
Shortcut Sequence Tagging

Huijia Wu1,3, Jiajun Zhang1,2, and Chengqing Zong1,2,3
1National Laboratory of Pattern Recognition, Institute of Automation, CAS

2CAS Center for Excellence in Brain Science and Intelligence Technology
3University of Chinese Academy of Sciences
{huijia.wu,jjzhang,cqzong}@nlpr.ia.ac.cn

Abstract. Deep stacked RNNs are usually hard to train. Recent stud-
ies have shown that shortcut connections across different RNN layers
bring substantially faster convergence. However, shortcuts increase the
computational complexity of the recurrent computations. To reduce the
complexity, we propose the shortcut block, which is a refinement of the
shortcut LSTM blocks. Our approach is to replace the self-connected
parts (cl

t) with shortcuts (hl−2
t) in the internal states. We present exten-

sive empirical experiments showing that this design performs better than
the original shortcuts. We evaluate our method on CCG supertagging
task, obtaining a 8% relatively improvement over current state-of-the-art
results.

1 Introduction

In natural language processing, sequence tagging mainly refers to the tasks of
assigning discrete labels to each token in a sequence. Typical examples include
Part-of-Speech (POS) tagging and Combinatory Category Grammar (CCG)
supertagging. A regular feature of sequence tagging is that the input tokens in a
sequence cannot be assumed to be independent since the same token in different
contexts can be assigned to different tags. Therefore, the classifier should have
memories to remember the contexts to make a correct prediction.

Bidirectional Long Short-Term Memory (Bi-LSTM) [5] become dominant
in sequence tagging problems due to the superior performance [13, 25]. The
horizontal hierarchy of LSTMs with bidirectional processing can remember the
long-range dependencies without affecting the short-term storage. Although the
models have a deep horizontal hierarchy (the depth refers to sequence length),
the vertical hierarchy is often shallow, which may not be efficient at representing
each token. Stacked LSTMs are deep in both dimensions, but become harder to
train due to the feed-forward structure of stacked layers.

Shortcut connections (shortcuts, or skip connections) enable unimpeded
information flow by adding direct connections across different layers [4,7]. Recent
works have shown the effectiveness of using shortcuts in deep stacked models
[6,21,27]. These works share a common way of adding shortcuts as increments
to the original network.

In this paper, we focus on the refinement of shortcut stacked models to reduce
the computational cost. Concretely, we replace the self-connected parts in LSTM

2 Authors Suppressed Due to Excessive Length

cells with the gated shortcuts to simplify the updates, while preserving the
recurrent information flow through cell outputs. We also investigate deterministic
or stochastic gates to find the preferable way to control the shortcut connections.

We present extensive experiments on the Combinatory Category Grammar
(CCG) supertagging task to compare shortcut block varieties, gating functions,
and combinations of the blocks. Our model obtains the state-of-the-art results
on CCG supertagging.

2 Recurrent Neural Networks for Sequence Tagging

Given a sequence x = (x1, . . . , xT), a recurrent neural network (RNN) computes
the hidden states h = (h1, . . . , hT) and the outputs y = (y1, . . . , yT) by iterating
the following equations:

ht = f(xt, ht−1; θh) (1)
yt = g(ht; θo) (2)

where the recurrent information ht−1 and the inputs xt are processed through
the iteration function f(·, ·) to compute ht.

There are many iteration functions to pass the information through the
sequence. Long Short-Term Memory (LSTM) is one kind of function that preserves
the hidden activations ht for a long time. The computation of the recurrent flow
in LSTM is:

ct = ct−1 + ∆ (3)

where ct are the cells’ internal states that used to iterate the recurrent information.
∆ refer to the increments to the cells. Adding such increments through time
make the gradient of the internal states more stable. Therefore, the short-term
memory can be kept for a long time under this construction.

Another advantage of LSTM is the gating mechanism, which is used to avoid
weight update conflicts. The activation of the gates decides when to keep or
override information in the controlled units.

