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Abstract. Metaphor is a pervasive phenomenon in our daily use of nat-
ural language. Metaphor detection has been playing an important role in
a variety of NLP tasks. Most existing approaches to this task rely heavily
on the use of human-crafted features built from linguistic knowledge re-
source, which greatly limits their applicability. This paper presents four
BiLSTM-based models for metaphor detection. The first three models
use a sub-sequence as the input to BiLSTM network, each with a spe-
cial kind of sub-sequence extracted from the input sentence. The last
model is an ensemble model which aggregate the outputs from the first
three models to get the final output. Experimental results have shown
the effectiveness of our models.
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1 Introduction

Metaphor is a form of figurative language, where sentences consist of words or
phrases deviating from their proper definitions in ways that do not permit a
literal interpretation. From a cognitive point of view, metaphor can be thought
of as a type of conceptual mappings[10] where abstract concepts are mapped
to concrete concepts in order to make the readers understand some character-
istics of abstract concepts more easily. For example, the utterance “Time is
money”[10] emphasizes that the abstract “time” is valuable just like the con-
crete “money”. Metaphors are pervasive in natural language. Corpus studies re-
veal that metaphors appear averagely in every third sentence of general-domain
text. In order to interpret the meanings of sentences containing metaphorical
expressions, it is necessary to discriminate the metaphorical and the literal use
of languages. Due to the prevalence and importance of metaphorical language,
effective detection of metaphors is of great value in a variety of practical NLP
applications, such as machine translation, information retrieval, opinion mining
and so on.

Previous approaches to metaphor detection can be broadly classified into two
categories. The one is to detect metaphor in a single sentence that contains a
metaphor[16, 17], and the other is in the discourse[12, 9, 7]. Our approach be-
longs to the first category. Particularly, given an input sentence, the task is to
judge whether a target verb in the sentence is in its metaphorical or literal use.



Such kind of metaphors accounts for a substantial proportion of all metaphor-
ical expressions, approximately 60%[13]. As for this task, most of the previous
approaches have used a variety of semantic and syntactic features (such as ab-
stractness, imageability, supersenses and so on), which are normally extracted
from some external linguistic knowledge resources. We shall introduce some rep-
resentative approaches in the Section 2.

Although these existing approaches have been proved to be able to achieve
good performance, their reliance on external linguistic resources has greatly lim-
ited their applicability, especially to those languages that are lack of linguistic
resources.

To mitigate this shortcoming, we propose to use deep neural networks to train
an end-to-end model for metaphor detection. In our approach, BiLSTM network
is used to build up the feature vector representations of sentences automatically,
without any use of linguistic knowledge resources, except an unsupervised text
corpus that are commonly available for most languages. The BiLSTM network
is chosen because it is a kind of recurrent neural network with the ability to deal
with variable length sequence data, and it has been proved to be effective in a
lot of NLP tasks [2, 3].

For a given input sentence with a target verb, there are multiple ways to
extract a sub-sequence from the sentence, with respect to the target verb. Using
different sub-sequences of the sentence as input may affect the performance of
BiLSTM model. In other words, different sub-sequences could lead to different
feature representation of the sentence via the BiLSTM model. Therefore, we
present to extract three kinds of sub-sequences for a given sentence with a target
verb. Each kind of sub-sequences corresponds to a single sub-sequence model.
In addition, we also propose an ensemble model in order to integrate all these
three kinds of sub-sequences together, with the expectation that they can be
complementary to each other.

To demonstrate the efficacy of our approaches, we evaluate our model on
the metaphor test dataset which was made available by Tsvekov et al.[17]. The
dataset is a multilingual test set but we only use the English section. This section
contains 111 metaphorical sentences and 111 literal sentences, so it is a balanced
dataset.

Our work makes the following contributions: (1) it is the first time that an
end-to-end neural model gets proposed to metaphor detection; (2) Our approach
is independent of any external linguistic knowledge resources, except pretrained
word embeddings on unsupervised text corpus; (3) Three kinds of sub-sequences
are presented to be extracted from an input sentence with a target verb, and
BiLSTM network is proposed to model these sub-sequences.

