Neural Question Generation from Text: A
Preliminary Study

Qingyu Zhou'*, Nan Yang?, Furu Wei2, Chuangi Tan®, Hangbo Bao', and
Ming Zhou?

! Harbin Institute of Technology, Harbin, China
qyzhgm@gmail.com, baohangbo@hit.edu.cn
2 Microsoft Research, Beijing, China
nanya, fuwei, mingzhou@microsoft.com
3 Beihang University, Beijing, China
tanchuanqi@nlsde.buaa.edu.cn

Abstract. Automatic question generation aims to generate questions
from a text passage where the generated questions can be answered by
certain sub-spans of the given passage. Traditional methods mainly use
rigid heuristic rules to transform a sentence into related questions. In this
work, we propose to apply the neural encoder-decoder model to gener-
ate meaningful and diverse questions from natural language sentences.
The encoder reads the input text and the answer position, to produce an
answer-aware input representation, which is fed to the decoder to gen-
erate an answer focused question. We conduct a preliminary study on
neural question generation from text with the SQuAD dataset, and the
experiment results show that our method can produce fluent and diverse
questions.

1 Introduction

Automatic question generation from natural language text aims to generate ques-
tions taking text as input, which has the potential value of education purpose
[9]. As the reverse task of question answering, question generation also has the
potential for providing a large scale corpus of question-answer pairs.

Previous works for question generation mainly use rigid heuristic rules to
transform a sentence into related questions [9, 2]. However, these methods heavily
rely on human-designed transformation and generation rules, which cannot be
easily adopted to other domains. Instead of generating questions from texts, [19]
proposed a neural network method to generate factoid questions from structured
data.

In this work we conduct a preliminary study on question generation from
text with neural networks, which is denoted as the Neural Question Generation
(NQG) framework, to generate natural language questions from text without pre-
defined rules. The Neural Question Generation framework extends the sequence-
to-sequence models by enriching the encoder with answer and lexical features to

* Contribution during internship at Microsoft Research.

generate answer focused questions. Concretely, the encoder reads not only the
input sentence, but also the answer position indicator and lexical features. The
answer position feature denotes the answer span in the input sentence, which is
essential to generate answer relevant questions. The lexical features include part-
of-speech (POS) and named entity (NER) tags to help produce better sentence
encoding. Lastly, the decoder with attention mechanism [1] generates an answer
specific question of the sentence.

Large-scale manually annotated passage and question pairs play a crucial
role in developing question generation systems. We propose to adapt the recently
released Stanford Question Answering Dataset (SQuAD) [18] as the training and
development datasets for the question generation task. In SQuAD, the answers
are labeled as subsequences in the given sentences by crowed sourcing, and it
contains more than 100K questions which makes it feasible to train our neural
network models. We conduct the experiments on SQuAD, and the experiment
results show the neural network models can produce fluent and diverse questions
from text.

2 Approach

In this section, we introduce the NQG framework, which consists of a feature-
rich encoder and an attention-based decoder. Figure 1 provides an overview of
our NQG framework.

X4
q) K Word

Lexical Features

OB &

O RS &

) Answer Position Feature

Fig. 1. Overview of the Neural Question Generation (NQG) framework.

2.1 Feature-Rich Encoder

In the NQG framework, we use Gated Recurrent Unit (GRU) [4] to build the
encoder. To capture more context information, we use bidirectional GRU (Bi-
GRU) to read the inputs in both forward and backward orders. Inspired by [3,
14], the BiGRU encoder not only reads the sentence words, but also handcrafted
features, to produce a sequence of word-and-feature vectors. We concatenate

the word vector, lexical feature embedding vectors and answer position indica-
tor embedding vector as the input of BIGRU encoder. Concretely, the BIGRU
encoder reads the concatenated sentence word vector, lexical features, and an-
swer position feature, x = (z1,a,...,,), to produce two sequences of hidden
vectors, i.e., the forward sequence (hi, ha,...,h;) and the backward sequence
(h1,ha,. .., hy,). Lastly, the output sequence of the encoder is the concatenation
of the two sequences, i.e., h; = [h;; h;].

