One popular model used
to represent these words is the bag of words model. Every document could be repre-
sented as a binary vector xi ∈RD, where the ith element in the vector represents whether
the word is present or not. Instead of using binary vectors, term weighting could also
occur where the ith element is some measure of frequency of the ith word appearing in
the document, such as square root weighting, log weighting etc.

Having represented such documents as vectors in RD, appropriate distance metrics
could be used to cluster such documents such as the inner product between each pair
of vectors. Classification of these documents could also take place via kernels [15]
representing higher dimensional features, with the kernel output fed into algorithms
like support vector machines (SVMs).

For N documents, computing their pairwise distance under some distance metric
would take O(N2D), which can be computationally intensive when D is large. With a
bigram model or trigram model, the dimension of the word vector and eventual resultant
computational cost would increase exponentially.

Random projections become a solution to this problem. Suppose the matrix Xn×D
represents the matrix of word vectors, where each row is a document vector. Suppose
we generate a random matrix RD×k, where each entry ri j is i.i.d. Normal N(0,1), and
compute the matrix product V = XR. If we consider the row vectors

xi := (xi1,xi2, . . . ,xiD) (1)
x j := (x j1,x j2, . . . ,x jD) (2)
vi := (vi1,vi2, . . . ,vik) (3)
v j := (v j1,v j2, . . . ,v jk) (4)



we note that

E[vi1v j1] = E
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]
= 〈xi,yi〉 (5)

Therefore, by the Law of Large Numbers we have that

〈vi,v j〉
k
≈ 〈xi,x j〉 (6)

and sharp probability bounds [18] on the error can be given, which we give here without
proof

P
[
(1− ε)〈xi,x j〉 ≤

〈vi,v j〉
k
≤ (1+ ε)〈xi,x j〉

]
≤ 1−4exp

{
−(ε2− ε

3)k/4
}

(7)

This bound can therefore be used to choose a value of k, such that the error in the
estimate is no more than (1+ ε) away from the true value, which is independent of D,
the original dimensions of the data.

Furthermore, random projections can also be used with other distance metrics such
as the lp distance (for even p) [12], or even with kernels such as the polynomial kernel
[15] to get close estimates as well.

The time taken under random projections is O(NDk+N2k), where O(NDk) of time
is taken to do the matrix multiplication XR, and N2k to compute the respective distances
between vectors. When k� D, the time saving is substantial.

Random projection can therefore be seen as a method to effectively deal with large
vectors [2]. In natural language processing (NLP) which is computationally intensive,
other concerns such as accuracy, speed, and storage arise.

Speeding up the computation of the vectors v∈Rk has been done in the last decade,
by changing the structure of the random projection matrices. The ri j in the random
projection matrix R could come from i.i.d. distributions (binary random projections
[1], very sparse random projections [11]), or correlated ri j (fast Johnson Lindenstrauss
transform [3], subsampled randomized Hadamard transform [5]).

Reducing the storage of the vectors v ∈ Rk has also been done with sign random
projections [10]. The output matrix V would consist only of 1s and 0s, where each
entry takes up 1 bit of space. Otherwise, storing the entries in v as doubles would take
up 64 bits of space per entry.

The accuracy of the random projection estimates is not just limited to computing
the probability bounds of the estimates. Statistical theory can also help to sharpen these
probability bounds, and hence get better estimates. For example, previous work by Li
[10] used marginal information about the data, while our previous work [8] used vari-
ance reduction techniques in Monte Carlo methods.

Our method proposes using a Bayesian estimator of the inner product by assum-
ing a prior distribution on the data. We show how to compute this estimator, and also
demonstrate its effectiveness.



2 Related Work

Consider the row vectors vi, v j in (3) and (4). Without loss of generality, suppose we
normalize our word vectors xi where ‖xi‖2

2 = 1, and we let {(v1,v2)}k
s=1 denote the

tuples (vis,v js). Then each tuple can be represented as(
v1
v2

)
∼ N

((
0
0

)
,

(
1 a
a 1

))
(8)

where a denotes the true inner product 〈xi,x j〉. Here, the tuple is seen as being drawn
from a bivariate normal. In statistical theory, this can be seen as estimating an unknown
correlation of a bivariate normal when both variances are known [6].

In 2006, Li [10] used a maximum likelihood estimator to improve the estimate of
the inner product. Given observations of k tuples (v1,v2)

(1),(v1,v2)
(2), . . . ,(v1,v2)

(k), Li
derived the likelihood equation in terms of the inner product a, and found the value of
â which maximized the likelihood.

More recently in 2016, our previous work [8] used control variates to improve the
estimate of quadratic forms, one of which consisted the inner product. By using random
variables where the true mean θ was known, we used a control variate correction to
reduce the error of the estimate of the inner product.

