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Abstract. Almost all the state-of-the-art methods for Character-based Chinese
dependency parsing ignore the complete dependency subtree information built
during the parsing process, which is crucial for parsing the rest part of the
sentence. In this paper, we introduce a novel neural network architecture to
capture dependency subtree feature. We extend and improve recent works in
neural joint model for Chinese word segmentation, POS tagging and depen-
dency parsing, and adopt bidirectional LSTM to learn n-gram feature repre-
sentation and context information. The neural network and bidirectional LSTMs
are trained jointly with the parser objective, resulting in very effective feature
extractors for parsing. Finally, we conduct experiments on Penn Chinese
Treebank 5, and demonstrate the effectiveness of the approach by applying it to
a greedy transition-based parser. The results show that our model outperforms
the state-of-the-art neural joint models in Chinese word segmentation, POS
tagging and dependency parsing.
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1 Introduction

Transition-based parsers [1–4] have been shown to be both fast and efficient for
dependency parsing. These dependency parsers can be very accurate for languages that
have natural separators such as blanks between words, but for Chinese that do not
contain natural separators, these parsers maybe get worse.

One reason for the lower accuracy of Chinese dependency parser is error propa-
gation: Chinese dependency parsing requires word segmentation and POS tagging as
pre-processing steps; once the pipeline model makes an error in word segmentation,
more errors are likely to follow. In order to address the issue, transition-based Chinese
word segmentation, POS tagging and dependency parsing joint model are proposed,
jointly learning the three tasks [5–8]. Modern approaches to joint model can be broadly
categorized into feature engineering joint model and neural joint model. The feature
engineering joint model [5–7] needs to manually define a large number of feature
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templates, and extracts the features from feature templates. The neural joint model [8]
automatically extracts features by neural network such as RNN or LSTM, and then uses
a small number of feature templates for model parsing and decision. These models
perform better than pipeline models, but they ignore the complete dependency subtree
feature, which has been proven to be an effective information for improving model
performance in previous works [9–11].

In this paper, to improve Character-based dependency parsing, we extend the work
of Kurita [8] using bidirectional LSTMs to learn n-gram feature and context infor-
mation, and introduce a novel neural network architecture to encode the built depen-
dency subtrees information, which use richer information and avoiding feature
engineering. The neural network architecture is a stack structure combined with LSTM
cell and Tree LSTM cell, called Stack-Tree LSTM, which can capture all the built
dependency subtrees information. Then the subtree feature and n-gram feature are fed
into a neural network classifier to make parsing decisions within a transition-based
dependency parsing.

In the experiments, we evaluate our parser on the CTB-5 dataset and experimental
results show that F1 scores of the Chinese word segmentation, POS tagging and
dependency parsing reach 97.78%, 93.51% and 79.66% respectively, which are better
than the baseline model in each task.

2 Related Work

In Chinese, the character-based dependency parsing solution was first proposed in
Hatori [5]. He assumed that there was a dependency between the characters in the
internal words, and unified the three tasks in one framework. The benefit of the
solutions is that it can start with the character-level, and Chinese word segmentation,
POS tagging and dependency parsing can be done in a joint framework, which
improves the accuracies of three tasks and does not suffer from the error propagation.
Zhang [6] studied the character-based Chinese dependency parsing by using pseudo
and annotated word structures, and obtained better accuracies on three tasks. Moreover,
they further analyzed some important factors for intra-word dependencies and
demonstrated that intra-word dependencies can improve the performance of the three
tasks. Guo [7] proposed a solution to transform the conventional word-based depen-
dency tree into character-based dependency tree by using the internal structure of
words and proposed a semi-supervised joint model for exploiting 2-g string feature and
2-g dependency subtree feature.

These methods achieve high accuracy on three tasks but rely heavily on feature
engineering, which requires a lot of expertise and is usually incomplete. In addition,
these methods are not able to learn the context information of the sentence being
parsing. Recently, Kurita [8] proposed the first neural joint parsing model and explored
the neural network with few features using n-gram bidirectional LSTMs avoiding the
detailed feature engineering. Our model is similar to theirs. However, these methods
are lacking in that it cannot capture all word dependencies in a subtree and all
dependency subtrees. To provide richer information, we consider all word dependen-
cies by using subtree distributional representation.
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Specific to the subtree representation, Dyer [9] developed the Stack Long Short-
Term Memory (Stack LSTM) architecture, which does incorporate recursive neural
network and look-ahead, and yields high accuracy on the word-level dependency
parsing. However, the architecture has a risk of suffering from gradient vanishing when
dealing with deep subtrees. In this paper, we solve the issue by using Tree LSTM [10]
in the Stack LSTM, which has similar gates to LSTM cell and has the capability to
memorize important information and forget unimportant one.

3 Character-Level Neural Network Parser

In this section, we describe the architecture of our model and its main components,
which is summarized in Fig. 1. Our model is clearly inspired by and based on the work
of Kurita [8], which uses four bidirectional LSTMs to capture N-gram feature. There
are a few structural differences: (1) we use Stack-Tree LSTM to capture dependency
subtrees feature, (2) we use the POS tags to participate in actions decision.