Answer Position Feature To generate a question with respect to a specific answer
in a sentence, we propose using answer position feature to locate the target
answer. In this work, the BIO tagging scheme is used to label the position of
a target answer. In this scheme, tag B denotes the start of an answer, tag I
continues the answer and tag O marks words that do not form part of an answer.
The BIO tags of answer position are embedded to real-valued vectors throu
and fed to the feature-rich encoder. With the BIO tagging feature, the answer
position is encoded to the hidden vectors and used to generate answer focused
questions.

Lezical Features Besides the sentence words, we also feed other lexical features
to the encoder. To encode more linguistic information, we select word case,
POS and NER tags as the lexical features. As an intermediate layer of full
parsing, POS tag feature is important in many NLP tasks, such as information
extraction and dependency parsing [12]. Considering that SQuAD is constructed
using Wikipedia articles, which contain lots of named entities, we add NER
feature to help detecting them.

2.2 Attention-Based Decoder

We employ an attention-based GRU decoder to decode the sentence and answer
information to generate questions. At decoding time step t, the GRU decoder
reads the previous word embedding w;_1 and context vector c¢;_1 to compute the
new hidden state s;. We use a linear layer with the last backward encoder hidden
state hy to initialize the decoder GRU hidden state. The context vector ¢; for
current time step t is computed through the concatenate attention mechanism
[11], which matches the current decoder state s; with each encoder hidden state
h; to get an importance score. The importance scores are then normalized to get
the current context vector by weighted sum:

St = GRU(wtfla Ct—1, Stfl)
so = tanh(Wyh; + b)
€ri = v;— tanh(W,s;—1 + Uyh;)

_exple)
Oti = =n 7 %\
Zi:1 exp(et,i)

Ct = Zat,ihi (5)
i=1

We then combine the previous word embedding w;_1, the current context
vector ¢, and the decoder state s; to get the readout state r;. The readout state
is passed through a maxout hidden layer [7] to predict the next word with a
softmax layer over the decoder vocabulary:

ry = Wrwt_l + UTCt + VTSt (6)
my = [max{r2;_1,72i})j=1, 4 (7)
p(yely1, - -, ye—1) = softmax(W,m;) (8)

where r; is a 2d-dimensional vector.

2.3 Copy Mechanism

To deal with the rare and unknown words problem, [8] propose using pointing
mechanism to copy rare words from source sentence. We apply this pointing
method in our NQG system. When decoding word ¢, the copy switch takes cur-
rent decoder state s; and context vector ¢; as input and generates the probability
p of copying a word from source sentence:

p=0(Ws; + Uc; + b) (9)

where o is sigmoid function. We reuse the attention probability in equation 4 to
decide which word to copy.

3 Experiments and Results

We use the SQuAD dataset as our training data. SQuAD is composed of more
than 100K questions posed by crowd workers on 536 Wikipedia articles. We
extract sentence-answer-question triples to build the training, development and
test sets?. Since the test set is not publicly available, we randomly halve the
development set to construct the new development and test sets. The extracted
training, development and test sets contain 86,635, 8,965 and 8,964 triples re-
spectively. We introduce the implementation details in the appendix.
We conduct several experiments and ablation tests as follows:

PCFG-Trans The rule-based system® modified on the code released by [9]. We
modified the code so that it can generate question based on a given word
span.

s2s+att We implement a seq2seq with attention as the baseline method.

NQG We extend the s2s+att with our feature-rich encoder to build the NQG
system.

NQG+ Based on NQG, we incorporate copy mechanism to deal with rare words
problem.

4 We re-distribute the processed data split and PCFG-Trans baseline code at
http://res.qyzhou.me

NQG+Pretrain Based on NQG+, we initialize the word embedding matrix
with pre-trained GloVe [17] vectors.

