
Enhancing Document-Based Question
Answering via Interaction between Question

Words and POS Tags

Zhipeng Xie

School of Computer Science
Fudan University, Shanghai, China

xiezp@fudan.edu.cn

Abstract. The document-based question answering is to select the an-
swer from a set of candidate sentence for a given question. Most Existing
works focus on the sentence-pair modeling, but ignore the peculiars of
question-answer pairs. This paper proposes to model the interaction be-
tween question words and POS tags, as a special kind of information
that is peculiar to question-answer pairs. Such information is integrated
into a neural model for answer selection. Experimental results on DBQA
Task have shown that our model has achieved better results, compared
with several state-of-the-art systems. In addition, it also achieves the
best result on NLPCC 2017 Shared Task on DBQA.

Keywords: Question answering, deep learning, question words, part-
of-speech tags

1 Introduction

In document-based question answering, one important subtask is to identify sen-
tences as answers from a given document with respect to a question, which is
also called answer selection. The main problem is how to extract informative
features in order to decide whether a candidate sentence contains the semantic
and/or syntactic information required by the question. Traditional work on an-
swer selection usually used human-crafted feature engineering that may exploit
linguistic tools or external linguistic knowledge resources [12].

Recently, with the upsurge of deep learning, a variety of neural approaches
have been proposed to solve the answer selection problem, which have achieved
substantial out-performance compared with the traditional methods. These neu-
ral approaches usually work by firstly generating the representations of questions
and candidates, and then ranking their semantic similarities. Like traditional
methods, these neural approaches also assume that an appropriate answer should
have high semantic similarity with the question, and they make their judgement
mainly based on this assumption.

In some neural approaches, the representations of questions and answers are
generated separately. For example, Yu et al. [14] proposed two simple models,

bag-of-words model and bigram model, where bag-of-words model generated
the vector representation of a sentence as the centroid of the embeddings of all
words in the sentence, and bigram model used one convolutional layer and one
average-pooling layer to generate the vector representation of a sentence. Sev-
eryn & Moschitti [6] and Feng et al. [1] presented convolutional neural network
architectures for reranking pairs of questions and answers. They used convolu-
tional network to generate intermediate representations of input sentences, and
then learned how to calculate their similarities.

Some recent neural approaches introduced attention mechanisms and pro-
duced conditional representations of answers and questions, taking interdepen-
dence between questions and answers into consideration. Tan et al. [8] proposed
an attentive Bi-LSTM reader to leverage a simple one-way attention model that
emphasizes a certain part of answer based on the question embedding. Yin et
al. [13] and dos Santos et al. [5] used two-way attention mechanisms tailored to
convolutional neural network.

Although these existing works have achieved good performance in answer
selection, most of them treat the answer selection problem as the sentence-pair
modeling, and do not take the information peculiar to question-answer pairs
into consideration. However, intuitively, the question words that are peculiar to
questions often play important roles in answer selection. For example:

– The question word “when” often requires that the answer sentence should
contain a time noun;

– the question word “where” requires that the answer sentence should contain
a location noun.

Based on this observation, this paper proposes to make use of a special kind
of such information, i.e. the interaction between question words and POS tags,
and integrates it into a neural model. We evaluate the neural model on the
DBQA Shared Task of NLPCC2017 and report the results.

2 The Proposed Model

The document-based question answering task is described as follows. Each ques-
tion qi ∈ Q is associcated with a set of candidate sentences,Di = {di1,di2, . . . ,di|Di|},
where |dij | is the j-th candidate sentence for the question q. Each candidate sen-

tence dij is associated with a class label yij , whose value is 1 if the candidate dij
is an appropriate answer to the question qi, and 0 otherwise. The goal is to train
a binary classifier: f(qi,dij) → yij , where f maps a question-candidate pair to
its class labels.

For each pair of question q and candidate d, assume that q is a sequence of
m words, q1q2 . . . qm, and d is a sequence of n words, d1d2 . . . dn.

We use fwod|q = fwod|q,1f
wo
d|q,2 · · · f

wo
d|q,n to denote the sequence of word-overlap

features for d, where j-the element fwod|q,j equals 1 if the j-th word dj in d appears
in the question q, and 0 otherwise. In addition, fwoq|d = fwoq|d,1f

wo
q|d,2 · · · f

wo
q|d,m

denotes the sequence of word-overlap features for q, in a similar way.

