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Abstract. Intent classification and slot filling are two critical subtasks of natural
language understanding (NLU) in task-oriented dialogue systems. Previous work
has made use of either hierarchical or contextual information when jointly mod-
eling intent classification and slot filling, proving that either of them is helpful for
joint models. This paper proposes a cluster of joint models to encode both types
of information at the same time. Experimental results on different datasets show
that the proposed models outperform joint models without either hierarchical or
contextual information. Besides, finding the balance between two loss functions
of two subtasks is important to achieve best overall performances.
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1 Introduction

Natural Language Understanding (NLU), which refers to the targeted understanding of
human language directed at machines [1], is a critical component in dialogue system-
s. An NLU system typically consists of three subtasks, namely domain identification,
intent classification and slot filling [2].

Conventionally, the subtasks are processed in a pipeline framework; firstly the do-
main of an input is detected, secondly the intent is classified and finally the semantic
slots are extracted. Lots of work has been done for each subtask, respectively. For exam-
ple, Haffner et al. (2003) [3] built a Support Vector Machines (SVM) based classifier to
classify intent (call) labels. Yao et al. (2014) [4] investigated Long Short-Term Memory
(LSTM) methods for slot filling. Pipeline systems not only suffer from the problem of
error accumulation, but also cannot model the interaction between different subtasks.

Recent work has shown the advantages of jointly modeling NLU subtasks. The a-
bility of featuring the correlations between subtasks helps joint models achieve compet-
itive performances. Shi et al. (2015) [5] proposed a Recurrent Neural Network (RNN)
model to jointly optimize domain identification, intent classification and slot filling,
which obtained state-of-the-art results on ATIS dataset. Hakkani et al. (2016) [6] pre-
sented a method for simultaneously modeling domain recognition, intent classification
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and slot filling by introducing an extra token <EOS> for sentence-level labels in an
LSTM-based slot sequential labeling model.

Apart from correlative information, hierarchical structure is considered as another
useful information for joint modeling. Zhou et al. (2016) [7] proposed a hierarchical
Long Short-Term Memory (HLSTM) model to implement intent identification in the
lower layer and slot filling in the higher layer. They demonstrated joint models with
hierarchical structure outperformed non-hierarchical joint methods. But contextual in-
formation was not used in their model. Previous work on single subtask has proved that
contextual information is an effective feature for NLU subtasks. Yao et al. (2013) [8]
presented a window-based RNN model to capture contextual features in NLU. Mesnil
et al. (2015) [9] applied bidirectional Elman and Jordan RNN to encode the future and
past information in inputs during slot filling.

We think that contextual and hierarchical information help NLU subtasks in differ-
ent dimensions. Hierarchy could characterize the nature order among different tasks:
as pointed in [10], primary tasks are better kept at the lower layers in a deep network.
While contextual idiosyncrasies could bring the richness of representation by observing
features from preceding and following positions in its vicinity, which could facilitate a
morpheme/word unit based recognition task like slot filling. It is therefore possible to
improve performances by combining both of them. Zhang et al. (2016) [11] proposed a
two-layer hierarchical joint model, with a lower RNN tackling slot filling and an upper
max-pooling handling intent recognition. Liu et al. (2016) [12] presented an attention-
based RNN model with both contextual and hierarchical information captured, which
obtained better results on ATIS dataset.

In order to encode the two kinds of information and detail the specific effects of
them, this paper proposes a cluster of contextual hierarchical joint (CHJ) models to
jointly model intent classification and slot filling. The models have a two-layer-LSTM
structure, where intent classification and slot filling are dealt by different layers. Dis-
tinguished from HLSTM, our proposed models take bi-directional or backward order
to utilize contextual information. All parameters are learned simultaneously to mini-
mize a joint loss function, i.e. the weighted sum of two losses. Experiments show that
on different NLU datasets CHJ models outperform non-hierarchical or non-contextual
models, respectively.

