
Source Segment Encoding for Neural
Machine Translation

Qiang Wang1,2(B), Tong Xiao1,2, and Jingbo Zhu1,2

1 Natural Language Processing Lab, Northeastern University, Shenyang, China
{xiaotong,zhujingbo}@mail.neu.edu.cn

2 NiuTrans Inc., Shenyang, China
wangqiangneu@gmail.com

Abstract. Sequential word encoding lacks explicit representations of
structural dependencies (e.g. tree, segment) over the source words in neu-
ral machine translation. Instead of using source syntax, in this paper we
propose a source segment encoding (SSE) approach to modeling source
segments in encoding process by two methods. One is to encode off-
the-shelf n-grams of the source sentence into original source memory.
The other is to jointly learn an optimal segmentation model with the
translation model in an end-to-end manner without any supervision of
segmentation. Experimental results show that the SSE method yields an
improvement of 2.1+ BLEU points over the baselines on the Chinese-
English translation task.

Keywords: Source segment encoding · Structure learning
Neural machine translation

1 Introduction

Neural machine translation (NMT) exploits an encoder-decoder framework to
model the whole translation process in an end-to-end fashion, and has achieved
state-of-the-art performance in many language pairs [17,19,22]. For the encoder,
a popular way is to treat the source sentence as a sequence of words. In a view
point of memory network [18], the encoder reads the source sentence, and then
builds a source memory where each memory cell is corresponding to a source
word, referred to as a word-level cell.

Recent studies suggested that the sequential word encoding lacks explicit
representations of the structural dependencies (e.g. tree, segment) among the
source words [4,7,8,13]. Many studies resort to source syntax to improve word-
level representation by enhancing word embedding [13,16], guiding encoding
order [4], or learning latent graph structure of the source-side [7]. Most of these
works are required to prepare a good source parser in advance, which is scarce
for some languages and may cause the error propagation for the downstream
applications. Alternatively, [8] propose to model latent source-side segment in the
attention layer of NMT. But their method slows down the system significantly.
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 329–340, 2018.
https://doi.org/10.1007/978-3-319-99495-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_28&domain=pdf

330 Q. Wang et al.

In this paper, we develop a source segment encoding (SSE) approach to
enhancing original word-level representation by using source segment. In form,
the source segment consists of a subsequence of consecutive source words1. The
segment has the advantage of putting more emphasis on local dependencies over
the words, which is proved helpful in NMT [8]. In SSE, we propose two meth-
ods to incorporate the source segment in encoding. One is to directly encode
off-the-shelf n-grams of the source sentence into the source memory, where a
n-gram is equivalent to a segment. However, the size of segments explodes as
n gets larger. To alleviate this problem, we present the other method which
jointly learns a segmentation model with the translation model to capture an
optimal segmentation of the source sentence. The segmentation model is trained
end-to-end without any supervisions of segmented sentences. Afterwards, the
source memory is enhanced by combining the original word-level cells with the
representations of all segmentations (referred to as segment-level cells). In addi-
tion, our model is light and requires almost no modification of the standard
decoder network. We evaluate our model on Chinese→English translation task.
Experimental results on various test sets show that our model yields an average
improvement of 2.1+ BLEU points over the baseline.

2 Attention-Based NMT

Given a source sentence X = (x1, . . . , xLs
), and a target sentence Y =

(y1, . . . , yLt
), the translation probability P (Y |X) can be decomposed by the

chain rule:

P (Y |X) =
Lt∏

t=1

P (yt|y<t,X) (1)

where y<t = (y1, . . . , yt−1) denotes the previous translated sequence. The NMT
directly models the conditional probability as:

P (yt|y<t,X) = φ(H, zt−1, e
′
yt−1

) (2)

where H is the source memory of X, zt−1 is the target hidden state at the
decoding time step t − 1, e′

yt−1
is the target word embedding of the previous

generated word, φ(·) is the function of predicting the next target word.
Following the attention-based model presented in [1], we model H using a

bidirectional recurrent neural network (bi-RNN) consisting of a forward RNN
and a backward RNN [15] to represent a source sentence as a sequence of memory
cells. More formally, H = (h1, . . . , hLs

), where hi = [
−→
h i;

←−
h i] is a memory cell

constructed by the concatenation of the forward annotation vector
−→
h i and the

backward annotation vector
←−
h i:
−→
h i =

−→
f (exi

,
−→
h i−1)

←−
h i =

←−
f (exi

,
←−
h i+1)

(3)

1 Actually, the basic unit can be smaller than word, e.g. subword or character. We use
word as the basic unit of source language in this paper.