2 Related Work

Research in automatic metaphor detection has a very long history, ranging from
ruled-based methods by using lexical resources to statistical machine learning
models. If you want a more thorough review of metaphor processing systems, we



refer the readers to the reviews by Shutova[14]. Here we focus only on the recent
approaches using the statistical learning method which often treat metaphor
detection as a binary classification problem. For a complete survey, please refer
to Shutova[14].

Turney et al. [16] viewed metaphor as a method for transferring knowledge
from a familiar, well-understood, or concrete domain to an unfamiliar, less un-
derstood, or more abstract domain. They hypothesized that metaphorical word
usage is correlated with the degree of abstractness of the word’s context. Based
on this hypothesis, they used logistic regression algorithm on a feature vector
constructed from the abstractness of context words, to classify a word sense in
a given context as either literal or metaphorical. In their work, the abstractness
ratings for words were calculated automatically by a supervised learning model
trained on the MRC database 1.

Heintz et al. [6] applied Latent Dirichlet Allocation (LDA) topic modeling
[1] to the problem of automatic extraction of linguistic metaphor and achieved
good performance. The hypothesis behind their approach is that a sentence
which contains both source and target domain vocabulary could use metaphor,
so a sentence which contains different topic may use metaphor. Their result of
LDA is 100 topics, where each topic is a probability distribution over the training
corpus vocabulary.

Tsvetkov et al. [17] constructed a English metaphor detection system that
uses a random forest classifier with conceptual semantic features such as ab-
stractness, imageability, and semantic supersenses. They also supported the hy-
pothesis that metaphors are conceptual, rather than lexical, in nature by showing
that their Englished-trained model can detect metaphors in Spanish, Farsi, and
Russian.

Klebanov et al. [9] tried to classify each content-word token in a text as a
metaphor or non-metaphor. They used various features such as unigrams, part-
of-speech, concreteness and topic models to train logistic regression classifier for
metaphor detection in running text. The experimental results showed that these
features are useful for metaphor detection respectively. It was also shown that
the unibram features contribute the most, and the second most effective feature
set are the topic models.

Jang et al. [7] hypothesized that topic transition patterns between sentences
containing metaphors and their contexts are different from that of literal sen-
tences. They also observed that metaphor is often used to express speaker’s
emotional experiences and cognitive processes. Therefore, they built up a set
of features from the information of sentence-level topic transitions, emotional
and cognitive words in metaphorical and literal sentence and their contexts, and
used these features to train a support vector machine classifier for metaphor
detection.

Most of the existing approaches make use of a variety of features to train clas-
sification models for metaphor detection. Most of the features rely on external
lexical, syntactic, or semantic linguistic resources that are not always available

1 http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa mrc.htm



(or are expensive to obtain) in all languages, which seriously limits their appli-
cability.

Different from these previous work, this paper presents several metaphor
detection models based on BiLSTM neural networks, which are able to build up
feature representations of sentences from pretrained word embeddings and do
not use any human-crafted features.

3 Our Approach

In this paper, we limit our task to determining whether a sentence contains a
metaphoric subject-verb-object relation. Different from existing approaches, we
propose to use Long-Short Term Memory (LSTM) model that can automatically
construct feature representations of sentences for metaphor detection, instead of
human-crafted features created from linguistic resources.

Since LSTM is a recurrent neural network model for sequential data, a
straightforward solution is to apply LSTM on the original word sequence of
the target sentence. Besides this simple solution, we also explore other two pos-
sibilities, i.e., applying LSTM on two different sub-sequences extracted from the
target sentence (Section 3.1). Correspondingly, three single sub-sequence models
based on BiLSTM networks can be constructed, one for each possible kind of
sub-sequences, and a fourth model is also proposed as an ensemble model to
merge the three single sub-sequence models (Section 3.2). Lastly, we introduce
train objective for model(Section 3.3).

3.1 Three Kinds of Sub-Sequences

Because LSTM is the recurrent neural network model based on time sequence,
different sequences could affect the performance of LSTM model. We want
to know how different sub-sequence of the same sentence affect the result of
metaphor detection, and find the best sub-sequence to input LSTM model.We
propose three sub-sequences of the sentence to input model and then, we will
introduce them, respectively.

