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Abstract. Human agents in technical customer support provide users
with instructional answers to solve a task. Developing a technical support
question answering (QA) system is challenging due to the broad variety
of user intents. Moreover, user questions are noisy (for example, spelling
mistakes), redundant and have various natural language expresses, which
are challenges for QA system to match user queries to corresponding
standard QA pair. In this work, we combine question intent categories
classification and semantic matching model to filter and select correct
answers from a back-end knowledge base. Using a real world user chat-
log dataset with 60 intent categories, we observe that while supervised
models, perform well on the individual classification tasks. For seman-
tic matching, we add muti-info (answer and product information) into
standard question and emphasize context information of user query (cap-
tured by GRU) into our model. Experiment results indicate that neural
multi-perspective sentence similarity networks outperform baseline mod-
els. The precision of semantic matching model is 85%.
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1 Introduction

“My Wi-Fi is not working anymore!!!” – most mobile device users probably
have faced this or similar issues in the past. Solving such questions is the task
of technical customer support agents (CSAs). For frequent questions and user
intents, for which solutions often exist in the form of user guides and question-
answering knowledge base (QA-KB), this is a repetitive and time consuming
process. For example, our QA-KB contains 242 unique standard QA pairs, and
these QA pairs are assigned to 60 intents. QA system would significantly reduce
the time CSAs have to invest in solving common intents, which they could then
focus on more complex or previously unseen customer problems.
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With the work described in this paper, we aim to automatize this task of
matching instructional answers from a QA-KB to user queries. Our work com-
bines two models, the first is question intent categories classification which for
getting candidate QA pairs from QA-KB, the second is semantic matching which
focuses on selecting the correct result from candidate QA pairs. Intent categories
classification faces a big challenge due to the broad variety of intents in QA-KB.

Fig. 1. An example of actual business data and its corresponding QA entry.

Figure 1 shows an example of real world user query and its corresponding QA
entry in QA-KB. The first field is user query, the second field is standard ques-
tion and the last one is answer. Table 1 lists statistic information of the data set.
Through careful analysis, we obtain following characteristics. First, user queries
are usually noisy (for example, spelling mistakes) and contain background or
redundant information besides true intent. Second, standard questions are typi-
cally short, concise and often realized as title-like phrases, e.g. “Add or remove
accounts” because this format is easy for user and CSAs to read. In addition, we
can see that user query is 5 times longer than standard question so it’s difficult
to match these two contents. Third, answer is quite long (the average length
is 78.2) and contains some information that related to user query. Due to the
characteristics of the data, we add answer information into standard question.
Specially, we use Gated Recurrent Unit (GRU) [1] to get context information of
user query and learn long-term dependencies before multi-perspective CNN [2].

Table 1. The statistics of data.

Num Average length(word level)

User query 6808 31.9

Standard question 242 5.2

Answer 242 78.2
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2 Related Work

Existing work on QA systems in the customer service domain has focused on
answering Ubuntu OS-related questions [3], insurance domain [4] and customer
relationship management [5]. Both studies show that it is in principle possible to
handle longer dialogs in an unsupervised fashion and answer complex questions
with the help of a noisy training set and an unstructured knowledge source.
Lowe et al. [3] use a large corpus of support dialogs in the operating system
domain to train an end-to-end dialog system for answering customer questions.
Their results indicate that end-to-end trained systems can achieve good perfor-
mance but perform poorly on dialogs that require specific domain knowledge
which the model possibly never observed. In contrast, in our work we adopt a
classical classification approach followed by semantically matching a user ques-
tion to a set of results from a QA-KB, in order to cope with the limited amount
of training data.

Most previous work on semantic matching has focused on handcrafted fea-
tures. Due to the variety of word choices and inherent ambiguities in natural
languages, bag-of-word approaches with simple surface-form word matching tend
to poor prediction precision [6]. As a result, researchers put more emphasis on
exploiting syntactic and semantic structure which are more complex and time
consuming. Representative examples include methods based on deeper seman-
tic analysis [7] and quasi-synchronous grammars [8] that match the dependency
parse trees of the two sentences. Instead of focusing on the high-level semantic
representation, Yih et al. turn their attention to improve the shallow semantic
component, lexical semantics [9].