Source Segment Encoding for Neural Machine Translation 331

where
−→
f (·) and

←−
f (·) are two gated recurrent units (GRUs) [2], exi

is the source
word embedding of word xi.

At the decoding time step t, the function φ generates the distribution of next
target word using a conditional GRU2:

φ(H, zt−1, e
′
yt−1

) ∝ g(e′
yt−1

, zt, ct) (4)

where g(·) is a two-layer feedforward neural network, and ct is the context vector
as the source condition linking up the encoder and the decoder. A two-layer GRU
is used to calculate zt. The first GRU layer produces the intermediate state z̃t
based on the input (zt−1, e

′
yt−1

), and the second GRU layer produces the current
state zt with the input (z̃t, ct). ct is defined as a weighted sum of each cell in H:

ct =
Ls∑

j=1

at,j ∗ hj (5)

where at,j is the alignment weight of the j-th source word and t-th target word.
at,j is normalized over (x1, . . . , xLs

) with a single-layer feedforward neural net-
work r:

at,j =
exp{r(z̃t, hj)}∑Ls

k=1 exp{r(z̃t, hk)}
(6)

3 Source Segment Encoding

For the conventional attention model in NMT (as described in Sect. 2), every
memory cell hi makes a contribution to the context vector ct by matching its own
state hi with the decoding state z̃t, which is a case of content-based addressing
[6]. Intuitively, more cells can produce more substantial context due to various
views provided by different cells. However, for the standard model, the source
memory is built by word-level cells and the number of memory cells is limited to
be equal to the source words count. On the other hand, a segment corresponds to
a block of memory cells in a memory network. Introducing segment also makes
sense as a segment contains more hierarchical and structural information than
an independent cell. As a result, in our approach, we extend the source memory
by incorporating the segment-level cells.

Given a source sentence X, the set of all segments in X is S(X) = {Xj
i },

where Xj
i = (xi, . . . , xj), 1 ≤ i ≤ j ≤ Ls. Taking computing cost into consider-

ation, we choose a subset S̃(X) ⊂ S(X) to delegate the set of whole segments,
where |S̃(X)| = m. Then we define a function ψ(·) to encode every segment
Sk ∈ S̃(X) into a vector sk, where |sk| = |hi| = 2d, and d is the dimension
of

−→
h i. Let H = (h1, . . . , hLs

) be the baseline word-level cells as described in

2 We follow the implementation in dlmt, referred to https://github.com/nyu-dl/dl4mt-
tutorial/blob/master/docs/cgru.pdf.

https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf
https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf

332 Q. Wang et al.

Sect. 2, and S = (s1, . . . , sm) be the segment-level cells generated by ψ(·), we
concatenate all encodings together as the final source memory H∗:

H∗ =[H;S]
=[(h1, . . . , hLs

); (s1, . . . , sm)]
(7)

The advantage is that the number of the cells can be arbitrary, and is not
restricted to the length of the source sequence. Note that as we do not change
the model parameters of the original encoding, we can reuse the baseline model
when training the SSE model. Then the attention model computes the alignment
weights as usual but with the new source memory H∗ = (h∗

1, . . . , h
∗
Ls+m)3:

a∗
t,j =

exp{r(z̃t, h∗
j)}∑Ls+m

k=1 exp{r(z̃t ∗ h∗
k)}

(8)

where

c∗
t =

Ls+m∑

j=1

a∗
t,j ∗ h∗

j (9)

In the following we describe two methods for producing S = (s1, . . . , sm).