We use a negative log-likelihood cost to evaluate the performance, which can
be written as:

C = − 1
N

N∑
n=1

log ytn (4)

where tn ∈ N is the true target for sample n, and ytn is the t-th output in the
softmax layer given the inputs xn.

3 Exploration of Shortcuts

3.1 Shortcut Blocks

The hidden units in stacked LSTMs can be divided into two parts: One is the
hidden units within the same layer {hl

t, t ∈ 1, . . . , T}, which are connected through

Shortcut Sequence Tagging 3

IN

C

C

 OUT

i

f

o

(a) Long Short-Term Memory Block

IN

m

m

OUT

i

o

g

(b) Shortcut Block

Fig. 1: Illustration of (a) LSTM block and (b) shortcut block. (a) i, f and o
represent input , forget and output gate, respectively. C̃ denotes the increments
to the cell, and C denotes the cell’s internal state. (b) g is the shortcut gate,
m̃ denotes the cell inputs, and m denotes the internal state of the cell. Notice
that (b) replaces the self-connected links (through f gate) in (a) with shortcut
connections (through g gate).

an LSTM. The other is the hidden units at the same time step {hl
t, l ∈ 1, . . . , L},

which are connected through a feed-forward network. LSTM keep the short-term
memory for a long time. Thus the error signals can be easily passed through
{1, . . . , T}. However, when the number of stacked layers is large, the feed-forward
network will suffer from gradient vanishing/exploding problems, which make the
gradients hard to pass through {1, . . . , L}.

Shortcut connections make training much easier by adding a direct link
between different layers. An intuitive explanation is that such links can make
the error signal passing jump the layers, not just one by one. This behavior may
lead to faster convergence and better generalization.

LSTM block [8] composes memory cells sharing the same input and output
gate. He et al. [6] create a residual block which adds shortcut connections across
different CNN layers. All these inspired us to build a shortcut block across
different LSTM layers. Our shortcut block is mainly based on Wu et al. [27]. We
start our construction from a special case of shortcuts: adding shortcuts to both
ct and ht.

i
f
o
s

 =

sigm
sigm
sigm
tanh

 W l

(
hl−1

t

hl
t−1

)
(5)

g = sigm(U lhl−1
t + V lhl−2

t) (6)
ct = f ⊙ ct−1 + i⊙ sl

t + g ⊙ hl−2
t (7)

hl
t = o⊙ tanh(ct) + g ⊙ hl−2

t (8)

4 Authors Suppressed Due to Excessive Length

We want to simplify the computation of the cell updates. Notice that the internal
states contain three parts (Eq. 7): the self-connected parts ct−1, the original
cell inputs sl

t, and the shortcuts hl−2
t . We observe that there exists two kinds of

recurrent information flow in the internal states: one is the recurrent flow along
the horizontal direction, controlled by self-connected parts, the other is along the
vertical direction, controlled by shortcuts.

We find that omit the self-connected parts ft ⊙ ct−1 in Eq.(7) is helpful to
bring faster convergence and improve the performance. An intuitive explanation is
that the input sequence and the output sequence are exactly matched in sequence
tagging. Specifically, the input token xi, i ∈ {1, . . . , n} in a sequence provides the
most relevant information to predict yi. We want to enhance the information
flow in the vertical direction through shortcuts, while decreasing the horizontal
flow controlled by the self-connected units. Based on the observations, we get
the following construction:i

o
s

 =

sigm
sigm
tanh

 W l

(
hl−1

t

hl
t−1

)
(9)

g = sigm(U lhl−1
t + V lhl−2

t)
m = i⊙ sl

t + g ⊙ hl−2
t

hl
t = o⊙ tanh(m) + g ⊙ hl−2

t

(10)

where hl−2
t are the outputs from layer l− 2. g is the gate which is used to access

the shortcut connections hl−2
t or block it (See Figure 1b).