As development of neural network, recent work has moved away from hand-
crafted features and towards modeling with distributed representations and neu-
ral network architectures. Hu et al. propose two general CNN architectures
ARC-I and ARC-II for matching two general sentences, and ARC-II consider the
interaction between input two sentences [10]. Liu et al. propose a dual attentive
neural network framework(DANN) to embed question topics and user network
structures for answer selection. DANN first learns the representation of questions
and answers by CNN. Then DANN learns interactions of questions and answers
which is guided via user network structures and semantic matching of question
topics with double attention [11]. He et al. propose a model for comparing sen-
tences that uses a multiplicity of perspectives. They first use a CNN model to
extract features at multiple levels of granularity and then use multiple similar-
ity metrics to measure sentence similarity [2]. Feng et al. create and release an
insurance domain QA corpus. The paper demonstrate 13 proposed neural net-
work model architectures for selecting the matched answer [4]. Gaurav et al.
use character n-gram embedding instead of word embedding and noisy pretrain-
ing for the task of question paraphrase identification [12]. Wu et al. propose a
multi-turn sequential matching network SMN which matches two sentences in
the context on multiple granularity, and distills important matching information
from each pair with convolution and pooling operations. And then, a recurrent
neural network (RNN) model is used to model sentence relationships [13]. These
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models either calculate the similarity of users surface form question (Qu) and
standard query (Qi) in Q-A KB or calculate the similarity of Qu and answer
(Ai). Our work comprehensive use Qu, Qi and Ai. Besides we use GRU to get
context information of Qu and learns long-term dependencies before CNN.

3 The Proposed Approach

3.1 Problem Formalization

The goal of our approach is to identify the QiAi from n candidate QA pairs
{(Q1, A1), . . . , (Qn, An)} of Q-A KB that best matches Qu. Qi is a concise and
representative question such as “Connect to a Wifi network” which prototypi-
cally stands for other questions that can be answered by Ai. Figure 1 shows the
example of an user query and the corresponding QA pair of QA-KB.

We hypothesize the QA pair that shares the most semantic similarity with
the Qu. Following a common information retrieval approach, we use a pairwise
scoring function S(QiAi, Qu) to sort all candidate of the question expressed by
user. Our method has two main steps, the first is intent category classification
to select relevant candidate QA pairs from QA-KB. The second is semantic
matching to select the best matching one from candidate QA pairs.

3.2 Intent Category Classification

Determining the correct intent category significantly reduces the number of
candidate QA pairs. The dataset contains 60 intents such as “Wifi”, “Screen
Unlock”, “Google Account”, etc.

The question intent category classifier estimates the probability p(I|Qu)
where I denotes the intent. Our baseline approaches are Gradient Boosted Deci-
sion Trees and a linear SVM. For feature extraction, the Qu is tokenized, followed
by stop-word removal and transformation into a bag-of-words representation.
The classifiers use tfidf weighted unigram and bigram features. We also imple-
ment a bidirectional LSTM model [15]. In this model, each wi ∈ Qu is represented
by an embedding ei ∈ Rd that we obtain from a set of pretrained distributed
word representations E = [e1, . . . , eW ]. The BiLSTM output is passed to a fully-
connected layer followed by a ReLU non-linearity and softmax normalization,
s.t. p(I|Qu) is computed as follows

SM(ReLU(FC(BiLSTM(E)))(Qu) (1)

3.3 Semantic Matching

In this section, we present innovative solutions that incorporate multi-info and
context information of user question into multi-perspective CNN to fulfill ques-
tion paraphrase identification. The architecture of our neural network is shown
in Fig. 2. The work has two same subnetworks that processing Qu and QiAi



Question Answering for Technical Customer Support 7

Fig. 2. Multi-perspective sentence similarity network with GRU.

in parallel after getting context by GRU. The following layer extracts features
at multiple levels of granularity and uses multiple types of pooling. After that,
sentence representations are compared with several granularities using multi-
ple similarity metrics such as cosine similarity and L2 euclidean distance that
are distilled into a matching vector followed by a linear projection and softmax
normalization.