3.1 N-Gram-Based SSE

In phrase-based Statistical Machine Translation [9], all source phrases limited by
a max length are memorized explicitly in a big phrase table. When translating
a sentence, the decoder accesses the table and then generates corresponding
translations. Inspired by this, a direct way to construct S̃(X) is to use a variety
of off-the-shelf n-grams. More specifically, given the order of n-gram (i.e., n), we
can generate all possible segments S̃ng(X) = {xj

i} subject to j − i + 1 ≤ n.
Next, the core problem is how to represent a segment. Instead of encod-

ing a segment using the last hidden state of recurrent neural network [2],

Fig. 1. An example of RNN-MINUS for encoding a segment. The dotted rounded
rectangle denotes the encoded segment. <s> and </s> represent the beginning and
ending of a sentence respectively, with dummy vectors.

3 We share the same model parameters for aligning the word-level cells and the
segment-level cells. Independent parameters may bring further improvement, which
needs our further investigation.

Source Segment Encoding for Neural Machine Translation 333

we follow the span encoding in syntactic parsing [3,21]. Here we refer to
this method as RNN-MINUS. Given the bidirectional RNN encoding H =
{[

−→
h 1;

←−
h 1], . . . , [

−→
h Ls

;
←−
h Ls

]}, RNN-MINUS encodes a segment xj
i as:

ψng(x
j
i) = [

−→
h j − −→

h i−1;
←−
h i − ←−

h j+1] (10)

For the beginning and ending of the sequence, we add dummy vectors
−→
h 0 =

0 and
←−
h Ls+1 = 0 to make Eq. (10) feasible. See Fig. 1 for the RNN-MINUS

encoding of an example sequence.
The idea behind RNN-MINUS is simple: assuming that the information

before entering a segment is Is (i.e., information of {x1, . . . , xs−1}), and the infor-
mation after passing through this segment is Ie (i.e., information of {x1, . . . , xe}),
then we can regard the information offered by this segment as Ie − Is. In NMT,
we generally regard the hidden state of bidirectional RNN in each time step as
the corresponding encoded information. Therefore, for segment xj

i , the left-to-
right information offered by the forward RNN can be represented as

−→
h j −−→

h i−1.
Likewise, the right-to-left information for xj

i is represented as
←−
h i − ←−

h j+1.
It is worth noting that although RNN-MINUS generates encodings for each

individual segment, it is still context dependent. As [
−→
h i;

←−
h i] encodes the left

and right contexts of the position i, the value of the subtraction of these vec-
tors may vary in different contexts. In other words, the same segment can have
different representations when the surrounding context changes. In addition,
RNN-MINUS is based on the existing encoding representations with no increase
in model size.

3.2 Joint-Learning-Based SSE

The n-gram-based SSE is straightforward but the size of used segments scales
linearly with the order of n. In consequence, the encoding of segments consumes
more memory space (especially for GPU) and slows down the system. As a result,
we propose to an end-to-end joint learning of both source segmentation model
and translation model, which can learn a latent and optimal segmentation of a
source sentence rather than accessing all possible segments.

To determine a segment, we define two tags B and M for each position in
the source sequence like [14], where B denotes the beginning of a segment, and
M denotes the case of the middle. Then we build an identifier layer on top of the
bi-RNN encoder to estimate the probability of the identity tag of each position,
which can be regarded as a sequence labeling problem with two tags in each
position. In this work we model this problem using a uni-directional GRU layer
Layergru followed by a two-layer feedforward neural network Layerfnn. Figure 2
illustrates the network architecture of the identifier layer. The final result is a
scalar denoting the probability of B for the position j, which is computed as:

P (B|j) = sigmoid(W1 ∗ oj + b1)
oj = tanh(W2 ∗ vj + b2)
vj = gru(hj , vj−1)

(11)

334 Q. Wang et al.

Fig. 2. An example of learning latent segments in the identifier layer. The tag of each
position is induced from existing encoding representations by bi-RNN. S denotes the
learned segments. In this case, our model compresses the source sequence with 5 words
into 3 segments.