The rest of the paper is structured as follows. Sect.2 demonstrates our proposed
models in detail; Sect.3 presents the tasks and experimental results; and finally, conclu-
sions are drawn in Sect.4.

2 Models

LSTM is the basic unit in all CHJ models. We therefore introduce LSTM first, and then
propose our models.

2.1 LSTM

LSTM [13], a variant of RNN, consists of one or more memory cells and three nonlinear
summation units, i.e. the input, output and forget gate. Detailed introduction and equa-
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tions about LSTMs can be found in [14]. At time t, the calculating process of hidden
state vector ht is abbreviated as follows:

ht = LSTM(Wxxt +Whht−1) (1)

where LSTM is the recurrent neural function that calculates the current hidden state
vector ht given the previous one ht−1 and the current input xt. Wx and Wh are the
associated weight matrices.

According to the processing order, LSTMs can be classified to different categories:
forward LSTMs, backward LSTMs and bi-directional LSTMs. Forward LSTMs take
the standard forward order when reading sequences, and symmetrically backward L-
STMs read the sequence in a reversed way. Bi-directional LSTMs (bi-LSTMs) [17]
present each sequence forwards and backwards to two separate LSTM hidden layers
and concatenate both to the same output layer [14].

2.2 Contextual Hierarchical Joint (CHJ) Models

Given an input utterance w(1:T ) = (w1, w2, ..., wT ), NLU is to predict an intent class
for current utterance and to label slot tags among all words. Let Y = {Y1, Y2, ..., YM}
denote the intent label set and S = {S1, S2, ..., SN} denote the slot set. Slot filling is
implemented via sequence labeling methods. All slot classes are transformed into se-
mantic tags according to the IOB annotated method [18]; each slot class Si can generate
two semantic tags:B−Si and I−Si, as well as the labelO representing the out-of-slot
tag. The corresponding semantic tags set can be denoted as Z = {Z1, Z2, ..., Z2N+1}.
Thus the process is to map w(1:T ) = (w1, w2, ..., wT ) to a predicted intent label y and
a set of semantic tags z(1:T ) = (z1, z2, ..., zT ).

A hierarchical LSTM is built to model the mapping at first. The structure of the
model is shown in Fig.1(a). It is a two-layer LSTM, where a forward LSTM is stacked
on the top of a bi-LSTM. The overall flow of information is from the lower to the upper,
namely the upper layer takes the hidden state vector of the lower layer directly as input,
and inputs of the lower bi-LSTM are the embedding vectors of words in the current
sentence. Intent classification is tackled by the lower layer: the final output of the bi-
LSTM is fed to a softmax classifier to get an intent label of the sentence. Slot filling is
dealt by the upper: the output of each LSTM unit is fed to a softmax classifier to get a
slot label of the corresponding word.

This structure tries to utilize both hierarchical and contextual information in jointly
modeling intent identification and slot filling. The hierarchical structure is used to cap-
ture internal relations, like order or dependency, of two subtasks. The bi-LSTM is used
to capture contextual idiosyncrasies from past and future positions of a certain word
during the current sentence.

For an input sentence, each word wt(t = 1, 2, ..., T ) is first mapped into its embed-
ding vector vt(t = 1, 2, ..., T ). Bi-directionally taking the embedding representations
as input, according to (1), the lower layer calculates two sets of hidden state vectors and
concatenate them into one: h1

(1:T ) = (h1
1, ...,h

1
T ). The last hidden state vector h1

T is fed
into a softmax classifier. The probability distribution of all intent labels y is obtained
by softmax.
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(a) CHJ(i.bi s.fw) (b) CHJ(i.fw s.bi) (c) CHJ(i.bw s.fw)

Fig. 1. Some structures of the cluster of CHJ models

y = softmax(W 1h1
T ), (2)

where W 1 is the softmax weight matrix of the lower LSTM. A predicted intent tag can
be calculated by getting argmax of y.

The upper layer takes the hidden state vector of the lower layer as input directly.

x2
t = h1

t , t = 1, 2, ..., T (3)

where x2
t denote the upper layer inputs.