Multi-info. To the data, Qu is quite long, Qi is short and contains less infor-
mation. Besides, the Ai is quite long and contains some information that related
to Qu. In this work, we concat Qi and Ai of QA-KB then to compute S(QiAi,
Qu). User queries are always concerned with a specific product but some related
standard questions for different products may be the same in the QA-KB. As
you can see the example “moto z plus” in Fig. 1 which is a mobile name. Due
to we do not consider the influence of different mobile, we directly replace these
mobiles by the same word “Mobile”. We use Product-KB and CRF algorithm
to recognize the mobile in Qu. The ontology of Product-KB are constructed
by senior businessmen and front-line customer service staff. Pink part of Fig. 2
indicates the structure of the Product-KB. In Product-KB, every mobile has its
surface names which are mined from huge chat log. Most surface mobile name
of Qu can be recognized by Product-KB.

Knowledge base hardly contains all mobiles and their corresponding surface
names so we use CRF to recognize the mobile as a supplement. Features of
mobile recognition are char level ngrams and word level ngrams. Maximum char
level ngrams is 6 and word level ngrams is 3.

Context Multi-perspective CNN. After getting the multi-info, the input of
our network are Qu and QiAi. Both of them need to transfer all letters to lower-
case. Given an user query Qu and a response candidate QiAi, the model looks up
an embedding table and represents Qu and QiAi as Qu=[eu,1,eu,2,...,eu,L] and
QiAi=[es,1,es,2,...,es,L] respectively, where eu,j and es,j ∈ Rd are the embed-
dings of the j-th word of Qu and QiAi respectively. L is the max length of
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the two sequences. Before feed into Multi-Perspective CNN, we first employ
a GRU to transform Qu to hidden vectors conMQu. Suppose that conMQu =
[hu,1, hu,1, . . . , hu,L] are the hidden vectors of Qu, then hu,i is defined by

zi = σ(Wzeu,i + Uzhu,i−1) (2)

ri = σ(Wreu,i + Urhu,i−1) (3)

hu,i = tanh(Wheu,i + Uh(ri � hu,i−1)) (4)

hu,i = zi � hu,i + (1 − zi) � hu,i−1 (5)

where hu,0 = 0, zi and ri are an update gate and a reset gate respectively,
σ(.) is a sigmoid function, and Wz, Wr, Wh, Uz, Ur, Uh are parameters. The
model only gets context information of Qu and learns long-term dependencies
by GRU because QiAi is not a sequential sentence. conMQu and QiAi are then
processed by the same CNN subnetworks. This work applies to multi-perspective
convolutional filters: word level filters and embedding level filters. Word level
filters operate over sliding windows while considering the full dimensionality of
the word embeddings, like typical temporal convolutional filters. The embedding
level filters focus on information at a finer granularity and operate over sliding
windows of each dimension of the word embeddings. Embedding level filters can
find and extract information from individual dimensions, while word level filters
can discover broader patterns of contextual information. We use both kinds of
filters allow more information to be extracted for richer sentence modeling.

For each output vector of a convolutional filter, the model converts it to
a scalar via a pooling layer. Pooling helps a convolutional model retain the
most prominent and prevalent features, which is helpful for robustness across
examples. One widely adopted pooling layer is max pooling, which applies a
max operation over the input vector and returns the maximum value. In addition
to max pooling, the model uses two other types of pooling, min and mean, to
extract different aspects of the filter matches.

Multi-similarity. After the sentence models produce representations for Qu
and QiAi then to calculate the similarity of their representations. One straight
forward way to compare them is to flatten their representations into two vectors,
then use standard metrics like cosine similarity. However, this may not be opti-
mal because different regions of the flattened sentence representations are from
different underlying sources. Flattening might discard useful compositional infor-
mation for computing similarity. We therefore perform structured comparisons
over particular regions of the sentence representations.

The model uses rules to identify local regions whose underlying components
are related. These rules consider whether the local regions are: (1) from the same
filter type; (2) from the convolutional filter with the same window size; (3) from
the same pooling type; (4) from the same specific filter of the underlying con-
volution filter type. Then we use same algorithms as MPCNN [2] to calculate
similarity matching vector. MPCNN use two algorithms by three similarity met-
rics(Cosine distance, L2 Euclidean distance, Manhattan distance) to compare
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local regions. The first algorithm works on the output of holistic filters only,
while the other uses the outputs of both the holistic and per-dimension filters.