The original sequence is the original form of the sentence in the corpus, and it
contains all the information that we need to judge whether the sentence contains
the metaphorical use of the target verb or not. This is the longest sub-sequence
of the sentence, which will slower the training process of the model. In addition,
there may exists some noisy information that possibly affect our judgement.

The dependency sub-sequence consists of the target verb, its head word,
and all its dependents in the corresponding dependency tree, arranged in their
relative positions in the original sentence. In other words, the dependency sub-
sequence contains the words that have direct dependency relationship with the
target verb, which is expected to provide most information about whether the



target verb is in metaphorical or literal use. Other syntactic parts, such as the
adjective part of the subject or the object, are excluded from the dependency
sub-sequence, which are believed to contain little information about our task.

The SVO sub-sequence is the sub-sequence consisting of the target verb,
its subject, and its object in the sentence, which is a most-common form of
syntactic constructions. Compared with the dependency sub-sequence, the SVO
sub-sequence is more concise, and excludes adverbial information for metaphor
detection. On one hand, shorter SVO sub-sequences can speed up the training
process. On the other hand, the adverbial information is discarded, which may
be indicative of metaphorical use of the target verb to some degree.

An illustrative example. We use a simple example to illustrate the three
kinds of sub-sequences. For the original sentence “I have given up smoking for two
years.”, the dependency tree is shown inFig.1, which is generated automatically
by a dependency parser. From the dependency tree, we can easily learn that
the dependency sub-sequence is “I have given up smoking for”, which consists
of all the words that are directly connected to the target verb “given”. Then
according to the dependency relationship in the dependency tree, we can get the
subject “I” and the object “smoking” of the target verb “given”, and thus the
SVO sub-sequence is “I given smoking”. It can be easily seen that all the three
kinds of sub-sequences contain the information about the use of the target verb,
but with different completeness.

Fig. 1. An illustrative dependency tree

In addition, we think three sub-sequences could better adapt to different
sentences. As for the original sentence, it may adapt to the sentence that doesnt
have any clause, because the sentence is not too long to increase the burden of
model training. The dependency sub-sequence may better adapt to the sentence
which the predicate is verb phrase, that is the collocation of verb and preposition.
Lastly, the SVO could adapt to the sentence which has too many modifiers,
because the SVO can use the most most concise sub-sequence to detect metaphor.
So we merge three different sequences in order to adapt to all kinds of sentences.



3.2 BiLSTM-based Models for Metaphor Detection

Recurrent neural networks (RNNs) are powerful models for variable-length se-
quence data, and are inherently deep in temporal dimension. Long-short term
memory (LSTM) is a popular architecture of RNN, which can mitigate the ex-
plosive and vanishing gradient problem.

One shortcoming of LSTM is that it only makes use of its left (or previous)
context, and does not utilize its right (or future) context. Bidirectional LSTM
(BiLSTM) uses two independent LSTMs to process the sequence on two direc-
tions separately, and then concatenate the two final output vectors from both
directions.

This section will firstly introduce the basics of LSTM and BiLSTM models,
and then propose our BiLSTM-based models for metaphor detection.

LSTM is a recurrent neural network with gating mechanism. Here, we adopt
the LSTM variant that was introduced by Graves Alex[4]. It comprises four
components: an input gate it, a forget gate ft, an output gate ot, and a memory
cell ct. The formulas for calculating these gate and the memory cell unit are
listed as follows:

it = σi(xtWxi + ht−1Whi + wci � ct−1 + bi) (1)

ft = σf (xtWxf + ht−1Whf + wcf � ct−1 + bf ) (2)

ct = ft � ct−1 + it � σc(xtWxc + ht−1Whc + bc) (3)

ot = σo(xtWxo + ht−1Who + wco � ct + bo) (4)

The output of LSTM units is the recurrent network’s hidden state, which is
computed as follows:

ht = ot � σh(ct) (5)

BiLSTM has been proved empirically to be effective in performance improve-
ment over LSTM because it can make use of context in both directions and is
thus better in making prediction [2, 3]. Fig.2 shows the architecture of BiLSTM
network.