Both our work and Li achieved the same improvement of the estimate of the inner
product. With normalized data, the ordinary inner product estimate (6) had a variance

Var[a] = 1+a2 (9)

but under our estimate and Li’s estimate, the reduced variance was

Var[a] =
(1−a2)2

1+a2 (10)

We use the variance of the inner product here instead of probability bounds, since
the derivation of the bounds make use of the variance, and the variance can be used as
a proxy to how tight the probability bounds are.

Figure 1 shows the relationship between the original variance, our variance, and
Li’s variance. We see that substantial variance reduction occurs when vector pairs are
correlated with |a| near 1, but otherwise little variance reduction when a is near 0.

3 Inherent Challenges With High Dimensional Word Vectors

Geometry theory [4] states that as the dimension p increases, any two randomly drawn
vectors are with high probability almost mutually orthogonal. While word vectors (and
data in general) usually have some structure and are not seen as randomly drawn, most
pairwise inner products a tend to be small in magnitude but non-zero in extremely high
dimensions.

Based on Figure 1, both our technique and Li’s technique would work well on
datasets where a high proportion of vector pairs xi,x j are heavily correlated. Other-
wise, there would be no advantage is using their techniques.
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Fig. 1. Comparison of original variance and improved variance under both our estimate and Li’s
estimate. Both our estimate and Li’s estimate have the same variance (in blue). Recall that that if
the inner product between two vectors is 1, they are in the same direction. If the inner product is
-1, there are in opposite directions. If the inner product is 0, they are orthogonal.
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Fig. 2. Distribution of pairwise inner products for Arcene, MNIST, Kos blog posts, NIPS confer-
ence papers datasets.



For example, consider the following four high dimensional datasets, two of which
are document-word datasets (Kos blogposts [13] , NIPS conference papers [17]), and
two non document-word datasets (Arcene [7], MNIST [9]). We use log term weighting
for the Kos blogposts and NIPS conference papers datasets.

Figure 2 shows the distribution of true pairwise inner products for these datasets.
The document-word datasets have a significantly higher proportion of pairwise inner
products near 0 compared to the non document-word datasets, hence our algorithm and
Li’s algorithm would not be useful at all. Relying on basic principal component analysis
(PCA) to reduce the dimension of data would also not be of much help. We show the
following scree plots of the same four datasets.
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Fig. 3. Scree plots of arcene, MNIST, Kos blogposts, and NIPS conference papers datasets.

We can see from Figure 3 that the first few principal components of arcene and
MNIST account for a significant proportion of the variance. However, the proportion of
variance for the Kos blogposts, NIPS conferences datasets increases linearly with the
number of principal components. Therefore, it is difficult to adopt a strategy similar to
our previous work (using a control variate of a known quantity) or Li (using marginal
information) with knowledge of the first few eigenvectors. Even if PCA produces good
results (several principal components accounting for most of the variance), there is usu-
ally a loss of actual distance information.

We therefore proceed in an orthogonal direction to PCA as well as our method and
Li’s method and look at Bayes Rule for inspiration.



4 Our Contributions

In this paper, we propose a method which estimates the inner product of vector word
pairs which has lower variance than either Li’s method and our previous method. We
analyze the time taken for our method. We also evaluate and demonstrate our method
on actual datasets.

4.1 Bayes Rule and Information Updating

Theorem 1. Bayes Rule
Let A,B be any two events, and P[B] = 0. Then

P[A|B] = P[B|A]P[A]
P[B]

(11)

Intuitively, suppose we had some prior belief about A, which we encode as P[A].
In our NLP framework, this can be how we believe the (true) inner product a between
pairs of vectors are distributed. Then for some observations B which we see, we can
update our initial belief via P[B|A]. Similarly, our observations B in this context would
be our tuples {(v1,v2)}k

s=1. The posterior P[A|B] describes our final belief, based on our
observations. We want this to be our inner product estimate â.

4.2 Our Proposed Algorithm

Using Bayes Rule, our estimate for the inner product a can be written as

E[a | {(v1,v2)}k
s=1] =

1
K

∫ 1

0
a p(a) L(a) da (12)

where

p(a) = prior belief of how inner product is distributed (13)

L(a) = likelihood based on observations {(v1,v2)}k
s=1 (14)

1
K

= the normalizing constant to make
∫ 1

0

p(a)L(a)
K

da

be a probability density function (pdf) and integrate to 1 (15)

We can express the likelihood function of the bivariate normal as

L(a) ∝
(
1−a2)−k/2

exp

−
k

∑
s=1

(v1s v2s)

(
1 −a
−a 1

)(
v1s
v2s

)
2(1−a2)

 (16)

∝
(
1−a2)−k/2

exp

{
−∑

k
s=1 v2

1s + v2
2s−2av1sv2s

2(1−a2)

}
(17)

We do not need the exact form of L(a), since the constant can be part of 1
K . We now

consider the prior distribution p(a).