4 Experiments and Discussion

We evaluate our approaches for question intent category classification, as well as
semantic matching using real world user chatlog data. Next, we will introduce
the dataset, QA-KB and experiment results separately.

4.1 Data Set

The dataset mainly consists of user and agent conversation records, in which user
question and technical answer are stated. Each conversation record includes the
full text of each utterance, chat starting and ending time, user and agent ids,
and optionally a product id and an intent category assigned by the customer
service agent. From 80216 user and agent conversation records, we extract 6808
user questions and annotated with a gold standard QA pair, an intent category
and a product id. The distribution over the top 30 intent categories (out of 60)
is shown in Fig. 4.

Fig. 3. Distribution of intent categories (top 30) for user question.

4.2 QA-KB and Product-KB

The KB module stores the answers of question and its relevant product. A dia-
gram capturing the simplified structure of the KB is depicted in Fig. 4. The
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Fig. 4. Structure of the product-KB and QA-KB.

left part is the hardware and software parameters of mobile product, such as
operating system, memory type, supported features, components and surface
names. The right part shows QA pairs that include standard question name,
corresponding answers, products, relevant slot, and an intent category. In the
current version, KB includes 20 mobile products, 242 standard questions. KB
totally includes more than 150000 triples.

4.3 Intent Category Classification

For question intent category classification experiments we split the dataset into
80/20 train and test sets, respectively. Hyper-parameter selection is done on
the training set via 5-fold cross validation and results averaged over multiple
runs are reported on the test set. For BiLSTM we use 300 dimensional GloVe
word embeddings [14]. Table 2 shows the evaluation results on the dataset. The
baselines perform, even outperforming the BiLSTM model.

Table 2. Intent Category Classification Results for User Question.

Model Precision Recall F1

GBDT 0.67 0.68 0.67

BiLSTM 0.68 0.70 0.69

SVM 0.74 0.76 0.75

From the detailed per category results (SVM) in Table 3 we find that some
categories (e.g. “Google Account and Transfer from previous Device”) achieve a



Question Answering for Technical Customer Support 11

Table 3. Intent category classification results for user question, Top 10 categories.

Model Precision Recall F1

Subsidy unlock 0.83 0.93 0.88

Screen lock 0.84 0.92 0.88

Storage 0.79 0.85 0.82

Transfer file w. PC 0.77 0.91 0.83

Lost phone 0.87 0.91 0.89

Calls 0.79 0.87 0.83

Google account 0.64 0.72 0.68

Update 0.77 0.92 0.84

Bootloader unlock 0.93 0.67 0.78

Transfer p. device 0.67 0.74 0.70

disproportional lower performance. For example, “Google Account” is often con-
fused with “Reset as a Google account” is generally a main topic when trying to
reset a device (e.g., “Android smartphone”). It is also noteworthy that “Subsidy
Unlock”, “Bootloader Unlock” and “Screen Lock” are frequently confused. This
is best illustrated by the example “Hi i need pin for unlock red to my moto
g”, which has the true category “Subsidy Unlock” but is categorized as “Screen
Lock”. Without knowledge about the mobile phones & contracts domain it is
very difficult to understand that the customer is referring to a “pin” (subsidy
unlock code) for “red” (mobile service provider) and not the actual PIN code for
unlocking the phone. This example also symbolizes a common problem in cus-
tomer support, where users unfamiliar with the domain are not able to describe
their information need in the domain-specific terminology.

4.4 Semantic Matching

For semantic matching we evaluate TFIDF and WMD as unsupervised baselines
for obtaining the most semantically similar QA pair to a given Qu. Supervised
approaches include the sequential matching network (SMN), a multi-perspective
CNN (MPCNN) with and without a GRU layer for user question encoding.

TFIDF and WDM. Our first baseline(TFIDF) use a tfidf weighted bag-of-
words representation of QiAi and Qu to estimate the semantic relatedness by
cosine similarity cos(QiAi, Qu).

