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Abstract. Contextual information is very important to select the appropriate
phrases in statistical machine translation (SMT). The selection of different tar-
get phrases is sensitive to different parts of source contexts. Previous approaches
based on either local contexts or global contexts neglect impacts of different con-
texts and are not always effective to disambiguate translation candidates. As a
matter of fact, the indicative contexts are expected to play more important roles
for disambiguation. In this paper, we propose to leverage the indicative con-
texts for translation disambiguation. Our model assigns phrase pairs confidence
scores based on different source contexts which are then intergraded into the
SMT log-linear model to help select translation candidates. Experimental results
show that our proposed method significantly improves translation performance on
the NIST Chinese-to-English translation tasks compared with the state-of-the-art
SMT baseline.

1 Introduction

In statistical machine translation (SMT) [12,3,5,14] the probabilities of target trans-
lation candidates are estimated based on the co-occurrence frequencies with source
phrases. Meanwhile the selection of target candidates is affected by limited target con-
texts computed based on a variant of language models. In practice, source contexts of
source phrases are proven helpful in making disambiguation of target translation candi-
dates. Much work has been done to incorporate source context information to improve
the translation performance [2,6,13,16,20]. However, these methods just leverage lim-
ited local contexts for translation disambiguation, which are often insufficient to model
the disambiguation of translation candidates that may have long distance dependencies
with the source phrases. Taking the sentence pairs of Chinese and English in Figure 1
as an example, the source phrase “东西” in bold occurs in the same sub-sentences
in both Figure 1(a) and Figure 1(b), but it is translated into different target phrases
denoted by the solid lines. It is impossible to distinguish these two target transla-
tions during SMT decoding merely using the local context with the distance less
than 3 words. So it needs longer distance dependencies beyond local contexts to
help make disambiguation.

Recently, with the success of distributed representation modeling by neural net-
works, source- and target-side local contexts are fully used to better generate the



Source : 他 迷路 了 , 分辨 不清 东西 .

Trans : He was lost , and confused with east and west .

Source : 他的 视力 不好 , 分辨 不清 东西 .

Trans :  He cannot see anything clearly with poor vision .

(a)

(b)

dependencies

dependencies

Fig. 1. Two examples of Chinese-English sentence pairs. The phrases in bold are translation pairs
connected with solid lines. The indicative context for translation disambiguation are marked in
dashed boxes .

target translation [4], where global sentence-level information is not adequately
concerned. Additionally, global contexts over source sentences have been modeled
to help with local translation prediction [22,7]. In these models, the contexts are
generated over the entire source sentence for each local translation disambiguation,
where they do not pay much attention to the effects of the critical context infor-
mation named as indicative context which is expected to play more important roles
for disambiguation than other contexts. For example in Figure 1, the translation
disambiguation of the same source phrase “东西” should be mainly dominated by
its indicative contexts marked in dashed boxes, which are more useful than other
context words in these sentences.

In this paper, we propose an indicative context based translation disambigua-
tion model (ICDM) to identify the indicative source context for disambiguating
translation candidates for SMT. Our method models both the intertranslation qual-
ity of translation pairs and whether the target candidate is suitable for the specific
source context. Then a confidence score is calculated for each phrase pair and inte-
grated into SMT decoder as an extra feature. Experimental results demonstrate that
our model significantly improves translation accuracy over a state-of-the-art SMT
baseline on Chinese-English task.

2 Indicative Context Based Translation Disambiguation

We present an indicative context based translation disambiguation model (ICDM)
to help with translation disambiguation for phrase pairs. Our model consists of
three parts, a Context-RNN used to map source context into vector space, a Phrase-
RNN used to map source phrase into vector space, and a RNNLM which is used
to calculate the confidence score for a target phrase given the source context and
phrase. Figure 2 gives a graphical overview of our model. Due to space limitation,
we only detail the connections at time step t. In this section we will explain ICDM
and how to incorporate ICDM into the SMT decoding in detail.



𝑥1 𝑥2 … 𝑥𝑛 𝑥𝑏 … 𝑥𝑒

ℎ1 ℎ𝑛 ℎ𝑏
′ ℎ𝑒

′ℎ2

Phrase-RNNContext-RNN

𝑐

𝑦𝑡−1 𝑦𝑡𝑦𝑡−2

RNNLM

𝑦𝑡−1𝑦𝑡−3 𝑦𝑡−2

𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑒𝑥𝑡

Fig. 2. Overview of ICDM. Only the details at time step t are listed.