NQG+STshare Based on NQG+, we make the encoder and decoder share the
same embedding matrix.

NQG++ Based on NQG+, we use both pre-train word embedding and STshare
methods, to further improve the performance.

NQG-—Answer Ablation test, the answer position indicator is removed from
NQG model.

NQG-POS Ablation test, the POS tag feature is removed from NQG model.

NQG-NER Ablation test, the NER feature is removed from NQG model.

NQG-—-Case Ablation test, the word case feature is removed from NQG model.

3.1 Implementation Details

Model Parameters We use the same vocabulary for both encoder and decoder.
The vocabulary is collected from the training data and we keep the top 20,000
frequent words. We set the word embedding size to 300 and all GRU hidden
state sizes to 512. The lexical and answer position features are embedded to
32-dimensional vectors. We use dropout [20] with probability p = 0.5. During
testing, we use beam search with beam size 12.

Lezical Feature Annotation We use Stanford CoreNLP v3.7.0 ® [13] to annotate
POS and NER tags in sentences with its default configuration and pre-trained
models.

Model Training We initialize model parameters randomly using a Gaussian dis-
tribution with Xavier scheme [6]. We use a combination of Adam [10] and simple
SGD as our the optimizing algorithms. The training is separated into two phases,
the first phase is optimizing the loss function with Adam and the second is with
simple SGD. For the Adam optimizer, we set the learning rate a = 0.001, two
momentum parameters f; = 0.9 and By = 0.999 respectively, and ¢ = 1078,
We use Adam optimizer until the BLEU score on the development set drops for
six consecutive tests (we test the BLEU score on the development set for every
1,000 batches). Then we switch to a simple SGD optimizer with initial learning
rate « = 0.5 and halve it if the BLEU score on the development set drops for
twelve consecutive tests. We also apply gradient clipping [16] with range [—5, 5]
for both Adam and SGD phases. To both speed up the training and converge
quickly, we use mini-batch size 64 by grid search.

3.2 Human Evaluation

We evaluate the PCFG-Trans baseline and NQG++ with human judges. The
rating scheme is provided in Table 1.

® https:/ /stanfordnlp.github.io/CoreNLP/

Score Rating scheme

3-Good The question is meaningful and matches the sentence and answer
very well

2-Borderline The question matches the sentence and answer, more or less

1-Bad The question either does not make sense or matches the sentence

and answer

Table 1. Human rating scheme.

The human judges are asked to label the generated questions if they match
the given sentence and answer span according to the rating scheme and examples.
We provide some example questions with different scores in Table 2. For the first
score 3 example, the question makes sense and the target answer “reason” can
be used to answer it given the input sentence. For the second score 2 example,
the question is inadequate for answering the sentence since the answer is about
prime number. However, given the sentence, a reasonable person will give the
targeted answer of the question. For the third score 1 example, the question is
totally wrong given the sentence and answer.

Score Sentence and generated question

I: -lsb- ... -rsb- for reason is the greatest enemy that faith has ;
it never comes to the aid of spiritual things . ”

O: what is the biggest enemy that faith has have 7

I: in all other rows -Irb-a =1,2,4,5, 7, and 8 -rrb- there
are infinitely many prime numbers .

3

O: how many numbers are in all other rows ?

I: while genghis khan never conquered all of china , his grandson
kublai khan completed that conquest and established the yuan
dynasty that is often credited with re-uniting china .

O: who did kublai khan defeat that conquered all of china ?

Table 2. Human rating scheme examples, I is input, O is output, the underlined words
are target answers.