where oj ∈ R
di×1, vj ∈ R

di×1 are the outputs of the first layer of Layerfnn and
Layergru respectively. di is the dimension of the hidden states in the identifier
layer. W1 ∈ R

1×di , b1 ∈ R
1, W2 ∈ R

di×di , b2 ∈ R
di are model parameters in

Layerfnn. P (M|j) can be obtained by 1 − P (B|j). Then, we infer the tag for
each position as follows:

T (j) =

⎧
⎨

⎩

B j = 1
B j 	= 1, P (B|j) ≥ P (M|j)
M j 	= 1, P (B|j) < P (M|j)

(12)

To prevent the sequence of illegal tags, we always assign B to the begin-
ning position. After having the tag for each position, we can take every word
sequence between two Bs as an identified segment. For example, the tag
sequence (B1,B2,M3,M4,B5) contains 3 segments (1, 1), (2, 4), (5, 5). Obviously,
the obtained segments essentially define a segmentation of the sentence.

However, unfortunately, we cannot use RNN-MINUS directly to represent the
learned segments as the increased model parameters in identifier layer are not
reachable during back-propagation4. To learn these parameters, we follow the
idea used in the local attention model [12]. We explicitly make these parameters

4 These parameters control the decisions of segmentation, and are not differentiable
with respect to the loss of translation, which is a similar problem to hard attention
model [24]. The hard attention model picks up a determined source word to align,
whereas our model chooses a determined segmentation of source sentence.

Source Segment Encoding for Neural Machine Translation 335

part of the translation model, and define the encoding of xj
i with its boundary

confidence, as follows:

ψjl(x
j
i) = [β

−→
h j − α

−→
h i−1;α

←−
h i − β

←−
h j+1]

α = P (B|i)
β = P (M|j)

(13)

In this model, α and β are the left-boundary confidence and the right-boundary
confidence of a segment respectively. By using the encoding method defined
in Eq. 13, the increased parameters as part of the model can be learned in the
standard back-propagation procedure. The boundary confidence also can be seen
as a special case of dropout [10], which can alleviate the segmentation errors to
some extent and improve the robustness of our segmentation model.

4 Experiments

4.1 Setup

We evaluated our proposed approach on word-based Chinese→English transla-
tion task. We used part bitext provided within NIST12 OpenMT5 and we chose
NIST 2006 (MT06) as the validation set, and 2004 (MT04), 2005 (MT05), 2008
(MT08) as the test sets. All the sentences of more than 50 words were filtered out.
Data on both sides was tokenized by an in-house implement, where the Chinese-
side data was segmented based on n-gram language model. The resulting training
data consisted of 1.85M sentence pairs. We limited the vocabularies to the most
frequent 30K words in Chinese and English. All the out-of-vocabulary words
were replaced with <UNK>.

Table 1. Translation results (BLEU score) on Chinese→English tasks. WC denotes the
standard encoding of word-level cells, while SC-ngram and SC-joint denotes segment-
level cells using our n-gram-based SSE and joint-learning-based SSE respectively.

Valid. Test
� System MT06 MT04 MT05 MT08 Ave.
1 PBSMT 32.09 36.65 31.30 25.99 31.31
2 NMT baseline (WC) 36.88 43.14 36.02 29.57 36.24
3 + SC-ngram (n=1) 38.31 44.55 37.20 30.15 37.30
4 + SC-ngram (n=4) 38.48 44.67 37.58 30.28 37.51
5 + SC-joint 39.26 45.69 38.17 31.19 38.35
6 SC-ngram (n=1) 37.24 43.65 35.73 29.56 36.31
7 SC-ngram (n=4) 38.67 44.95 37.81 30.63 37.80
8 SC-joint 20.39 23.32 18.26 14.59 18.72