Following (1) and (3), we get the set of hidden state vectors of the upper layer
h2
(1:T ) = (h2

1, ...,h
2
T ). Every hidden state vector is fed into a softmax to obtain corre-

sponding probabilities zt .

zt = softmax(W 2h2
t ), t = 1, 2, ..., T (4)

where W 2 is the softmax weight matrix of the upper LSTM. Argmax can be used on
zt to get predicted slot tags.

The parameter set of the whole network is θ = {Wx, Wh, W 1, W 2}. All parame-
ters of two tasks are learned simultaneously to minimize a joint objective function J(θ),
which is represented as the weighted sum of two losses, together with an l2-norm term:

J(θ) = αLI + (1− α)LS +
λ

2
||θ||22, 0 ≤ α ≤ 1, (5)

where LS represents the slot filling loss and LI represents the intent identification loss.
Let D be the whole training set and L(·) be the cross-entropy operation. Suppose ŷ(i)

and ẑ
(i)
(1:T ) are the true intent label and semantic tags of the ith training sample. The two

losses are calculated as follows:

LS =
1

|D|

|D|∑
i

1

T

T∑
t=1

L(z
(i)
t , ẑ

(i)
t ), (6)

LI =
1

|D|

|D|∑
i

L(y(i), ŷ(i)), (7)
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The tradeoff between two objectives relies on the hyper-parameter α. When α is
bigger than 0.5, the total joint loss function pays more attention to the intent identifica-
tion. On the contrary, when α is smaller than 0.5, the slot loss plays a more important
role in supervised learning.

The model can be thought as an extension of several previous models by combing
contextual or hierarchical information. If an intent-relevant tag is attached before or
after each sentence, sentence-level intent identification and word-level slot filling can
be jointly modeled in a single sequence labeling model. The forward LSTM in the
red solid frame in Fig.1(a) is one kind of these sequence labeling models by feeding
each unit’s output to a softmax classifier, as proposed in [6] (forward Hakkani’s Model,
denoted as Fw-Hakkani’s Model afterwards). It is a flap style of joint models, only
correlative information between two subtasks is taken into consideration in this joint
model. Based on the flap structure, two improvements can be made. One is shown in
the red dotted frame, in which contextual information is included by using bi-LSTM
(denoted as Bi-Hakkani’s Model). The other is highlighted by the blue dotted frame,
where the flap structure was improved to become a hierarchical structure as Zhou et al.
proposed [7] (denoted as Zhou’s Model). A two-layer LSTM (not bi-LSTM) was used
in Zhou’s model, where the upper layer is for slot filling and the lower layer is for intent
identification. It is obvious that structures in red dotted frame and blue dotted frame
extend Fw-Hakkani’s Model in two different dimensions. Our model combines both of
them.

The proposed model can have several different variants by changing the way of
combining contextual and hierarchical information. We consider two different ways to
include contextual information for slot filling. One is to use bi-LSTM for slot filling no
matter the subtask is modeled in the lower layer or the upper; another way is to tackle
slot filling by an LSTM in the upper layer, and an LSTM with the inversed direction
is employed in the lower layer for intent identification. By using two inversed LSTMs
instead of one LSTM and one bi-LSTM, the model can be simplified. We also consider
two possible hierarchies: one is putting intent identification in the lower and slot filling
in the upper, the other is an interchange of layers in the precious one.

Table 1. Several variants of model CHJ(i.bi s.fw)

Denotation Description

CHJ(i.fw s.bi)
A forward LSTM for intent classification in the lower layer;
the upper layer tackles slot filling by a bi-LSTM (Fig.1(b)).

CHJ(i.bw s.fw)
A backward LSTM for intent classification in the lower layer;
a forward LSTM for slot filling in the upper layer (Fig.1(c)).

CHJ(i.fw s.bw)
A forward LSTM for intent classification in the lower layer;
a backward LSTM for slot filling in the upper layer.