Comparison with Wu et al. [27] Wu et al. [27] introduced gated shortcuts
connecting to cell outputs:

cl
t = i⊙ sl

t + f ⊙ cl
t−1

hl
t = o⊙ tanh(ct) + g ⊙ hl−2

t

(11)

Comparison of (10) and (11) we can see the difference: Eq.(10) replaces the
self-connected parts f ⊙ cl

t−1 with shortcuts g ⊙ hl−2
t in the computation of the

internal states.
Although the difference is tiny, our refinement is much easier to compute,

since we do not need extra space to preserve the cell’s internal state. Similarly,
this behavior arises in the construction of Gated Recurrent Units (GRUs):

h̃l
t = tanh(W lhl−1

t + U l(rt ⊙ hl
t−1))

hl
t = (1− zt)⊙ hl

t−1 + zt ⊙ h̃l
t

(12)

But the recurrent iterations in GRUs are very different from us. Our construction
is built on the stacked LSTMs.

Shortcut Sequence Tagging 5

Comparison with LSTMs. LSTMs introduce a memory cell with a fixed self-
connection to make the constant error flow (Figure 1a). LSTM compute the
following increment to the self-connected cell at each time step:

ct = ct−1 + st (13)

Here we remove the multiplicative gates to simplify the explanation. The self-
connected cells ct can keep the recurrent information for a long time. st are the
cell inputs.

In the shortcut block, we use the shortcuts to replace the self-connected parts.
Our cell states become:

m = hl−2
t + st (14)

Although we ignore the self-connected parts in LSTM cells, it does not mean we
throw away the recurrent information. As shown in Figure 1b, the connections
from cell outputs to inputs preserve the recurrent information flow.

3.2 Gates Computation

Shortcut gates are used to make the skipped path deterministic [21] or stochastic
[10]. We explore many ways to compute the shortcut gates (denoted by gl

t).
The simplest case is to use gl

t as a linear operator. In this case, gl
t is a weight

matrix, and the element-wise product gl
t ⊙ h−l

t in (10) becomes a matrix-vector
multiplication:

gl
t ⊙ h−l

t := W lh−l
t (15)

We can also get gl
t under a non-linear mapping, which is similar to the

computation of gates in LSTM:

gl
t = σ(W lhl−1

t) (16)

Here we use the output of layer l − 1 to control the shortcuts. Notice that this
non-linear mapping is not unique, we just show the simplest case.

Furthermore, inspired by the dropout [20] strategy, we can sample from a
Bernoulli stochastic variable to get gl

t. In this case, the gate is stochastic:

gl
t ∼ Bernoulli(p) (17)

where gl
t is a vector of independent Bernoulli random variables each of which has

probability p of being 1. We can either fix p with a specific value or learn it with
a non-linear mapping. For example, we can learn p by:

p = σ(H lhl−1
t) (18)

At test time, h−l
t is multiplied by p.

6 Authors Suppressed Due to Excessive Length

Discussion. The gates of LSTMs are essential parts to avoid weight update
conflicts, which are also invoked by the shortcuts. In experiments, we find that
using deterministic gates is better than the stochastic gates. We recommend
using the logistic gates to compute gl

t.

4 Neural Architecture for Sequence Tagging

Sequence tagging can be formulated as P (t|w; θ), where w = [w1, . . . , wT] indi-
cates the T words in a sentence, and t = [t1, . . . , tT] indicates the corresponding T
tags. In this section we introduce an neural architecture for P (·), which includes
an input layer, a stacked hidden layers and an output layer. Since the stacked
hidden layers have already been introduced in the previous section, we only
introduce the input and the output layer here.