2.1 Model Structure

Given the source sentenceXn
1 := x1, x2,x3,...,xn, source phraseP e

b := xb, xb+1,...,xe,
and the target phrase Tm

1 := y1, y2,...,ym, where n, m is the length of source sen-
tence and target phrase, xi, yi represent the source word and target word, 1 ≤
b ≤ e ≤ n. The translation disambiguation task is to estimate confidence scores
for phrase pairs conditioned on the source sentence Xn

1 and phrase P e
b , which is

denoted by Conf(P e
b , T

m
1 ). Thus the task can be modeled as,

Conf(Xn
1 , P

e
b , T

m
1 ) = p(Tm

1 |Xn
1 , P

e
b ) (1)

We use two recurrent neural network (RNN) named context-RNN and phrase-RNN
to map Xn

1 and P e
b into context vectors denoted by Hn

1 := h1, h2, h3...hn and
H ′eb := h′b, h

′
b+1...h

′
e respectively. Both RNNs are bidirectional. Empirically, the

final hidden vectors hn and h′e can be used to represent the source sentence and
source phrase. For the target phrase, we use a recurrent neural network language
model (RNNLM) to score the target phrase. When integrating hn and h′e into the
RNNLM, Equation 1 can be rewritten as Equation 2

Conf(Xn
1 , P

e
b , T

m
1 ) =

m∏
t=1

p(yt|y<t−1, hn, h
′
e) (2)

In Equation 2, the whole source sentence is utilized to provide global source con-
text and the source phrase is used to measure the intertranslation of the phrase pair.
For different phrase pairs of one source sentence, this model uses the same source
context hn for translation selection, thus we call this model Single Context-based
Disambiguation Model (SCDM). However, different phrase pairs of one source sen-
tence usually depends on different parts of source contexts, the single context is
insufficient to distinguish different contexts.



Identifying Indicative Context To better leverage source contexts to facilitate trans-
lation disambiguation, we propose to highlight the indicative context which is dy-
namically constructed for different phrase pairs of one source sentence. We use the
hidden vectors Hn

1 of context-RNN to represent the local context of each source
word in the source sentence. Our goal is to identify which local context plays a
more important role in selecting targets for a certain source phrase. We assign dif-
ferent weights for each local context aiming at highlighting the indicative context.
When calculating the RNNLM score of a target phrase, at each time step t, we
use a single bilinear [15] transformation to compute a score between the RNNLM
hidden state and each source context vector hi, which is similar with the attention
mechanism in [1].

eit = hiWast (3)

where Wa is the weight matrix, st is the state of RNNLM at time step t. Then the
weight of each context is modeled by,

ait =
exp(eit)∑
k exp(ekt)

(4)

We expect that the indicative context could have a higher weight than others and
dominate the translation disambiguation. However, sometimes there is no explicit
indicative context in selecting target phrase, and sometimes the model would make
wrong decisions. Thus we define the final source context as the weighted sum of
each local context to fully use the source contexts.

ct =
n∑

i=1

aithi (5)

We use ct to replace hn as

Conf(Xn
1 , P

e
b , T

m
1 ) =

m∏
t=1

p(yt|y<t−1, ct, h
′
e) (6)

We named Equation 6 as the indicative context based translation disambiguation
model (ICDM). In Equation 6, the source context ct and the source phrase repre-
sentation h′e are first combined by

c = tanh(Wct + Uh′e) (7)

where U and W are weight matrices. Then c is integrated into RNNLM as context
as shown in Figure 2. Though there are several kinds of combinations for the two
context vectors, such as concatenating, accumulating, etc, this kind of combination
achieves better results in our work.

2.2 Model Training

To train the model, we collect the training instances from the bilingual corpus ac-
cording to the word alignment results. Each training instance consists of three parts,



source context (i.e. source sentence excluding the source phrase, otherwise the
target phrase always aligns to its source phrase.) , source phrase, and the target
phrase which is extracted according to the method in [11]. We use the the cross
entropy loss function to train the target phrase RNNLM as equation (7):

J =
∑

(X,P,T )∈D

− log p(T |X,P ) (8)

where D is the training corpus, T , X , P are the target phrase, source sentence and
source phrase. In the update procedure, we leverage the stochastic gradient descent
(SGD) algorithm, and Adadelta [21] is used to automatically adapt the learning rate.
To speedup decoding when adding ICDM as extra feature to SMT, we use the self-
normalize technique [4] for the softmax layer and a shortlist [9] of 10K is used to
reduce the output dimension. In addition, we precompute the source context H for
all phrase pairs.

2.3 Integration into SMT Decoding

We incorporate the confidence scores into the standard log-linear framework for
SMT. Given the context of source sentence, the higher the confidence score is, the
better the translation quality of phrase pairs is expected to be. For SMT system, the
best translation candidate ê is calculated by:

ê = argmaxeP (e|f) (9)

where the translation score is given by

P (e|f) ∝
∑
i

wi · log φi(f, e)

=
∑
k

wk · log φk(f, e)︸ ︷︷ ︸
Standard feature scores

+wp · logConfp(f, e)︸ ︷︷ ︸
Confidence scores

(10)

where φk(f, e) denotes the standard feature function and Confp(f, e), wp are our
confidence feature functions and its weights. The detailed feature description is as
follows:

Features: Translation model, including translation probabilities and lexical weights
for both directions (4 features), 5-gram language model (1 feature), word count (1
feature), phrase count (1 feature), NULL penalty (1 feature), number of hierarchical
rules used (1 feature), phrase confidence score (1 feature).

3 Experiments

In this section, we evaluate the performance of our disambiguation model on NIST
Chinese-English tasks. The evaluation metric is the case-insensitive IBM BLEU-4
[19].