CHJ(s.bi i.fw)
The lower layer deals with slot filling by a bi-LSTM;
while the upper layer solves intent classification forwards.
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For convenience, the model illustrated in Fig.1(a) is denoted by CHJ(i.bi s.fw): i.bi
before the underscore describes the lower layer structure, representing a bi-LSTM mod-
el for intent identification; s.fw after the underscore describes the upper layer structure,
denoting a forward LSTM structure for slot filling. By using these denotation, we elu-
cidate several variants of model CHJ(i.bi s.fw) in Table1.

Fig. 2. The cluster of proposed CHJ models and their transformation relationship

The transformative relations between these models are illustrated in Fig.2, where
”Simplify” represents the operation that utilizes reversed directions to replace bi-LSTM,
as we pointed before; ”InterchangeLayer” denotes the operation that totally interchanges
the two layers, such as the operation between i.fw s.bi and s.bi i.fw; ”InterchangeDir”
represents the operation that remains the tasks order unchanged and interchanges the
directions of two layers.

In Fig.2, from Fw-Hakkani’s Model, there are two paths to add hierarchical and con-
textual information. One is to add contextual information first and then the hierarchical
one, as shown in the left path; the other is an inverse order, which is listed in the right
path. Both paths lead to the same destination i.fw s.bi, which can be simplified into
i.bw s.fw. Based on i.fw s.bi and i.bw s.fw, certain operations can be implemented to
generate some other CHJ models. All models in the dotted frame are CHJ models. We
should note that s.fw i.bw and s.bw i.fw are not CHJ models. Both of them condition
slot filling in the lower layer; no matter how they change the lower direction (forwards
or backwards), slot filling cannot simultaneously take both past and future context into
consideration. More precisely, simplified versions of contextually modeling slot filling,
viewed as substitutes for bi-LSTMs, need slot filling to be tackled by the upper layer.
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3 Experiments

First, the datasets and the experimental setup are illustrated. Second, our results and
related benchmarks are compared. Then the tradeoff between multi-tasks is discussed
in detail. Finally, the case study is presented.

3.1 Datasets and Settings

The experiments are implemented in three different corpora: the DSTC21 [19], D-
STC52 [20] and our Chinese meeting room reservation corpus collected from a Chinese
meeting-room reservation system (CMRS). Basic information about these three corpora
is listed in Table2.

Table 2. The number of sentences in each corpus

Dataset Train Dev Test

DSTC2 4,790 1,579 4,485

DSTC5 27,528 3,441 3,447

CMRS 2,901 969 967

In DSTC2, each user utterance with only one intent (act) label is used. The number
of intent labels is 13, the number of different slots is 4, and thus the total number of
semantic tags is 9 (2*4+1; each slot can generate two semantic tags: B − slot and
I − slot, as well as the label O).

In DSTC5, each user utterance with only one intent (act) label is used. The number
of intent labels is 84, the number of different fine-grained slots is 266, and thus the total
number of semantic tags is 533. In order to exclude the influence of cross-language
problem, only English sentences are used.

As for CMRS, the number of intent labels is 5, the number of different slots is 5,
and thus the total number of semantic tags is 11.

We choose commonly used configurations for experimental settings. For each group
of tasks, we use AdaGrad [21] with mini-batches [22] to minimize the objective func-
tion. Derivatives are calculated from standard back-propagation. The model achieving
the best performance on the development set is used as the final model to be evaluated.
Statistical significance tests are implemented by 5-fold cross validation and Student’s
t-test, with the significance level set to 0.05.