4.3 Computing the Integral
∫ 1

0 a p(a) L(a) da

If we treat the distribution of pairwise inner products (Figure 2) as a probability distri-
bution p(a), statistical theory tells us that we can get a good idea of the distribution by

sampling from it. In this paper, we recommend sampling
⌊√

N(N−1)
2

⌋
pairwise inner

products out of N(N−1)
2 total pairwise inner products to get convergence to a good prior.

We do not place any assumptions on p(a) being a commonly known distribution like
the beta distribution (Kos blog posts, NIPS conference papers datasets), or a bivariate
mixture model distribution (Arcene dataset). Rather, we use kernel density estimators
[16] such as the Nadaraya Watson estimator to evaluate p(a) at several equally spaced
points from the interval [0,1].

The motivation for doing so is that we only pass the value of p(a) into a numerical
integration algorithm to compute

∫ 1
0 a p(a) L(a) da. However, numerical integration

algorithms work by evaluating the integral at equally spaced points. Therefore, we do
not need a closed form expression of p(a), and the evaluation of p(a) at these equally
spaced points suffices.

We give the following example using Simpson’s Rule as our numerical integration
algorithm. Suppose we consider the interval [0,1] with equally spaced points a0 :=
0,a1,a2, . . . ,a2s := 1. Suppose we let α denote the length of the interval [ai,ai+1].
Further suppose we use the Nadaraya Watson estimator to evaluate p(a) at the points
a0,a1, . . . ,a2s. Using Simpson’s Rule gives∫ 1

0
a p(a) L(a) da =

∫ a2

0
a p(a) L(a) da+

∫ a4

a2

a p(a) L(a) da+ . . .+
∫ 1

a2s−2

a p(a) L(a) da

=
2α

6
[ f (0)+4 f (a1)+ f (a2)]+ . . .+

2α

6
[ f (a2s−2)+4 f (a2s−1)+ f (1)]

=
2α

6

s

∑
t=1

[ f (a2t−2)+4 f (a2t−1)+ f (a2t)] (18)

and do likewise for
∫ 1

0 p(a) L(a) da.
The only other assumption we make is that the distribution of inner products is

relatively smooth, so we need a small number of equally spaced points.

Theorem 2. The expected variance of the inner product estimate given by our algo-
rithm in (12) is smaller than the original variance of the inner product estimate.

Proof. From the law of total variance, we have

Var[a] = E
[
Var[a | {(v1,v2)}k

s=1]
]
+Var

[
E[a | {(v1,v2)}k

s=1]
]

(19)

and rearranging this, we have

Var
[
E[a | {(v1,v2)}k

s=1]
]
= Var[a]−E

[
Var[a | {(v1,v2)}k

s=1]
]

(20)

⇒ Var
[
E[a | {(v1,v2)}k

s=1]
]
< Var[a] (21)

This does not imply that the actual variance of our inner product estimate is always
lower than the variance of the original estimate, but in practice this is usually the case
if we sample enough inner products.



4.4 Numerical Analysis of Algorithm and Time Taken

To compute our improved estimate of the inner product, this is equivalent to computing
the quotient of two integrals ∫ 1

0 a p(a) L(a) da∫ 1
0 p(a) L(a) da

(22)

where the denominator is the normalizing constant K. We need to use numerical integra-
tion tools like Simpson’s Rule or Gauss-Hermite Quadrature as shown in the previous
subsection.

The time taken for this algorithm thus depends on the number of inner products
sampled, as well as the number of equally spaced points to compute the kernel density
estimates.

We first consider the pre-processing period. Sampling
⌊√

N(N−1)
2

⌋
inner products

is of order O(ND). Evaluating p(a) at s equally spaced points is of order O(Ns). Com-
puting the matrix product V = XR is of order O(NDk). The overall pre-processing cost
is therefore O(NDk+ND+Ns).

We need to do numerical integration to compute the inner product estimate after
random projection. For each inner product pair, it takes O(k) time (and O(1) space) to
compute and store the constant terms in (17). We then take O(s) time to compute the
integral for our estimate, as in (17). The total time taken for all pairwise estimates is
therefore O(N2(k+ s)).

The overall time taken for our algorithm is O(NDk + ND + Ns + N2(k + s)) =
O(NDk+N2(k+ s)). Ordinary random projections, Li’s method, and Kang’s method
all take O(NDk+N2k), and are therefore faster.

However, we will show in our experiments that while our algorithm takes an extra
O(N2s) time, the tradeoff in accuracy is worth the decrease in speed.

We further note that our algorithm does not necessarily need to be used for esti-
mating the inner product. We can also estimate other distances such as lp distances, but
modify p(a),L(a) respectively.