Settings NIST 2005 NIST 2006 NIST 2008 NIST 2012 Average
HIERO 37.44 34.81 26.80 27.88 31.73

+NNJM 38.17 35.95 28.04 28.88 32.76
+SCDM 38.28 36.19 28.29 29.02 32.95
+ICDM 38.57 36.65 28.61 29.34 33.29

Table 1. Evaluation results of different methods in BLEU% on four NIST test sets. The “Average”
setting is the averaged result of the four test sets.

3.1 Setup

The bilingual data we use is a set of LDC 3 corpus, which consists of around 1M
sentence pairs. A 4-gram language model is trained over the English Gigaword
corpus (LDC2009T13) and the target monolingual data of the bilingual corpus. The
development data is the NIST 2003 dataset, and the test data contains NIST 2005,
2006, 2008 and 2012 datasets. For the disambiguation model training, in order to
limit the number of training instances, we limit the frequency of phrase pairs to 3,
and only keep top 10 target phrases for each source phrase. Besides, the maximum
length of phrase is limited up to 5 The total number of training instance is about
10.3 million. In addition, we use the 30K most frequent words for both Chinese
and English. All the remaining words are replaced by a special token “UNK”. The
hidden dimensions of all RNNs are set to 500.

3.2 Baselines

We have two baselines for comparison. The first is an in-house re-implementation
of the hierarchical phrase-based SMT system (HIERO) [3]. The CKY decoding
algorithm is used and cube pruning is applied [3,8]. Translation models are trained
over the parallel corpus that is automatically aligned using GIZA++ [18] in both
directions, and the grow-diag-final heuristic is used to refine symmetric word align-
ment. For language model, we use an in-house toolkit with modified Kneser-Ney
smoothing [10]. The feature weights are tuned by MERT [17].

The second baseline is the HIERO system which incorporates the feed-forward
neural network joint model [4] named as +NNJM. The target window is set to 3
and the source-side context is set to 11.

3.3 Evaluation on NIST Task

The evaluation results are shown in Table 1. According to the Table 1, +NNJM can
improve HIERO by 1.03 points in average, which shows that source context signif-
icantly contributes to improving translation performance. Compared with +NNJM,

3 LDC2003E14, LDC2005T10, LDC2005E83, LDC2006E26, LDC2006E34, LDC2006E85,
LDC2006E92, LDC2003E07,LDC2005T06, LDC2004T08, LDC2005T06



+SCDM performs better on all the test sets, gaining about 0.2 BLEU point im-
provements in average, which shows global source contexts are more helpful for
translation candidate prediction in SMT decoding. Meanwhile, the ICDM outper-
forms all the others on the whole test sets, where the average improvement is 1.56
compared with HIERO and 0.53 compared with +NNJM. The biggest improve-
ment can be up to 1.86 BLEU points on NIST 2012. The main reason is that ICDM
can capture long distance source dependencies and enhance the effect of indicative
contexts in predicting translation candidates.

3.4 Analyses of Translation Disambiguation

In this section, we give a case study to explain how our method works. Examples
of translation disambiguation are shown in Table 3. We investigate the phrase “有”
as an example. Two source sentences with different contexts are selected. Top five
target translation candidates are selected from the translation table.

In Table 2, all the phrase pairs are ranked in terms of log confidence scores
which vary with different source contexts. We can see that 〈有, have〉 gets the best
confidence score for S1, and 〈有, is there〉 ranks first for S2, though the log transla-
tion probability for the same phrase pair is constant as shown in the logP column.
This result significantly caters to the reference. This shows that our method can
leverage source contexts to make a better translation selection.

S1:您好我想订个房间.您有有有空房吗? S2:请问这附近有有有车站吗?
Reference hello , i ’d like to make a reservation . excuse me , is there a station near here ?

do you have any rooms ?
Phrase pairs logP log Conf Phrase pairs logP log Conf
〈有, have〉 -2.19 -1.83 〈有, is there〉 -2.89 -1.39

Conf. Ranking
〈有, there is〉 -3.37 -3.00 〈有, there is〉 -3.37 -2.82
〈有, is there〉 -2.89 -3.22 〈有, NULL〉 -2.51 -4.35
〈有, do you have〉 -2.73 -3.51 〈有, do you have〉 -2.73 -5.50
〈有, NULL〉 -2.51 -3.82 〈有, have〉 -2.19 -5.53

Table 2. Translation example. log Conf denotes the log confidence score and logP denotes the
log translation probability in the translation table. All the characters are lowercased, and phrases
in bold is the phrase pairs.

4 Conclusion and Future Work

In this paper, we propose a translation disambiguation model for SMT. Our model
can leverage indicative source contexts for target translation disambiguation. In
SMT decoding, appropriate target phrases are selected to best match the source
sentence according to the confidence scores. Experimental results show that our



method can significantly improvements the state-of-the-art hierarchical phrase-based
system.

In the future, we will perform forced decoding for bilingual training sentences
and collect the phrase pairs used in order to obtain high-quality pairs to train our
model.
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