3.2 Comparisons with Recent Work

Table3, Table4 and Table5 exhibit the experimental results on DSTC2, DSTC5 and
CMRS, respectively. Performances are computed in terms of slot F1-measure (at the

1 http://camdial.org/˜mh521/dstc/
2 http://workshop.colips.org/dstc5/

http://camdial.org/~mh521/dstc/
http://workshop.colips.org/dstc5/
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Table 3. Results on DSTC2 corpus

Information (C/H) Model Slot(F1)% Intent(F1)% Avg(F1)%

None Fw-Hakkani’s Model 96.22 99.22 97.72

+C Bi-Hakkani’s Model 98.92 99.18 99.05

+H

i.fw s.fw
s.fw i.fw
s.fw i.bw
s.bw i.fw

96.67
96.64
96.62
97.96

99.23
99.46
99.39
99.48

97.95
98.05
98.01
98.72

+C+H (CHJ models)

s.bi i.fw
i.fw s.bi
i.bi s.fw
i.bw s.fw
i.fw s.bw

98.96
98.81
98.93
99.01
98.91

99.45
99.33
99.37
99.48
99.34

99.21
99.07
99.15
99.25
99.13

Table 4. Results on DSTC5 corpus

Information (C/H) Model Slot(F1)% Intent(F1)% Avg(F1)%

None Fw-Hakkani’s Model 36.22 53.02 44.62

+C Bi-Hakkani’s Model 45.17 52.54 48.86

+H

i.fw s.fw
s.fw i.fw
s.fw i.bw
s.bw i.fw

23.45
33.45
35.99
38.81

49.15
53.48
52.89
53.27

36.30
43.47
44.44
46.04

+C+H (CHJ models)

s.bi i.fw
i.fw s.bi
i.bi s.fw
i.bw s.fw
i.fw s.bw

45.51
40.29
39.36
42.85
35.68

53.35
51.84
50.84
51.38
49.65

49.43
46.07
45.10
47.12
42.67

Table 5. Results on CMRS corpus

Information (C/H) Model Slot(F1)% Intent(F1)% Avg(F1)%

None Fw-Hakkani’s Model 61.16 92.61 76.89

+C Bi-Hakkani’s Model 82.91 92.69 87.80

+H

i.fw s.fw
s.fw i.fw
s.fw i.bw
s.bw i.fw

61.83
61.15
61.72
67.61

92.84
92.58
92.72
92.44

77.34
76.87
77.22
80.03

+C+H (CHJ models)

s.bi i.fw
i.fw s.bi
i.bi s.fw
i.bw s.fw
i.fw s.bw

81.68
84.14
84.93
85.80
83.91

92.41
92.76
92.53
92.60
92.75

87.05
88.45
88.73
89.20
88.34
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slot level)3, intent F1-measure (at the label level) and the average of both, as a measure
of overall performance.

From the three tables, we have some general conclusions. 1) The model that gets
best overall performance is always among the CHJ models on all three datasets, proving
the effectiveness of combining hierarchical and contextual information in joint model-
ing of NLU. 2) Once hierarchical information is included, an improvement on intent
identification is achieved, which suggests that hierarchical information is helpful, espe-
cially for intent classification. (The improvements are statistical significant; from None
to +H: 4.0836>2.7764; from +C to +C+H: 5.9496>2.7764) 3) If we introduce contex-
tual information into models, the slot performance gets a considerable boost; this phe-
nomenon indicates that contextual information could benefit slot filling to a great extent.
(The improvements are statistical significant; from None to +C: 41.8951>2.7764; from
+H to +C+H: 12.5448>2.7764) 4) Among the four +H models, s.bw i.fw performs
better than any other one does in slot filling task, indicating that backward encoding is
more helpful than forward encoding. We notice that slot values often consist of phras-
es in the form of pre-modifications + head words; in this structure, the posteriori head
words play a vital role in slot recognition. Backward networks could previously see
the posteriori center words and therefore perform better than forward networks which
have troubles in labeling those pre-modifiers without the information of head words.

3 http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt

(a) DSTC2 Avg(F1) (b) DSTC2 Slot(F1) (c) DSTC2 Intent(F1)

(d) DSTC5 Avg(F1) (e) DSTC5 Slot(F1) (f) DSTC5 Intent(F1)

(g) CMRS Avg(F1) (h) CMRS Slot(F1) (i) CMRS Intent(F1)

Fig. 3. α-performances curves on three datasets
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For structures in the form of head word + post-modification, forward networks could
perform better. Transparently, contextual (such as bi-directional) networks do the best.
5) All corpora support that i.bw s.fw gets higher performances than i.bi s.fw does. As
we pointed in Sect.2.2, i.bw s.fw is a simplified version of i.bi s.fw. They combine con-
textual and hierarchical information in similar ways, but i.bw s.fw has a more concise
structure, which conduces to better performances.