4.1 Network Inputs

The inputs of the network are the distributed representation of each token in
a sequence. Following Wu et al. [27], we use a local window approach together
with a concatenation of word representations, character representations, and
capitalization representations:

fwt = [Lw(wt); La(at); Lc(cw)] (19)

where wt, at represent the current word and its capitalization. cw := [c1, c2, . . . , cTw],
where Tw is the length of the word and ci, i ∈ {1, . . . , Tw} is the i-th character for
the particular word. Lw(·) ∈ R|Vw|×n, La(·) ∈ R|Va|×m and Lc(·) ∈ R|Vc|×r are
the look-up tables for the words, capitalization and characters, respectively. fwt

represents the distributed feature of wt. A context window of size d surrounding
the current word is used as an input:

xt = [fwt−⌊d/2⌋ ; . . . ; fwt+⌊d/2⌋] (20)

where xt is a concatenation of the context features.

4.2 Network Outputs

For sequence tagging, we use a softmax activation function g(·) in the output
layer:

yt = g(W hy[
−→
ht ;
←−
ht]) (21)

where yt is a probability distribution over all possible tags. yk(t) = exp(hk)∑
k′ exp(hk′)

is the k-th dimension of yt, which corresponds to the k-th tag in the tag set. W hy

is the hidden-to-output weight.

Shortcut Sequence Tagging 7

5 Experiments

5.1 Combinatory Category Grammar Supertagging

We evaluate our method on Combinatory Category Grammar (CCG) supertagging
task, which is a sequence tagging problem in natural language processing. The
task is to assign supertags to each word in a sentence. In CCG the supertags
stand for the lexical categories, which are composed of the basic categories such as
N , NP and PP , and complex categories, which are the combination of the basic
categories based on a set of rules. Detailed explanations of CCG refer to [22,23].

Dataset and Pre-processing Our experiments are performed on CCGBank [9],
which is a translation from Penn Treebank [16] to CCG with a coverage 99.4%.
We follow the standard splits, using sections 02-21 for training, section 00 for
development and section 23 for the test. We use a full category set containing
1285 tags. All digits are mapped into the same digit ‘9’, and all words are
lowercased.

Network Configuration

Initialization. There are two types of weights in our experiments: recurrent and
non-recurrent weights. For non-recurrent weights, we initialize word embeddings
with the pre-trained 100-dimensional GolVe vectors [17]. Other weights are
initialized with the Gaussian distribution N (0, 1√

fan-in
) scaled by a factor of 0.1,

where fan-in is the number of units in the input layer. For recurrent weight
matrices, following [18] we initialize with random orthogonal matrices through
SVD to avoid unstable gradients. All bias terms are initialized with zero vectors.

Hyperparameters. Our context window size is set to 3. The dimension of character
embedding and capitalization embeddings are 5. The number of cells of the stacked
bidirectional LSTM is also set to 465 for orthogonal initialization. All stacked
hidden layers have the same number of cells. The output layer has 1286 neurons,
which equals to the number of tags in the training set with a rare symbol.

Training. We use stochastic gradient descent (SGD) algorithm with an initial
learning rate 0.02 for training. The learning rate is then scaled by 0.5 when the
following condition satisfied:

|ep − ec|
ep

<= 0.005 and lr >= 0.0005

where ep is the error rate on the validation set on the previous epoch. ec is the
error rate on the current epoch. An intuitive explanation of the rule is when the
growth of the performance become lower, we need to use a smaller learning rate
to adjust the weights. We use on-line learning in our experiments.

8 Authors Suppressed Due to Excessive Length

We use dropout to avoid overfitting. We add a binary dropout mask to the
local context windows with a drop rate p of 0.25. We also apply dropout to the
output of the first hidden layer and the last hidden layer, with a 0.5 drop rate.
At test time, weights are scaled with a factor 1− p.

Comparison with Other Systems We compare our methods with other
systems. The comparison does not include any externally labeled data or POS
tags. We present experiments trained on the training set and evaluated on the
test set using the highest 1-best supertagging accuracy on the development set.

Table 1 shows deep stacked models perform better than other non-stacked
models. Specically, our shortcut block achieves state-of-the-art results (95.12% on
test set). Notice that 9 is the number of stacked Bi-LSTM layers. The total layer
of the networks contains 11 (9 + 1 input-to-hidden layer + 1 hidden-to-output
layer) layers. We find the 9 or 11 stacked depth are the proper choices for the
task.