In our implementation, we process the sequence in two directions, in other
words, we process two sequences that the one is the normal sequence, but the
other is the reverse sequence. In each direction, all the words x of the sequence
will sequentially pass through the LSTM and will get a vector as h which is the
feature vector of the sequence which contains the current word and the words
before the current word in the sequence, so the last h will become the feature
vector of the entire sequence. From two directions, we will get the vector from

the normal sequence represented as
←−
hn and the vector from the reverse sequence

represented as
−→
hn. Lastly, we concatenate two vectors of two sequences to form

the output of the BiLSTM network represented as h which could become the
feature of the sentence, following the formula:



Fig. 2. The architecture of BiLSTM

X = [y] (6)

h = [
−→
hn,
←−
hn] (7)

The single sub-sequence models are the models with each kind of sub-
sequences as the input to the BiLSTM network. The model consists of three
layers : input layer, BiLSTM layer, and softmax layer, as shown in Fig.3. In the
input layer (also called the embedding layer), each word in the sub-sequence will
be converted to an embedding vector by looking up a pretrained word embedding
matrix, and then be fed to the BiLSTM layer. After processed by the BiLSTM
layer, the information flows to the softmax layer which transforms the output
vector from the BiLSTM layer into a probability distribution over the two class
labels: metaphorical and literal.

The multiple sub-sequences model can be thought of as an ensemble model,
which merges three outputs from the BiLSTM layers in the three single sub-
sequence models described above, by using the concatenation layer. where three
values of h will be connected to become the feature of the sentence as follows:

h = [hsen,hdep,hsvo] (8)

then input the result of the concat layer to softmax layer to classify sentence
as literal or metaphorical as shown in Fig.4. Every value of h is get through
the method of the single input model’s BiLSTM layer. The value of h1 repre-
sents the feature of the original sentence, and the h2 represents the feature of
the dependency sub-sequence, lastly, the h3 represents the feature of the SVO
sequence.



Fig. 3. The single sub-sequence model

Fig. 4. The multiple sub-sequences model



3.3 Training Objective

We model the metaphor detection task as a binary classification problem, and
use the cross entropy loss function:

J = − 1

N

N∑
i=1

(y′i log(yi) + (1− y′i) log(1− yi)) (9)

where N denotes the number of training examples; y′i is the ground truth label
of the i-th training example, and yi is the modeĺs probability output for the i-th
training example.

4 Experimental Results

In this section, we would like to evaluate the proposed models. firstly, we will
introduce the dataset containing the training dataset and test dataset and the
data pre-processing(Section 4.1),then we will introduce the experiment particu-
lars containing deep learning tools that we use to implement our model, tricks
and the hyper-parameters setting in the model (Section 4.2).Lastly, we will in-
troduce the results in test set (Section 4.3).

4.1 Dataset and data pre-processing

Training set is from TroFi2 corpus that consists of 3737 manually annotated
English sentences from the Wall Street Journal. Each sentence in TroFi contains
either a literal use or a metaphorical use for one of 50 English verbs.

We firstly used Turbo Parser3 to parse all the sentences into dependency
trees, and then extracted the SVO triples and the dependency sub-sequences
from the dependency trees according to the dependency relationships. During
the parsing process, we filtered the dependency trees and the SVO triples to
eliminate parsing-related errors by a blacklist4 which was provided by Tsvetkov
[17] in 2014 and those with verbs which are not in the TroFi verb list.

The final training dataset consists of only the sentences which can be suc-
cessfully converted into all the three sub-sequence forms without no error. As
a result of the pre-processing, there are 1474 metaphorical sentences and 1046
literal sentences left, among which we randomly select 90% as the training set
and the remaining 10% as the validation set.