3.1 Transition System

Transition-based dependency parsing scan an input sentence from left to right, and
perform a sequence of transition actions to predict its parse tree. The input sentence is

Fig. 1. The neural joint model for Chinese word segmentation, POS tagging and dependency
parsing. The model consists of four bidirectional LSTM for extracting n-gram feature, Stack
Tree LSTM for extracting subtree feature and MLP for predicting the possible action. Parser state
computation encountered while parsing the sentence “技术有了新的进展”. si represents the
i + 1th element of the top of the stack; b0 represents the first element of the buffer.
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put into a buffer and partially built tree fragments are organized by a stack. Paring starts
with an empty stack and a buffer consisting of the whole input sentence. As the basis of
our parser, we employ the arc-standard system [2] for dependency parsing, one of the
popular transition systems, and follow Hatori [5] to modify the system for character-
level transition, for which the actions are:

• SH (t) (shift): Move the front character b0 from the buffer onto the top of the stack
as a new word, and the POS tag t is attached to the word.

• AP (append): Append the front character b0 of the buffer to the end of the top word
of the stack.

• RR (reduce-right): Add a right arc between the top element s0 and the second top
element s1 on the stack (s1!s0), and remove s0 from the stack.

• RL (reduce-left): Add a left arc between the top element s0 and the second top
element s1 on the stack (s1←s0), and remove s1 from the stack.

In the character-level transition system, while the goal of SH(t) and AP operations
is to construct a new word, where each word is initialized by the action SH(t) whereas
AP makes the word longer by adding one character, the goal of RR and RL operations
is to construct a dependency subtree. In this paper, we examine only greedy parsing,
and this class of parsers is of great interest because of their efficiency. At each time
step, a transition action is taken to consume the characters from the buffer and build the
dependency tree.

3.2 Subtree Feature Layer

Inspired by Dyer [9], we propose a novel neural network (Stack-Tree LSTM) archi-
tecture that integrates Stack LSTM and Tree LSTM, improving the representational
capacity of Stack LSTM and solving the problem of Tree LSTM that all built subtrees
information cannot be captured at the same time. The neural network architecture is
presented in Fig. 2. When the input of the stack node is a subtree, the LSTM cell is
replaced by Tree LSTM cell in the stack. And the inputs of the Tree LSTM cell are the
right child representation and left child representation encoded by the Tree LSTM.

Specifically, when SH operation is performed, the top item on the stack provides
previous time state and a new LSTM cell is pushed into the stack. The new state is
computed by the LSTM cell and the cell’s input is the character vector to be shifted.
Different with SH operation, AP operation updates the stack state by using appended
character string vector.

When RL or RR operation is performed, the representations of top two items are
popped off of the stack and fed into a Tree LSTM cell. Intuitively, the Tree LSTM cell
combines two vectors representations from the stack into another vector, which rep-
resents a new dependency subtree and historical information. For example, in Fig. 1(d),
a new dependency tree is built, where w4 is the head node and w5 is the dependency
node, and the result of the Tree LSTM cell, namely new state, are computed as follows:
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Where r is the sigmoid activation function, * is the elementwise product. The
resulting vector embeds the subtree in the same space as the words and other subtrees.

At each time step, all built subtrees are encoded by Stack-Tree LSTM, which
integrates all items information to the top item of the stack. By querying the
d-dimensional vector stop of the top item, a continuous-space embedding of the contents
of the current stack state is available. Then the stop is fed into multi-layer perceptron
(MLP) to predict the next possible transition action. When a predicted transition action
is performed, the state of the stack will be updated and the output at the top of the stack
will represent the new stack state.

3.3 N-Gram Feature Layer

A k-dimensional n-gram feature representation of each character is learned in this layer.
Given n-characters input sentence s with characters c1, …, cn, we extract the uni-gram
features ci, bi-gram character string cici+1, tri-gram character string cici+1ci+2 and four-
gram character string cici+1ci+2ci+3, and create four sequences of input vectors uni1:n,
bi1:n, tri1:n, and four1:n, in which all n-gram embeddings are given by the embedding of
words and characters or the dynamically generated embedding of character strings.

Fig. 2. The Stack Tree LSTM consists of LSTM cell and Tree LSTM cell. The figures show
four configurations: (a) a stack with the input of two words w1, w4 and a subtree, (b) the result of
a SH operation to this, (c) the result of a AP operation to (b), and (d) the result of applying a RR
operation. The top pointer is used to access the output of the network.
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And then these four sequences are fed as input to four bidirectional LSTMs respec-
tively. These bidirectional LSTMs capture the input element with their contexts, which
learn a good feature representation for parsing.