Table 1: 1-best supertagging accuracy on CCGbank. The “mixed block" indicates
adding shortcut connections to both cl

t and hl
t, as shown in Eq. (7).

Model Dev Test

Clark and Curran [2] 91.5 92.0
MLP (Lewis et al. [15]) 91.3 91.6
Bi-LSTM (Lewis et al. [14]) 94.1 94.3
Elman-RNN (Xu et al. [28]) 93.1 93.0
Bi-RNN (Xu et al. [29]) 93.49 93.52
Bi-LSTM (Vaswani et al. [24]) 94.24 94.5
9-stacked Bi-LSTM (Wu et al. [27]) 94.55 94.69
9-stacked: mixed block (Ours) 94.72 95.08
9-stacked: shortcut block (Ours) 94.93 95.12

Exploration of Shortcuts To get a better understanding of the shortcuts
proposed in Eq. (10), we experiment with its variants to compare the performance.
Our analysis mainly focuses on three parts: the variants of shortcut blocks, gating
functions. The comparisons are summarized as follows:

Shortcut Variants. Table 2 presents the shortcut variants. In the variants of
mixed block (Eq.7), the shortcuts for both cl

t and hl
t obtains the highest accuracy

(95.08%) on the test set, but with high computational cost. In the variants of
shortcut block, the “no gate in m" case performs better than the others.

Shortcut Sequence Tagging 9

Table 2: Comparsion of shortcut variants. We use h̃l
t to represent the original cell

output of LSTM block, which equals o⊙tanh(cl
t), similar to c̃l

t := i⊙sl
t +f⊙ct−1.

Case Variant Dev Test

hl
t updated [27] with gate: hl

t = h̃l
t + g ⊙ hl−2

t 94.51 94.67

mixed block (Eq.7)

no gate: cl
t = c̃l

t + hl−2
t , hl

t = h̃l
t + hl−2

t 93.84 93.84

highway gate:
cl

t = (1 − g) ⊙ c̃l
t + g ⊙ hl−2

t

hl
t = (1 − g) ⊙ h̃l

t + g ⊙ hl−2
t

94.49 94.62

shortcuts for both cl
t and hl

t:
cl

t = c̃l
t + gc ⊙ cl−2

t

hl
t = h̃l

t + gh ⊙ hl−2
t

94.72 94.98

shortcut block (Eq.10)

no gate in hl
t: hl

t = o ⊙ tanh(m) + hl−2
t 94.15 94.29

no gate in m: m = i ⊙ sl
t + hl−2

t 94.77 94.97
no shortcut in internal: hl

t = o ⊙ tanh(it ⊙ st) + g ⊙ hl−2
t 93.83 94.01

no shortcut in cell output: hl
t = o ⊙ tanh(m) 93.58 93.82

Gating Functions. Table 3 presents the comparison of several gating functions
proposed in Section 3.2. We use the tanh function in the previous outputs to
break the identity link. The result is 94.81% (Table 3), which is poorer than the
identity function. We can infer that the identity function is more suitable than
other scaled functions such as sigmoid or tanh to transmit information.

We find the deterministic gates performs better than the stochastic gates.
Further, non-linear mapping gl

t = σ(W lhl−1
t) achieves the best test accuracy

(Table 3, 94.79%), while other types such as linear or stochastic gates are not
generalize well.