5 Our Experiments

We look at three word datasets for our experiments. They are the Kos blogposts [13]
(N = 3,430, D = 6,906, p̃ = 5,880,735 ), NIPS conference papers [13] (N = 1,500,
D = 12,419, p̃ = 1,124,250), and the MSN web crawl dataset [11] (N = 2,702, D =
65,536, p̃ = 3,649,051), where p̃ is the number of pairwise inner products. We use log
term weighting for our data, before normalizing each word vector to have norm 1.

For each dataset, we compute the average root mean square error (RMSE) of the
inner product estimates over all pairs for 1000 iterations. We project down from D
dimensions to k = {10,20, . . . ,100} with our random projection matrix. For each iter-
ation, we randomly sample an increasing number of pairwise inner products up to the
nearest power of 2 greater than

√
p̃ to show how this affects our kernel density estimate

of p(a) and hence our inner product estimate. We evaluate our integral at 101 equally



spaced points. We compare the estimates of our RMSE against ordinary random pro-
jections, Li’s method, and our control variate method, and compute error bounds of 3
standard deviations for each RMSE estimate.

Since we normalize our data to have norm of 1, the RMSE becomes a number
between 0 and 1. If the RMSE is near 0, it means that most estimates of pairwise inner
products are close to the truth. Otherwise, if the RMSE is near 1, it means that most
estimates of the inner product are far from the truth.

The code for our experiments can be found at https://github.com/erwin4d/
research_projects/.

Figures 4, 5, and 6 show the results of our experiments. The left plots in these
figures shows the average RMSE as the number of columns k increases. The right plots
in these figures shows the average RMSE at k = 100, but with increasing number of
inner products sampled to compute the kernel density estimate p(a) as a proportion of
b
√

p̃c. Note that the scale on the x-axis is logarithmic. The horizontal dotted lines and
the crosses represent 3 standard deviations around the RMSE. The red vertical dotted
line represents blog p̃c and the blue vertical dotted line represents b

√
p̃c.
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Fig. 4. The plots show the average RMSE of the inner product estimates over all 5,880,735 pairs
for the Kos blogposts dataset.

From our results, we can see that Li’s method and our previous control variate
method performs similarly to ordinary random projections, our Bayesian prior method
has a significantly lower RMSE as k increases. This is not surprising, as the proportion
of highly correlated pairwise inner products in these datasets is small compared to the
proportion of weakly correlated pairwise inner products.
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Fig. 5. The plots show the average RMSE of the inner product estimates over all 1,124,250 pairs
for the NIPS conference papers dataset.

Furthermore, we see that sampling b
√

p̃c inner products for the kernel density es-
timate of our prior p(a) can be too conservative, as there is “convergence” in the aver-
age pairwise RMSE for much fewer samples. Even before this “convergence”, taking
blog p̃c samples gives a significantly lower RMSE with smaller standard deviations than
ordinary random projections, Li’s method, and the control variate method. Nevertheless,
we keep the number of samples fixed at b

√
p̃c as a rule of thumb just to be safe, as other

datasets might not have a smooth distribution of inner products.
Intuitively the performance of our algorithm on these datasets can be seen as an

updating process based on the observation of the tuples (vis,v js), using Bayes’ Rule.
Thus, we end up updating our beliefs based on our observations, hence we get more
accurate estimates and lower RMSE provided we started with the right beliefs.

6 Conclusion and Future Work

NLP deals with extremely high dimensional sparse data which can be computationally
intensive. Dimension reduction techniques are essential, but current dimension reduc-
tion techniques may not work well for word vectors. Figures 1 and 2 show how random
projection techniques may not work well for word vectors due to the distribution of
inner products. Figure 3 also shows why PCA may also not be useful in reducing the
number of dimensions with certain word datasets.

We have demonstrated an algorithm using Bayes Rule which performs well in esti-
mating the inner product between all pairwise word vectors rather than “good correlated
pairs” for small K, provided we have some notion of the underlying distribution of the
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Fig. 6. The plots show the average RMSE of the inner product estimates over all 3,649,051 pairs
for the words dataset.

inner product. While our algorithm takes O(N2(k+ s)) time in estimating all pairwise
inner products compared to O(N2k) time, the average RMSE is significantly lower for
the same value of k. In fact, if we picked some k for ordinary random projections, we
can set k̂ = k− s for our Bayesian prior algorithm to keep to the same runtime, and
yet get smaller error. From our results, using k = 10 for our Bayesian prior algorithm
still yields a much lower RMSE than k = 100 for Li’s algorithm, our control variate
algorithm, or ordinary random projection estimates.

We have also given a recipe on how to use our algorithm with different estimates of
distances, not just the inner product. The likelihood function L(a) necessarily needs to
change based on the distance estimate.

We believe that there is potential synthesis of this random projection algorithm to-
gether with existing and future NLP works, such as [2, 14], leading to better and more
accurate results.
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