3.3 Results and Analysis

We report BLEU-4 score [15] as the evaluation metric of our NQG system.
Table 3 shows the BLEU-4 scores of different settings. We report the beam

search results on both development and test sets. Our NQG framework outper-

forms the PCFG-Trans and s2s+att baselines by a large margin. This shows that

the lexical features and answer position indicator can benefit the question gener-
ation. With the help of copy mechanism, NQG+ has a 2.05 BLEU improvement
since it solves the rare words problem. The extended version, NQG++, has 1.11
BLEU score gain over NQG+, which shows that initializing with pre-trained
word vectors and sharing them between encoder and decoder help learn better
word representation.

Model Dev set Test set
PCFG-Trans 9.28 9.31
s2s+att 3.01 3.06
NQG 10.06 10.13
NQG+ 12.30 12.18

NQG+Pretrain 12.80 12.69
NQG+STshare 12.92 12.80
NQG++ 13.27 13.29

NQG—Answer 2.79 2.98
NQG—-POS 9.83 9.87
NQG-NER 950 9.29
NQG—Case 9.91 9.89

Table 3. BLEU evaluation scores of baseline methods, different NQG framework con-
figurations and some ablation tests.

Human FEvaluation We evaluate the PCFG-Trans baseline and NQG++ with
human judges. The rating scheme is, Good (3) - The question is meaningful
and matches the sentence and answer very well; Borderline (2) - The question
matches the sentence and answer, more or less; Bad (1) - The question either does
not make sense or matches the sentence and answer. We provide more detailed
rating examples in the supplementary material. Three human raters labeled 200
questions sampled from the test set to judge if the generated question matches
the given sentence and answer span. The inter-rater aggreement is measured
with Fleiss’ kappa [5].

Table 4 reports the human judge results. The kappa scores show a moderate
agreement between the human raters. Our NQG++ outperforms the PCFG-
Trans baseline by 0.76 score, which shows that the questions generated by
NQG++ are more related to the given sentence and answer span.

Ablation Test The answer position indicator, as expected, plays a crucial role in
answer focused question generation as shown in the NQG—Answer ablation test.
Without it, the performance drops terribly since the decoder has no information
about the answer subsequence.

Ablation tests, NQG—Case, NQG—POS and NQG—NER, show that word
case, POS and NER tag features contributes to question generation.

Model AvgScore Fleiss’ kappa

PCFG-Trans 1.42 0.50
NQG++ 2.18 0.46

Table 4. Human evaluation results.

Case Study Table 5 provides three examples generated by NQG++. The words
with underline are the target answers. These three examples are with different
question types, namely WHEN, WHAT and WHO respectively. It can be ob-
served that the decoder can ‘copy’ spans from input sentences to generate the
questions. Besides the underlined words , other meaningful spans can also be
used as answer to generate correct answer focused questions.

=

attack on the tanguts .
: in which year did genghis khan strike against the tanguts ?
: in what year did genghis khan begin a retaliatory attack on the tanguts ?

in 1226 , immediately after returning from the west , genghis khan began a retaliatory

in week 10 , manning suffered a partial tear of the plantar fasciitis in his left foot .

: what did manning suffer in his left foot ?

:in the 10th week of the 2015 season , what injury was peyton manning dealing with ?

like the lombardi trophy , the “ 50 ” will be designed by tiffany & co. .
: who designed the vince lombardi trophy ?
: who designed the lombardi trophy 7

oOQFoQTo0

Table 5. Examples of generated questions, I is the input sentence, G is the gold
question and O is the NQG++ generated question. The underlined words are the
target answers.

Type of Generated Questions Following [21], we classify the questions into dif-
ferent types, i.e., WHAT, HOW, WHO, WHEN, WHICH, WHERE, WHY and
OTHER.® We evaluate the precision and recall of each question types. Figure 2
provides the precision and recall metrics of different question types. The preci-
sion and recall of a question type T are defined as:

#(true T-type questions)

precision(T) = (10)

#(generated T-type questions)

eca () — 7 (tIl_le I type (] 1eST10) ()
T ns
(g t() :pe q U.eStIOIlS)

5 We treat questions ‘what country’, ‘what place’ and so on as WHERE type questions.
Similarly, questions containing ‘what time’, ‘what year’ and so forth are counted as
WHEN type questions.