Table 3: Comparsion of gating functions.
Case Variant Dev Test

scaled mapping replace hl−2
t with tanh(hl−2

t) 94.60 94.81
linear mapping gl

t ⊙ h−l
t = wl ⊙ h−l

t 92.07 92.15

non-linear mapping
gl

l = σ(W lhl−1
t) 94.79 94.91

gl
l = σ(U lhl

t−1) 94.21 94.56
gl

l = σ(V lhl−2
t) 94.60 94.78

stochastic sampling gl
t ∼ Bernoulli(p), p = 0.5 91.12 91.47

gl
t ∼ Bernoulli(p), p = σ(Hlhl−1

t) 93.90 94.06

Comparison of Hyper-parameters As described in Section 4.1, we use a
complex input encoding for our model. Concretely, we use a context window
approach, together with character-level information to get a better representa-

10 Authors Suppressed Due to Excessive Length

tion for the raw input. We give comparisons for the system with/without this
approaches while keeping the hidden and the output parts unchanged.

Table 4 shows the effects of the hyper-parameters on the task. We find that
the model does not perform well (94.06%) without using local context windows.
Although LSTMs can memorize recent inputs for a long time, it is still necessary
to use a convolution-like operator to convolve the input tokens to get a better
representation. Character-level information also plays an important role for
this task (13% relatively improvement), but the performance would be heavily
damaged if using characters only.

Table 4: Comparsion of hyper-parameters.
Case Variant Dev Test

window size
k = 0 93.96 94.06
k = 5 94.27 94.81
k = 7 94.52 94.71

character-level
lw = 0 93.59 93.71
lw = 3 94.21 94.41
lw = 7 94.43 94.75

character only - 92.17 93.0

6 Related Work

Skip connections have been widely used for training deep neural networks. For
recurrent neural networks, Schmidhuber [19]; El Hihi and Bengio [3] introduce
deep RNNs by stacking hidden layers on top of each other. Graves [4]; Hermans
and Schrauwen [7] propose the use of skip connections in stacked RNNs. However,
the researchers have paid less attention to the analysis of various kinds of skip
connections, which is our focus in this paper.

Recently, deep stacked networks have been widely used for applications.
Srivastava et al. [21] and He et al. [6] mainly focus on feed-forward neural
network, using well-designed skip connections across different layers to make
the information pass more easily. The Grid LSTM proposed by Kalchbrenner et
al. [11] extends the one dimensional LSTMs to many dimensional LSTMs, which
provides a more general framework to construct deep LSTMs.

Zhang et al. [30] proposed highway LSTMs by introducing gated direct
connections between internal states in adjacent layers. Zilly et al. [31] introduced
recurrent highway networks (RHNs) which use a single recurrent layer to make
RNN deep in a vertical direction. These works do not use skip connections, and
the hierarchical structure is reflected in the LSTM internal states or cell outputs.
Wu et al. [26, 27] proposed a similar architecture for the shortcuts in stacked
Bi-LSTMs, we make a improvement to their design.

Shortcut Sequence Tagging 11

There are also some works using stochastic gates to transmit the information.
Zoneout [12] provides a stochastic link between the previous hidden states and
the current states, forcing the current states to maintain their previous values
during the recurrent step. Chung et al. [1] proposes a stochastic boundary state
to update the internal states and cell outputs. These stochastic connections
are connected between adjacent layers, while our constructions of the shortcuts
are mostly cross-layered. Also, the updating mechanisms of LSTM blocks are
different.

7 Conclusions

In this paper, we propose the shortcut block as a basic architecture for constructing
deep stacked models. We compare several gating functions and find that the
non-linear deterministic gate performs the best. These explorations can help us
to train deep stacked Bi-LSTMs successfully. Based on this shortcuts structure,
we achieve the state-of-the-art results on CCG supertagging. Our explorations
could easily be applied to other sequence processing problems, which can be
modeled with RNN architectures.