The second baseline(WDM) leverages the semantic information of distributed
word representations [16]. To this end, we replace the tokens in QiAi and Qu
with their respective embeddings and then compute the word mover distance
[17] between the embeddings.
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SMN and MPCNN. In addition to the unsupervised method we also use SMN
[13] and MPCNN [2], which treats semantic matching as a classification task.
The SMN first represents QiAi and Qu by their respective sequence of word
embeddings Ei and Ek before encoding both separately with a recurrent net-
work, GRU [1] in this case. A word-word similarity matrix Mw and a sequence
similarity matrixMs is constructed from Ei and Ek, and important matching
information is distilled into a matching vector vm via a convolutional layer fol-
lowed by max-pooling. vm is further projected using a fully connected layer
followed by a softmax.

The MPCNN [2] first represents QiAi and Qu, the following layer extracts
features at multiple levels of granularity and uses multiple types of pooling.
Afterwards, sentence representations are compared with several granularities
using multiple similarity metrics such as cosine similarity and L2 euclidean dis-
tance. The results are distilled into a matching vector followed by a linear pro-
jection and softmax normalization.

Model Result. The description of MPCNN GRU model is showed in Chap. 3.4.
For all models except TF-IDF, we use 300 dimensional GloVe word embeddings
[14]. To obtain negative samples, for each Qu, we randomly select 5 standard
queries with the same intent and 5 standard queries with different intents. To
alleviate the impact of unbalanced training data, we oversample positive sam-
ples. As the standard questions Qi of most QA pairs (Qi, Ai) are usually less
then 10 tokens, we also evaluate the impact on model performance when adding
the answer Ai as additional context (up to 500 characters) to Qi. For the experi-
mentation we randomly split the dataset 80/20 into train and test set and repeat
the experiment 5 times. Hyperparameter selection is done on 10% of the training
set and results are reported on the test set.

Table 4 shows the precision of each model on the semantic matching task. We
see that the MPCNN and MPCNN GRU outperform the unsupervised baseline
approaches, with a 43% error reduction achieved with the MPCNN GRU model.
Intuitively it makes sense to provide the models with additional context that can
be used to learn a better representation of semantic similarity. Adding a GRU to
the MPCNN to encode contextual information and long-range dependencies in
the user query does not really improve performance. The SMN’s precision and

Table 4. Semantic matching results for user question.

Model Without answer With answer Average response time

TF-IDF 0.62 0.60 null

WMD 0.60 0.58 null

SMN 0.62 0.68 200ms

MPCNN 0.72 0.84 50ms

MPCNN GRU 0.72 0.85 55ms
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recall scores are much lower than those of the MPCNN models, and only slightly
higher than those of the unsupervised approaches.

Beside the precision of each semantic matching model, we also conduct exper-
iments to evaluate the efficiency of each models. The machine configuration infor-
mation in our experiment is 2 i7 CPUs with 14 cores, a memory of 125G and a
disk of 930.4G. The last column of Table 4 shows the results. From Table 4, we
can see MPCNN is faster than other two models. When adding GRU, the average
response time increases 5ms. SMN model is slowest, because the neural network
structure of SMN is more complicated than MPCNN GRU and MPCNN. The
experiment results indicate MPCNN GRU and MPCNN is capable for real time
system.

4.5 The Importance of Intent Classification for Semantic Matching

Question intent categories classification is an important step to narrow down
answer candidates. In this section, we compare models with a baseline to high-
light the effectiveness of intent categories classification. The baseline uses the
same model as MPCNN and MPCNN GRU, without intent categories classifica-
tion so the model directly matching with all QA pairs (262) in QA-KB. Table 5
indicates that the precision of semantic matching with intent outperforms base-
line models.

Table 5. Semantic matching results on baseline for User Question.

Without intent With intent

MPCNN 0.63 0.84

MPCNN GRU 0.65 0.85

5 Conclusion

In this paper we presented a approach for question answering in the complex
and little-explored domain of technical customer support. Our approach incor-
porates intent classification and semantic matching to select an answer from
knowledge base. Question intent classification for a dataset with 60 intent cate-
gories and model performs reasonably well on the individual classification tasks.
In semantic matching, we incorporate multi-info and context information into
multi-perspective CNN to fulfill question paraphrase identification. The preci-
sion of semantic matching is 85%. Our approach outperforms baseline models.
For future research, we plan to train an end-to-end model jointly add more QA
pairs into QA-KB to solve more problems of customers.
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