5 LDC2000T46, LDC2000T47, LDC2000T50, LDC2003E14, LDC2005T10,
LDC2002E18, LDC2007T09, LDC2004T08.

336 Q. Wang et al.

The sizes of both source and target word embedding were set to 512. We set
d = 1024 and di = 100 respectively. We followed [17] and used the same dropout
mask at each time step, with the dropout probability of 0.1 for full words and
0.2 for other layers. We trained all the NMT models using stochastic gradient
algorithm Adadelta [25] with mini-batch size of 80. The baseline NMT models
were tuned for 10 epochs and then finetuned by fixing the both source and
target embeddings for 10 epochs. Our models were further tuned and finetuned
based on the well-tuned baseline NMT model. At test time, we employed beam
search with the beam size of 12. All the translation results were evaluated by
case-insensitive BLEU-4 metric using mteval-v13a.pl. In our experiments, we
compared our method with two baselines learned on the same bilingual training
data. One is the phrase-based system provided within the NiuTrans open-source
SMT toolkit [23]. The other is a standard attention-based NMT system using
bidirectional RNN as encoder.

5 Results and Analysis

5.1 Evaluation of Translations

Table 1 shows the BLEU scores in different settings. We can see that all the
NMT systems benefit from the combination of our segment-level cells (�3–5). It
confirms that explicitly incorporating bigger linguistic units in encoding helps.
This result also agrees with the findings in [4].

In particular, the best result is obtained by combining the word-level cells
with the joint-learning-based SSE (�5), which yields an average improvement of
2.1+ BLEU points than the NMT baseline (�2). It suggests that learning the
segmentation model along with the translation process jointly is effective, even
without any supervisions of segmentation. The segmentation errors caused by
our segmentation model do not present heavy hurt for translation performance.

Compared row 4 with row 5, the joint-learning-based SSE is more effective
than simply arranging all the possible n-grams. More interestingly, we find that
if we only use the segment-level cells in joint-learning-based SSE (�8), the trans-
lation performance will decrease dramatically. The reason could be that the
segment-level cells are sketchy representations of the source sentence, while the
more concrete representations are contained in word-level cells.

Consider n-gram-based SSE, when n = 1, using the combination of word-level
cells with segment-level cells (�3) outperforms approximate 1.0 BLEU point than
using segment-level cells alone (�6). But it is worth noting that using indepen-
dent segment-level cells of n = 1 (�6) obtains an almost identical performance
compared to the baseline (�2). A possible explanation is that the encoding of
segment with length 1 is different from conventional word-level cells. That is, the
segment is represented by the subtraction of adjacent states and the resulting
can put more emphasis on the meaning of the independent word. However, the
explicit meaning of word is ambiguous in standard encoding procedures as the
bidirectional RNN gives a global meaning in each position.

Source Segment Encoding for Neural Machine Translation 337

To our surprise, the superiority of combination disappears when n = 4 (�4
vs. �7). It seems that the word-level cells do not play their part and are drowned
when mixed with bigger segments. It indicates that using context-sensitive local
encoding is comparable to global encoding based on RNN. This finding is con-
sistent with the result in [5]. [5] use a convolution neural network with position
embedding, which can be seen as a case of context-sensitive local encoding.

Fig. 3. Translation performance and Speed (words/second) with different n using n-
gram-based SSE in Chinese→English task. Average length of source sentence in test
set for inference is 24 words.

5.2 Impact of n

Figure 3(a) shows the BLEU scores on all the test sets along with different set-
tings of n. We only compare the segment-level cells in order to eliminate the
effect of the standard word-level cells. It is obvious that BLEU is improved as
n increases. The best result is achieved when n = 4, with sharp decreases as
n grows bigger. The largest gap is 1.49 BLEU points in all test tests averagely
(n = 4 vs. n = 1). It is an evidence that the translation model can generate
better translation results by observing more source contexts. It is also consis-
tent with our intuition that learning and memorizing more source segments are
important in the translation process. However, when n is too large (n > 4 in
our experiments), BLEU starts to drop sharply meaning that current model is
saturated and can not benefit from more cells. We also plot the system speed
as a function of n (Fig. 3(b)). As expected, a choice of larger n slows down the
system. Together with the BLEU results in Fig. 3(a), it suggests that choosing
n around 3 is optimal for trade-off of BLEU improvement and speed decrease.