We hypothesize that a candidate sentence d that is qualified to be an answer
to the question q must satisfy at least the following conditions:

– (Semantic matching) d is semantically related to q; or in other words, the
feature vector of q should share high similarity with the feature vector of d,
in some perspectives;

– (Interaction between question words and POS tags) d contains a word whose
part-of-speech tag is closely related to the question word of q, and the word
does not occur in q. For example, if the question word “when” appears in
the question, it is expected that there is a temporal noun in the answer; if
the question word “where” appears in the question, a sentence that contains
a location noun or geographical name is more likely to serve as the answer;
if there is the question phrase “how many” in the question, the answer will
have a large probablity to include a number or quantity.

Input: question-
candidate pair

Extracting Word-
Level Features

Constructing Higher
Level Features

Calculating Match-
ing Scores

Making Decision by
Softmax

Fig. 1. The architecture of our neural model.

To materialize our hypothesis, we propose a neural model in this paper, with
the modular architecture shown in Figure 1. The details are described in the
remaining part of this section:

– Section 2.1 will describe the word level features and how to extract them;

– Section 2.2 will introduce how the convolutional and pooling module is used
to construct higher-level features (called the intermediate representations)
from the lower word-level features;

– Section 2.3 will present four different matching scores and their calculation;

– Section 2.4 will use a hidden layer and a softmax layer to make the decision
based on the calculated matching scores and the intermediate representations
of the question and the candidate sentence.

2.1 Word-Level Feature Extraction

Before we delve into the details of the neural network, let us first have a look
at the word-level features to be used, which include word embeddings, word-
overlap feature embeddings, question-word embeddings, POS tag embeddings,
and the IDF features. These features are then concatenated to form the vector
representations for the words in the question q and the candidate sentence d.

Word Embeddings Each word w, no matter in the question q or in the can-
didate sentence d, can be transformed into a dword-dimensional vector eword(w)
by looking up a word embedding matrix Mword ∈ Rdword×|Σ|, where |Σword|
denote the size of the word dictionary Σword.

We obtain the word embedding matrix Mword by training the skip-gram
neural language model (provided in Word2Vec1 [4]) on a large unsupervised text
corpus of size about 20GB, crawled from Internet . We choose the dimensionality
of word embeddings to be 300, window size to be 3, negative sampling to be 5,
and number of epochs to be 5. The pretrained word embeddings are kept fixed
during the training process.

Word-Overlap Feature Embeddings Let fwoj denote the word-overlap fea-
ture of the j-th word in the candidate sentence d. It can be transformed into
a dwo-dimensional vector ewo(f

wo
j) by looking up an embedding matrix Mwo

of size 2 × dwo. Similar to Mqw and Mtag, the matrix Mwo is also randomly
initialized, and gets tuned in the training process.

To model the interactions between the question words and POS tags, we have
to identify all the interested question words from the question q and the POS
tags from the candidate sentence d.

– Firstly, we manually construct a dictionary of question words, denoted by
Σqw. For a given question q, we use γ(q) to denote the set of all its words
that belong to the question word dictionary Σqw.

– Secondly, we make use of the part-of-speech tagger provided in PyLTP2 to
predict the POS tags for the words in a given candidate sentence d. The POS
tag dictionary is the POS tag set used by PyLTP, which contains 28 different
POS tags as described at http://www.ltp-cloud.com/intro/#pos_how.

Question-Words and Their Embeddings. In a given question q, each ques-
tion word q ∈ γ(q) is mapped to a dqw-dimensional vector eqw(q) by looking-up
an embedding matrix Mqw of size |Σqw| × dqw.

1 http://code.google.com/archive/p/word2vec.
2 https://github.com/HIT-SCIR/pyltp

POS Tags and Their Embeddings. Let tj denote the part-of-speech (POS)
tag of the j-th word in the candidate sentence d. The POS-tag sequence of d is
then t1t2 . . . tn. Each POS tag ti (1 ≤ i ≤ n) is mapped to a dtag-dimensional
vector etag(ti) by looking-up an embedding matrix Mtag of size |Σtag| × dtag.

Both the two embedding matrices Mqw and Mtag are initialized randomly,
and get tuned during the training process.

Inverse Document Frequency (IDF). To measure the importance of words,
we make use of their inverse document frequencies. We collect all the questions
in the training data, and treat each question as a document.

idf(w) = log
|Q|

count(w,Q)
(1)

where count(w,Q) denotes the number of documents in Q that contain the
word w. It is evident that idf(w) > 0 for all words w. The less frequently a word
appears in the documents, the higher its IDF value is and the more important
the word is.

As to the answer selection task, it is expected that a word in the question
with high IDF value has a good match with a word in the answer. Thus, we
calculate the IDF value of all the words in the question and feed them into the
neural model.