Test set is the English section of multilingual test sets5 which is open by
Tsvetkov et al.[17] in 2014. The set contains original sentences forms and their

2 http://www.cs.sfu.ca/ anoop/students/jbirke/.
3 http://www.cs.cmu.edu/ ark/TurboParser/.
4 https://github.com/ytsvetko/metaphor/blob/master/resources/TroFi/.
5 https://github.com/ytsvetko/metaphor/blob/master/input/.



SVO forms for 111 metaphorical sentences and 111 literal sentences. So we only
need to get dependency sub-sequence by the same method which we use to
process the training set. The F1-score of the state-of-the-art system on the test
set is 0.79.

4.2 Model implementation

To implement our model, we use the lasagne6 which is a lightweight library to
build and train neural networks in Theano. It makes common use cases easy, and
does not overrate uncommon cases. Besides, it contains the all code implements
which we use in our experiment such as LSTM recurrent network, dropout,
softmax and so on.

When we train the models, we use the dropout[15] which is a regularization
technique for alleviate overfitting in neural networks by preventing complex co-
adaptations on training data. We use dropout in input layer and LSTM layer.
Besides, we use mini-batch stochastic gradient descent(SGD) with momentum
for optimization.

4.3 Hyperparameter settings

In our models, the dropout rate is set to 0.6 that is a better value found after
repeated attempts. And, the learning rate is set to 0.002, because it can avoid
that the optimal solution may be missed in the gradient descent process as a
result of big learning rate.

In addition, the number of hidden units in LSTM layer is different in different
input sub-sequences, because the different sub-sequence contains different gran-
ularity information, more specifically, the feature vector of the sub-sequences is
different. The number of hidden units in the original sentence, dependency sub-
sequence and SVO is set to 150, 60, 40, respectively when we train the single
input model. Correspondingly, the number of hidden units in every LSTM layer
of the multiple input model is set to 150, 60, 40.

Lastly but not least, we will introduce how to convert the word in sub-
sequence to the word embedding. We do it by using the open pre-trained word
embedding library7 which is used just like a dictionary. The library is made
by training the word2vec8[14] model on Google News corpus (3 billion running
words). And the dimensions of the word embedding is 300. Althrough the library
contains the most words, very few words cant be found in library. For these
words, we will pass them, more unfortunately, if the word is just the verb, we
will pass the instance directly.

6 https://github.com/Lasagne/Lasagne.
7 https://github.com/mmihaltz/word2vec-GoogleNews-vectors.
8 https://code.google.com/archive/p/word2vec/.



4.4 Results

We train the four proposed models on the training data, respectively. Three
single sub-sequence models are for three different kinds of sub-sequences, the
other is multiple sub-sequences model. We test the models on the test set and the
experiment results are shown in Table 1. Tsvetkov et al.[17] which is described
in detail in relation to prior work.

Table 1. Experimental comparsion of our proposed metaphor detection models.

sub-sequence Precision of test set F1-score

Original sentence 75.83% 0.77

Dependency sub-sequence 72.71% 0.76

SVO sub-sequence 68.33% 0.74

Multiple sub-sequences model 76.67% 0.78

It can be observed from Table 1 that:

– The single sub-sequence model on original sentences has achieved the highest
F1-score among all the three single sub-sequence models; while the single
sub-sequence model on SVO sub-sequences has got the lowest F1-score. Such
observations coincide with our expectation that the adverbial information
about the target verb may be helpful to metaphor detection.

– The multiple sub-sequences model outperforms the three single sub-sequence
models, which indicates that the three single sub-sequence models are com-
plementary to each other in some degree.

– The multiple sub-sequence model is competitive to the state-of-the-art. How-
ever, Tsvetkov et al.[17] achieved the F1-score 0.79 with the help of several
conceptual features such as abstractness, imageability, and supersenses, and
our appproach only uses word embeddings pretrained on an unsupervised
text corpus.

5 Conclusions

In this paper, we first propose an end-to-end neural approach for metaphor
detection, which does not rely on any external linguistic knowledge resources,
except pretrained word embeddings on unsupervised text corpus. We present
three kinds of sub-sequences to be extracted from an input sentence with a
target verb, and propose to use BiLSTM network to model these sub-sequences.
Experimental results have shown the effectiveness of our approach.
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