References

1. Chung, J., Ahn, S., Bengio, Y.: Hierarchical multiscale recurrent neural networks.
arXiv preprint arXiv:1609.01704 (2016)

2. Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with ccg and
log-linear models. Computational Linguistics 33(4), 493–552 (2007)

3. El Hihi, S., Bengio, Y.: Hierarchical recurrent neural networks for long-term depen-
dencies. In: NIPS. vol. 400, p. 409. Citeseer (1995)

4. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

5. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
lstm and other neural network architectures. Neural Networks 18(5), 602–610
(2005)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385 (2015)

7. Hermans, M., Schrauwen, B.: Training and analysing deep recurrent neural networks.
In: Advances in Neural Information Processing Systems. pp. 190–198 (2013)

8. Hochreiter, S., Schmidhuber, J.: Lstm can solve hard long time lag problems.
Advances in neural information processing systems pp. 473–479 (1997)

9. Hockenmaier, J., Steedman, M.: Ccgbank: a corpus of CCG derivations and de-
pendency structures extracted from the penn treebank. Computational Linguistics
33(3), 355–396 (2007)

10. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.: Deep networks with
stochastic depth. arXiv preprint arXiv:1603.09382 (2016)

11. Kalchbrenner, N., Danihelka, I., Graves, A.: Grid long short-term memory. arXiv
preprint arXiv:1507.01526 (2015)

12. Krueger, D., Maharaj, T., Kramár, J., Pezeshki, M., Ballas, N., Ke, N.R., Goyal,
A., Bengio, Y., Larochelle, H., Courville, A., et al.: Zoneout: Regularizing rnns by
randomly preserving hidden activations. arXiv preprint arXiv:1606.01305 (2016)

12 Authors Suppressed Due to Excessive Length

13. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

14. Lewis, M., Lee, K., Zettlemoyer, L.: Lstm ccg parsing. In: Proceedings of the
15th Annual Conference of the North American Chapter of the Association for
Computational Linguistics (2016)

15. Lewis, M., Steedman, M.: Improved CCG parsing with semi-supervised supertagging.
Transactions of the Association for Computational Linguistics 2, 327–338 (2014)

16. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated
corpus of english: The penn treebank. Computational linguistics 19(2), 313–330
(1993)

17. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: EMNLP. vol. 14, pp. 1532–43 (2014)

18. Saxe, A.M., McClelland, J.L., Ganguli, S.: Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120 (2013)

19. Schmidhuber, J.: Learning complex, extended sequences using the principle of
history compression. Neural Computation 4(2), 234–242 (1992)

20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout:
A simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research 15(1), 1929–1958 (2014)

21. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint
arXiv:1505.00387 (2015)

22. Steedman, M.: The syntactic process, vol. 24. MIT Press (2000)
23. Steedman, M., Baldridge, J.: Combinatory categorial grammar. Non-

Transformational Syntax: Formal and Explicit Models of Grammar. Wiley-Blackwell
(2011)

24. Vaswani, A., Bisk, Y., Sagae, K., Musa, R.: Supertagging with lstms. In: Proceedings
of the Human Language Technology Conference of the NAACL (2016)

25. Wang, P., Qian, Y., Soong, F.K., He, L., Zhao, H.: Part-of-speech tagging with
bidirectional long short-term memory recurrent neural network. arXiv preprint
arXiv:1510.06168 (2015)

26. Wu, H., Zhang, J., Zong, C.: A dynamic window neural network for ccg supertagging.
national conference on artificial intelligence pp. 3337–3343 (2016)

27. Wu, H., Zhang, J., Zong, C.: An empirical exploration of skip connections for
sequential tagging. international conference on computational linguistics pp. 203–
212 (2016)

28. Xu, W., Auli, M., Clark, S.: CCG supertagging with a recurrent neural network.
Volume 2: Short Papers p. 250 (2015)

29. Xu, W., Auli, M., Clark, S.: Expected f-measure training for shift-reduce parsing
with recurrent neural networks. In: Proceedings of NAACL-HLT. pp. 210–220
(2016)

30. Zhang, Y., Chen, G., Yu, D., Yaco, K., Khudanpur, S., Glass, J.: Highway long
short-term memory rnns for distant speech recognition. In: 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 5755–5759.
IEEE (2016)

31. Zilly, J.G., Srivastava, R.K., Koutník, J., Schmidhuber, J.: Recurrent highway
networks. arXiv preprint arXiv:1607.03474 (2016)