Word-Level Vector Representations Based on the word-level features de-
scribed above, we can not construct the word-level vector representations for the
words in the question q or the candidate sentence d.

Each word qi in the question q is represented as a vector e(qi) by con-
catenating its word embedding, word-overlap feature embedding, question-word
embedding, and IDF feature:

e(qi) = [eword(qi); ewo(qi); eqw(qi); idf(qi)] (2)

The dimensionality of e(qi) is dw in q = dword + dwo + dqw + 1.
Each word di in the candidate sentence d is represented as a vector e(di) by

concatenating its word embedding, its word-overlap feature embedding, and its
POS-tag embedding:

e(di) = [eword(di); ewo(di); etag(di)] (3)

Thus, the dimensionality of e(di) is dw in d = dword + dwo + dtag.

2.2 Convolutional and Pooling Module

After each word token has been represented as a vector, the convolutional layer
can be applied to compose them in order to extract features at a higher level,
and the pooling layer can be used to aggregate the information and reduce the
representation.

Convolution Layer. The aim of the convolutional layer is to extract informa-
tive higher-level features by composing lower-level ones. Given an input sentence
matrix S ∈ Rd×s where s is the length of the sentence and d is the dimensionality
of the vector representation of the words, a convolution filter with size f is a
matrix of weights: F ∈ Rd×f . The convolution operator between S and F will
result in a vector c ∈ Rs+f−1, where each component is calculated as follows:

ci =

d∑
j=1

f∑
k=1

S[j, i− k + 1] · F[j, f − k + 1] (4)

Note that in real implementation, each ci is added with a bias and then passed
through a tanh nonlinear transformation. If there are df filters in the convolu-
tional layer, then the output will be a matrix C ∈ Rdf×(s+f−1).

Pooling. The output from the convolutional layer are passed to the pooling
layer, which can aggregate the information and represent a variable-length sen-
tence (question or candidate) as a fixed-sized vector. There are two common
choices for pooling functions: max-pooling and average-pooling. We choose to
use global max-pooling in the model. It takes maximum value along the tempo-
ral dimension of the output matrix C from the convolutional layer, and results
in a vector vpool ∈ Rdf whose i-th component is calculated as:

vpool[i] = max
1≤j≤(s+f−1)

C[i, j] (5)

Sentence Matrix S

Convolutional Layer
(filter size=2)

Pooling Layer

Convolutional Layer
(filter size=1)

Pooling Layer

Convolutional Layer
(filter size=3)

Pooling Layer

Concatenation

v(2)v(1) v(3)

v

Fig. 2. The convolutional and pooling module

In our model, we use two convolutional and pooling modules, one for ques-
tions and the other for candidate sentences. Both the modules share the same
architecture, but have different parameters. As illustrated in Figure 2, the mod-
ule have three convolutional layers whose filter sizes are 1, 2 and 3 respectively.

Each convolutional layer is fed directly with a sentence matrix S and followed
by a global max-pooling layer. The output vectors of the three pooling layers
are denoted as v(1), v(2) and v(3) respectively, which are concatenated into the
output vector of the module, v =

[
v(1); v(2); v(3)

]
∈ R3×df .

For a given question q, we use xq to denote the output vector of the convo-
lutional and pooling module for questions; while for candidate sentence d, we
use annotation xd. We call xq and xd the intermediate representations of the
question q and the candidate sentence d respectively.

2.3 Matching Scores between Questions and Candidate Sentences

Based on the question-candidate pairs, the word-level features and the output
from the convolutional and pooling module, we can calculate four matching
scores between questions and candidate sentences:

– The first matching score is used to measure the interaction between question
words in q and the POS tags in d;

– The second matching score is used to measure the semantic similarity be-
tween q and d according to their outputs from the convolutional and pooling
modules;

– The last two matching score is the simplest, which measures the word-
overlapping and the weighted word-overlapping degrees between q and d.

Interaction between Question Words and POS Tags. Given a question-
candidate pair (q,d), the interaction score between a question word q ∈ γ(q)
and a POS tag ti is defined as follows:

IScore(q, ti) = eqw(q)T · etag(ti) · (1− fwoi) (6)

A POS tag ti has a large interaction score with a question word q ∈ γ(q) only if
it satisfies two conditions: 1) the tag embedding of ti has a large inner product
with the question-word embedding of q, and 2) the word di does not appear in
the question q.