For the majority question types, WHAT, HOW, WHO and WHEN types, our
NQG++ model performs well for both precision and recall. For type WHICH,
it can be observed that neither precision nor recall are acceptable. Two reasons
may cause this: a) some WHICH-type questions can be asked in other manners,
e.g., ‘which team’ can be replaced with ‘who’; b) WHICH-type questions account
for about 7.2% in training data, which may not be sufficient to learn to generate
this type of questions. The same reason can also affect the precision and recall
of WHY-type questions.

1.0,

=3 precision

0.8 N recall

0.6

0.4

0.2

0.0 WHAT HOW WHO WHEN WHICH WHERE WHY OTHER

Fig. 2. Precision and recall of question types.

4 Conclusion and Future Work

In this paper we conduct a preliminary study of natural language question gener-
ation with neural network models. We propose to apply neural encoder-decoder
model to generate answer focused questions based on natural language sentences.
The proposed approach uses a feature-rich encoder to encode answer position,
POS and NER tag information. Experiments show the effectiveness of our NQG
method. In future work, we would like to investigate whether the automatically
generated questions can help to improve question answering systems.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: Proceedings of 3rd International Conference for Learning
Representations. San Diego (2015)

2. Chali, Y., Hasan, S.A.: Towards topic-to-question generation. Comput. Linguist.
41(1), 1-20 (Mar 2015)

3. Chen, D., Manning, C.: A fast and accurate dependency parser using neural net-
works. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). pp. 740-750. Association for Computational Lin-
guistics, Doha, Qatar (October 2014)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder—decoder for sta-
tistical machine translation. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). pp. 1724-1734. Association
for Computational Linguistics, Doha, Qatar (October 2014)

Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychological
bulletin 76(5), 378 (1971)

. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward

neural networks. In: Aistats. vol. 9, pp. 249-256 (2010)

Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A.C., Bengio, Y.: Maxout
networks. ICML (3) 28, 1319-1327 (2013)

Gulcehre, C., Ahn, S., Nallapati, R., Zhou, B., Bengio, Y.: Pointing the unknown
words. In: Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). pp. 140-149. Association for Com-
putational Linguistics, Berlin, Germany (August 2016)

Heilman, M.: Automatic factual question generation from text. Ph.D. thesis,
Carnegie Mellon University (2011)

Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: Proceedings
of 3rd International Conference for Learning Representations. San Diego (2015)
Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neu-
ral machine translation. In: Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. pp. 1412—1421. Association for Computational
Linguistics, Lisbon, Portugal (September 2015)

Manning, C.D., Schiitze, H., et al.: Foundations of statistical natural language
processing, vol. 999. MIT Press (1999)

Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.:
The Stanford CoreNLP natural language processing toolkit. In: Association for
Computational Linguistics (ACL) System Demonstrations. pp. 55-60 (2014)
Nallapati, R., Zhou, B., glar Gulgehre, C., Xiang, B.: Abstractive text summa-
rization using sequence-to-sequence rnns and beyond. In: Proceedings of The 20th
SIGNLL Conference on Computational Natural Language Learning (2016)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th annual meeting on
association for computational linguistics. pp. 311-318. Association for Computa-
tional Linguistics (2002)

Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. ICML (3) 28, 1310-1318 (2013)

Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP). pp.
1532-1543 (2014)

Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

Serban, 1.V., Garcia-Durdn, A., Gulcehre, C., Ahn, S.,; Chandar, S., Courville,
A., Bengio, Y.: Generating factoid questions with recurrent neural networks: The
30m factoid question-answer corpus. In: Proceedings of ACL 2016. pp. 588-598.
Association for Computational Linguistics, Berlin, Germany (August 2016)
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15(1), 1929-1958 (2014)

Wang, S., Jiang, J.: Machine comprehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905 (2016)