5.3 Samples of Learned Segments

Table 2 presents three samples of the learned source segments by our joint-
learning-based SSE in Chinese→English task. An interesting finding is that our

338 Q. Wang et al.

Table 2. Samples of learned source segments in Chinese→English translation task. A
red rectangle denotes a segment.

model appears capable of capturing the positions of subject, verb and tem-
poral adverbial. For example, “zhōngguó” (“China” in English), “r̀ıběn
zēngzhǎng sùdù” (“the growth rate of Japanese economic” in English) is the sub-
jects of the 1st and 2nd samples respectively; “cǎigòu” (“purchase” in English),
“ ” (“implement” in English) is the verbs of the 1st and 3rd samples respec-
tively; “mı́ngnián” (“next year” in English) is the temporal adverbial of the 2nd
sample. Note that the segmentation model is trained without any supervisions
of segmented sentences, and learned absolutely from the translation procedures.

6 Related Work

The essence of our model is to improve the original encoder network. Apart from
those syntax-enhancement methods as introduced in Sect. 1 [4,7,13,16], multi-
task learning and deeper network can also enhance the representational power
of the encoder.

In multi-task learning framework, the encoder network is shared in different
tasks, which can benefit from joint objective function. The translation model
can be trained with the source syntax parsing task in [11], or with the source
reorder task in [26]. Both these methods require other external resources, such as
human-annotated treebanks or source-side monolingual data, whereas our model
only needs bitext data for translation model.

Deeper encoder network models have also been successfully employed in
NMT. [27] introduce the fast-forward connections method to train a deep Long
Short-Term Memory (LSTM) network (18 LSTM layers) as the encoder. Also,
[5] propose a deep convolutional encoder with source position embedding. These
models have a high cost for training and inference, whereas our model is light
and easy to be implemented. It is worth noting that [5] also can be seen as a
case of modeling segment in some sense due to the local filters in convolution
neural network. However, our model is still based on recurrent neural network.

Another related work is [20], which apply a pre-prepared phrase table to
label the source phrases and can directly generate a target phrase at one step.
By contrast, our approach learns all segments without any supervision.

Source Segment Encoding for Neural Machine Translation 339

7 Conclusion

In this paper, we propose two simple yet effective methods to explicitly model
the source segments in the encoder of attention-based NMT. In the first method,
we directly encode off-the-shelf n-grams of the source sentence into source mem-
ory. In the second method, we jointly learn a segmentation model with transla-
tion model in the end-to-end manner. Both of the methods require no external
resources (e.g. segmented sentences). Experimental results on the word-based
Chinese-to-English translation task show that our method outperforms the base-
line significantly. It is observed that using larger linguistic unit helps and gives
further improvements on top of the word-based NMT system. In addition, we
give an evidence that context-sensitive local encoding is comparable to global
encoding based on recurrent neural network. Also, we present that the auto-
matically learned segmentation model is sensitive to some key constituents of a
sentence (e.g. subject, verb, temporal adverbial) in some cases.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: Proceedings of the 3rd International Conference on
Learning Representations (2015)

2. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pp. 1724–1734. Associa-
tion for Computational Linguistics (2014)

3. Cross, J., Huang, L.: Span-based constituency parsing with a structure-label system
and provably optimal dynamic oracles. In: Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pp. 1–11. Association for
Computational Linguistics (2016)

4. Eriguchi, A., Hashimoto, K., Tsuruoka, Y.: Tree-to-sequence attentional neural
machine translation. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 823–833. Association
for Computational Linguistics (2016)

5. Gehring, J., Auli, M., Grangier, D., Dauphin, Y.N.: A convolutional encoder model
for neural machine translation. arXiv preprint arXiv:1611.02344 (2016)

6. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint
arXiv:1410.5401 (2014)