For a candidate sentence d to be an appropriate answer to the question q, it
is expected that, for each question word q ∈ γ(q), there exists a word ti in d that
best match it, i.e., the word ti has a large interaction score with q. Therefore,
the interaction score between q and d is defined as:

Scoreint(q,d) = min
q∈γ(q)

max
1≤i≤n

IScore(q, ti) (7)

Semantic Matching between Question and Candidate Sentence Let xq
and xd denote the resulting vector representations produced by the convolu-
tional and pooling modules, on the question q and the candidate sentence d
respectively. We define the semantic matching score between q and d as follow:

Scoresem(q,d) = xTq Mmatchxd (8)

where Mmatch ∈ Rdsent×dsent is a similarity matrix (dsent is the dimensionality
of xq and xd. The matrix Mmatch is initialized randomly and gets optimized
during the training process.

Word Overlap Score Intuitively, the candidate sentence that has more over-
lapped words with the question is more likely to be topic-related or semantically-
related.

Scorewo(q,d) =
∑
q∈q

1d(q) (9)

where the symbol 1 denotes an indicator function, that is:

1d(q) =
{1, if q ∈ d

0, otherwise
(10)

In addition, we also calcuate the IDF-weighted word overlap score:

Scoreidf (q,d) =
∑
q∈q

1d(q) · idf(q) (11)

where idf(·) is calculated according to Equation (1).

2.4 Softmax Output Module

Given a question-candidate pair (q,d), it is now represented, by concatenating
their intermediate representations (xq and xd) and the four matching scores
between them, as a vector xpair of dimensionality dpair = 6× df + 4, called the
final pair representation.

The softmax output module consists of a hidden layer followed by a softmax
layer. The hidden layer with dhid hidden units does the following transformation:

xhid = tanh(Whid · xpair + bhid) (12)

where Whid is a weight matrix of size dhid × dpair, and bhid is a bias vector of
size dhid.

In turn, the vector xhid is fed to the softmax layer. It first calculate a 2-
dimensional score vector xoutput = [x0, x1]:

xoutput = Woutput · xhid + boutput (13)

where Woutput ∈ R2×dhid is a weight matrix, and boutput ∈ R2 is a bias vector.
Next, the softmax layer applies softmax tranformation on the score vector, re-
sulting in a probability distribution o = [o0, o1] whose component oi (i ∈ 0, 1)
is:

oi =
expxi∑

j∈{0,1} expxj
(14)

2.5 Cross-Entropy Loss Function

Since the answer selection task is formulated as a binary classification problem,
we train the model to minimize the cross-entropy loss function defined as follows:

L = − 1

N

N∑
i=1

ti log oi,ti (15)

where ti is the golden class label for the i-th pair of question and candidate, and
oi,ti denotes the predicted probability that the i-th pair has the class label ti.

The parameters are optimized to minimize the cross entropy loss function in
Equation (15) by using the Adam algorithm [3], where the learning rate is set
to 0.001, beta1 is set to 0.9, and beta2 is set to 0.999.

2.6 Dropout

Dropout is an effective technique to regularize neural networks by randomly drop
units during training. It has achieved a great success when working with feed-
forward networks [7], convolutional networks, or even recurrent neural networks
[15].

In our model, dropout is applied to both the input and the output of the
convolutional and pooling modules, with dropout probabilities being 0.4 and 0.7
respectively.

3 Experiments

We evaluate our model on DBQA Shared Task of NLPCC2017. The character-
istics of the dataset is described in Table 1.

Table 1. Dataset of NLPCC 2017 Shared Task on DBQA

Dataset Questions QA-pairs

train 8772 181882
validation 5997 122532

The quality of our DBQA system is evaluated by mean reciprocal rank
(MRR) and mean average precision (MAP) defined as:

– Mean Reciprocal Rank (MRR):

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(16)

where |Q| is the total number of questions in the evaluation set, ranki de-
notes the position of the first correct answer in the set of candidate sentences
for the i-th question.

– Mean Average Precision (MAP):

MAP =
1

|Q|

|Q|∑
i=1

AveP (Ci, Ai) (17)

Here, AveP (C,A) =
∑n

k=1(P (k)·rel(k))
min(m,n) denotes the average precision, where k

is the rank in the sequence of retrieved candidate sentences, m is the number
of correct answer sentences, n is the number of retrieved answer sentences,
P (k) is the precision at cut-off k in the list, and rel(k) is an indicator function
equaling 1 if the item at rank k is an answer sentence (0 otherwise).

3.1 Performance on the validation dataset

The experimental results of our model are listed in Table 2. It is compared with
several state-of-the-art systems that participate in the DBQA task of previous
year (NLPCC2016).