3.3 Tradeoff between Multi-tasks

α is the parameter used to leverage the loss functions of two tasks in CHJ models. When
α is bigger than 0.5, the total joint loss function pays more attention to the intent loss.
On the contrary, when α is smaller than 0.5, the slot loss plays a more important role in
supervision.

Figure3 shows the α-performances curves of model CHJ(s.bi i.fw) on differen-
t datasets. By summarizing the universality, we can draw several points. 1) Slot filling,
intent classification and overall performance all get best results when α 6=0 and α 6=1,
supporting that the interaction of two tasks can be beneficial if they are properly com-
bined. 2) More specifically, a smaller non-zero α could help achieve more competitive
overall performance. α=0.1 or α=0.2 seems to be a good choice. 3) It is clear that for
slot filling, a small α has absolute advantages compared with a larger one. 4) For intent
classification, small α and large α bring comparable results. It can be referred that two
losses are equally important for intent recognition in joint modeling of NLU.

3.4 Case Study

An example in CMRS corpus is listed in Table6, where ”30Ò” (thirty date) is a Chinese
time expression. ”30” can be used in both time-relevant and number-relevant slots. In
this case, contextual information is demanded for disambiguating. It can be seen that
models with only hierarchical (+H) information mislabel ”30”. While, models with only
contextual information label ”30” correctly, but misjudge the intent label. In fact, a time
slot is a strong hint for intent identification. It seems hierarchical structures can make
better use of this hint. CHJ models, which combine the two kinds of information, do a
correct work on both subtasks.

Although CHJ models have taken considerable results, there are still some places to
be improved. Table7 shows two transcripts in which CHJ models misjudge slot filling or

Table 6. A positive example in CMRS corpus. The original utterance is ”30Ò”, representing the
30th of a certain month.

input 30 Ò

Semantic tags Intent label

gold B-time I-time inf
+H models B-pernum I-time inf
+C models B-time I-time other
+C+H (CHJ) models B-time I-time inf
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Table 7. Some negative results transcripts of CHJ models. ”budget” and ”pernum” are different
slot names, representing the budget-relevant and person-number-relevant slots respectively.

input 100

Semantic tags Intent label

gold B-pernum inf
+C+H (CHJ) models B-budget inf

input 3000 people

Semantic tags Intent label

gold B-pernum I-pernum inf
+C+H (CHJ) models B-budget I-pernum inf

intent classification. In the first example, the input utterance only comprises one num-
ber. In fact, the user was providing the attendance (pernum). Without the information
of history utterances, it seems unlikely to label correctly. In the second example, ”B-
budget” is followed by ”I-pernum”, which is illegal. CHJ models misjudge slot filling
for lack of tag dependency. These defects provide a direction for our future work.

4 Conclusion

We have presented a cluster of CHJ models to jointly optimize slot filling and intent
classification in NLU. The models are able to capture both contextual and hierarchical
information in one joint structure. The combination of both kinds of information has
been proved effective by comparison to other recent work. Finding the balance of two
task losses is a great key to achieve best overall performances. We believe that CHJ
models provide a novel hint for jointly learning subtasks of NLU.

There are several problems waiting for future work. For now, the lower supervision
cannot affect the upper LSTM. In future work, we plan to figure out a more reasonable
way for joint models that two losses could transmit supervision information equitably.
Besides, we also want to incorporate tag dependency relations and history utterance
information in our future work.

Acknowledgments. This paper is supported by 111 Project (No.B08004), NSFC (No.61273365),
Beijing Advanced Innovation Center for Imaging Technology, Engineering Research
Center of Information Networks of MOE, and ZTE.
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