7. Hashimoto, K., Tsuruoka, Y.: Neural machine translation with source-side latent
graph parsing. arXiv preprint arXiv:1702.02265 (2017)

8. Kim, Y., Denton, C., Hoang, L., Rush, A.M.: Structured attention networks. arXiv
preprint arXiv:1702.00887 (2017)

9. Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: Proceed-
ings of the 2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology-Volume 1, pp. 48–54.
Association for Computational Linguistics (2003)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

http://arxiv.org/abs/1611.02344
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1702.02265
http://arxiv.org/abs/1702.00887

340 Q. Wang et al.

11. Luong, M.T., Le, Q.V., Sutskever, I., Vinyals, O., Kaiser, L.: Multi-task sequence
to sequence learning. arXiv preprint arXiv:1511.06114 (2015)

12. Luong, T., Pham, H., Manning, D.C.: Effective approaches to attention-based neu-
ral machine translation. In: Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1412–1421. Association for Computational
Linguistics (2015)

13. Nadejde, M., Reddy, S., Sennrich, R., Dwojak, T., Junczys-Dowmunt, M., Koehn,
P., Birch, A.: Syntax-aware neural machine translation using CCG. arXiv preprint
arXiv:1702.01147 (2017)

14. Peng, F., Feng, F., McCallum, A.: Chinese segmentation and new word detec-
tion using conditional random fields. In: COLING 2004: Proceedings of the 20th
International Conference on Computational Linguistics (2004)

15. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Sig. Process. 45(11), 2673–2681 (1997)

16. Sennrich, R., Haddow, B.: Linguistic input features improve neural machine trans-
lation. In: Proceedings of the First Conference on Machine Translation: Volume 1,
Research Papers, pp. 83–91. Association for Computational Linguistics (2016)

17. Sennrich, R., Haddow, B., Birch, A.: Edinburgh neural machine translation sys-
tems for WMT 16. In: Proceedings of the First Conference on Machine Translation:
Volume 2, Shared Task Papers, pp. 371–376. Association for Computational Lin-
guistics (2016)

18. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In:
Advances in Neural Information Processing Systems, pp. 2440–2448 (2015)

19. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

20. Tang, Y., Meng, F., Lu, Z., Li, H., Yu, P.L.: Neural machine translation with
external phrase memory. arXiv preprint arXiv:1606.01792 (2016)

21. Wang, W., Chang, B.: Graph-based dependency parsing with bidirectional LSTM.
In: Proceedings of ACL, vol 1, pp. 2306–2315 (2016)

22. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144 (2016)

23. Xiao, T., Zhu, J., Zhang, H., Li, Q.: NiuTrans: an open source toolkit for phrase-
based and syntax-based machine translation. In: Proceedings of the ACL 2012 Sys-
tem Demonstrations, pp. 19–24. Association for Computational Linguistics (2012)

24. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.C., Salakhutdinov, R., Zemel,
R.S., Bengio, Y.: Show, attend and tell: neural image caption generation with
visual attention. In: ICML, vol. 14, pp. 77–81 (2015)

25. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

26. Zhang, J., Zong, C.: Exploiting source-side monolingual data in neural machine
translation. In: Proceedings of EMNLP (2016)

27. Zhou, J., Cao, Y., Wang, X., Li, P., Xu, W.: Deep recurrent models with fast-
forward connections for neural machine translation. Trans. Assoc. Comput. Lin-
guist. 4, 371–383 (2016)

http://arxiv.org/abs/1511.06114
http://arxiv.org/abs/1702.01147
http://arxiv.org/abs/1606.01792
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1212.5701

	Source Segment Encoding for Neural Machine Translation
	1 Introduction
	2 Attention-Based NMT
	3 Source Segment Encoding
	3.1 N-Gram-Based SSE
	3.2 Joint-Learning-Based SSE

	4 Experiments
	4.1 Setup

	5 Results and Analysis
	5.1 Evaluation of Translations
	5.2 Impact of n
	5.3 Samples of Learned Segments

	6 Related Work
	7 Conclusion
	References