Table 2. Experimental results on the validation dataset for NLPCC2017 DBQA Task

Model MRR MAP

Fu et al. [2] 0.8592 0.8586

Wu et al. [11] 0.8120 0.8111

Wang et al. [9] 0.8008 0.8005

Our model 0.8768 0.8763

In Table 2, the model proposed by Fu et al. [2] learns to map the input sen-
tence pairs to vectors, and then to compute their similarity, which achieved the
highest MRR and MAP on the DBQA task of NLPCC2016. Wu et al. [11] pro-
posed a hybrid approach to select answer sentences by combining existing model
via the rank SVM model, which achieved the third place on the DBQA task of
NLPCC2016. Wang et al. [10] integrated count-based features and embedding-
based features together, which also achieved a good performance.

3.2 Performance on the test dataset

Table 3. Experimental results on the open test data for NLPCC2017 DBQA Task

MRR MAP

Our model 0.7202 0.7166

In addition to the train dataset and the validation dataset, the DBQA task
of NLPCC2017 also releases a test dataset where the golden answer annotations
are not provided. We obtain our submission result file as follows:

– A larger training dataset is obtained by merging the training and validation
datasets.

– On the larger training dataset, our model is trained for 20 epochs, and the
model at the final epoch is chosen to make predictions for the test dataset.

The result file by our model has achieved the highest MRR and MAP scores, as
listed in Table 3, among all the submitted result files.

4 Conclusion

In this paper, we propose to model the interaction between question words and
POS tags, as a special kind of information peculiar to question-answer pairs. Such
information gets integrated into a neural model to measure the matching degree
between questions and answer candidates. Experimental results on NLPCC2017
DBQA task have shown that this neural model has achieve better performance
when compared with several state-of-the-art systems.

Acknowledgments

This work is partially supported by National High-Tech R&D Program of China
(863 Program) (No. 2015AA015404), and Science and Technology Commission
of Shanghai Municipality (No. 14511106802). We are grateful to the anonymous
reviewers for their valuable comments.

References

1. Feng, M., Xiang, B., Glass, M.R., Wang, L., Zhou, B.: Applying deep learning to
answer selection: A study and an open task. In: Automatic Speech Recognition
and Understanding (ASRU), 2015 IEEE Workshop on. pp. 813–820. IEEE (2015)

2. Fu, J., Qiu, X., Huang, X.: Convolutional deep neural networks for document-
based question answering. In: International Conference on Computer Processing
of Oriental Languages. pp. 790–797. Springer (2016)

3. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

4. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems (NIPS). pp. 3111–3119 (2013)

5. dos Santos, C.N., Tan, M., Xiang, B., Zhou, B.: Attentive pooling networks. CoRR,
abs/1602.03609 (2016)

6. Severyn, A., Moschitti, A.: Learning to rank short text pairs with convolutional
deep neural networks. In: Proceedings of the 38th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval. pp. 373–382 (2015)

7. Srivastava, N.: Improving neural networks with dropout. Ph.D. thesis, University
of Toronto (2013)

8. Tan, M., Santos, C.d., Xiang, B., Zhou, B.: Lstm-based deep learning models for
non-factoid answer selection. arXiv preprint arXiv:1511.04108 (2015)

9. Wang, B., Niu, J., Ma, L., Zhang, Y., Zhang, L., Li, J., Zhang, P., Song, D.:
A chinese question answering approach integrating count-based and embedding-
based features. In: Natural Language Understanding and Intelligent Applications
- 5th CCF Conference on Natural Language Processing and Chinese Computing,
NLPCC 2016, and 24th International Conference on Computer Processing of Orien-
tal Languages, ICCPOL 2016, Kunming, China, December 2-6, 2016, Proceedings.
pp. 934–941 (2016)

10. Wang, D., Nyberg, E.: A long short-term memory model for answer sentence se-
lection in question answering. In: ACL (2). pp. 707–712 (2015)

11. Wu, F., Yang, M., Zhao, T., Han, Z., Zheng, D., Zhao, S.: A hybrid approach
to DBQA. In: International Conference on Computer Processing of Oriental Lan-
guages. pp. 926–933. Springer (2016)

12. Yih, W., Chang, M., Meek, C., Pastusiak, A.: Question answering using enhanced
lexical semantic models. In: Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics, Volume 1: Long Papers. pp. 1744–1753
(2013)

13. Yin, W., Schütze, H., Xiang, B., Zhou, B.: Abcnn: Attention-based convolutional
neural network for modeling sentence pairs. arXiv preprint arXiv:1512.05193 (2015)

14. Yu, L., Hermann, K.M., Blunsom, P., Pulman, S.: Deep Learning for Answer Sen-
tence Selection. In: NIPS Deep Learning Workshop (Dec 2014), http://arxiv.

org/abs/1412.1632

15. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 (2014)