In this paper, a simple feature function / cð Þ is used to extract four atomic features
from a parsing configuration, which consists of the top 3 items on the stack and the first
item on the buffer. Given a parse configuration q = (…|s2|s1|s0, b0|…), the feature
function is defined as:

/ cð Þ ¼ ts2 � ts1 � ts0 � tb0 ð4Þ

vi ¼ biLSTMuni ið Þ � biLSTMbi ið Þ � biLSTMtri ið Þ � biLSTMfour ið Þ ð5Þ

Where � is the concatenate operation.

3.4 Actions Decision Layer

This layer learns a classifier to predict the correct transition actions, based on n-gram
features and subtree features extracted from the configuration itself. We implement
three hidden layers composed h rectified linear units (Relu).

First, two feed-forward neural layers with Relu activation function project the
n-gram layer’s output from 4 k-dimensional vector space into a h-dimensional vector
space. The purpose of the two layers is to fine-tune the n-gram feature embedding,
which helps the model to capture deeper n-gram feature and more effective global
information. Next, the resulting embedding h2 is concatenated with the output stop of
Stack-Tree LSTM, and fed into the last hidden layer with Relu activation function.

h3 ¼ max 0;Wcom h2 � stop
� �þ bcom

� � ð6Þ

Where Wcom 2 R
h� hþ dð Þ is the learned parameter matrix, bcom 2 R

h is bias term.
Finally, h3 is mapped into a softmax layer that outputs class probabilities for each

possible transition operation:

p ¼ softmax Wh3ð Þ ð7Þ

Where W 2 R
m�h and m is the number of transition actions.

3.5 Training

Given a set of training examples, the training objective of the greedy neural joint parser
is to minimize the cross-entropy loss, plus a l2-regularization term:

L hð Þ ¼ �
X

i �A
logpi þ k

2
hk k2 ð8Þ

A is the set of all gold actions in the training data and h is the set of all parameters.
The parameters are learned by minimizing the loss on the training data via the Adam
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optimizer [12]. The initial learning rate is 0.001. To avoid overfitting, we use dropout
[13] with the rate of 0.5 for regularization, which is applied to all feedforward
connections.

4 Word and String Representation

In n-gram layer, we prepare the same training corpus with the segmented word files and
the segmented character files. Both files are concatenated and learned by word2vec
[14]. The characters and words are embedded in the same vector space during pre-
training. The embedding of the unknown character string, consisting of character
c1, c2, …, cn, is obtained by the mean of each character embedding v(ci) it contains.
Embeddings of words, characters and character strings have the same dimension.

In subtree feature layer, when a character string becomes a word, the embedding of
the word is queried in the pre-trained embeddings, if not, the same way encoding for
unknown character string is adopted to get the word embedding. Different with Kurita
[8], we use the predicted POS tags in our model, provided as auxiliary input to the
parser. Specifically, the predicted POS tag embedding t of the word is concatenated
with the word embedding w. A linear map is applied to the resulting vector and passed
through a component-wise Relu.

v ¼ max 0;Wword w; t½ � þ bwordf g ð9Þ

The POS embedding and word embedding are learned together with the model.

5 Experiments

5.1 Experimental Settings

In this section, we evaluate our parsing model on the Penn Chinese Treebank 5.1
(CTB-5), splitting the corpora into training, development and test sets, following the
splitting of [15]. The development set is used for parameter tuning. Pre-trained word
and characters embeddings are learned from the Gigaword corpus and word2vec [14],
as segmented by the Stanford Chinese Segmenter [16].

We use standard measures of word-level precision, recall, and F1 score to evaluate
model performance on three tasks, following previous works [5–8]. Dependency
parsing task is evaluated with the unlabeled attachment scores excluding punctuations.
The POS tags and dependencies cannot be correct unless the corresponding words are
segmented correctly.

Dimensionality. Our model sets dimensionalities as follows. Bidirectional LSTM and
Stack Tree LSTM hidden states are of size 200. Embeddings of POS tags used in Stack
Tree LSTM have 32 dimensions. Pre-trained word and character embeddings have 200
dimensions and three hidden layers in classifier have 400 dimensions.
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5.2 Experimental Results and Analysis

Effects of Different Composition Methods in Joint Model. We conducted experi-
ments to verify the capability of the Stack-Tree LSTM (ST-LSTM) on the dependency
tree representations. We compare our ST-LSTM with three popular composition
methods: Stack LSTM [9], recursive convolutional neural network [11], and a com-
position function based on bidirectional LSTM [17]. Table 1 show the comparison of
F1 scores on three tasks. Clearly, our model is superior in terms of POS tagging and
dependency parsing. However, we notice that the composition function of recursive
convolutional neural network outperforms our model on Chinese word segmentation
tasks. A likely reason for the close performance with our model may be the feature of
relative distance between words. In future work, we also try to use distance feature to
improve model performance.

Effects of POS Tags in Joint Model. Furthermore, we also conducted experiments to
test the effectiveness of the predicted POS tagging on each task. We implemented two
model: ST-LSTM and ST-LSTM model without POS tags (–POS). Concretely, we use
predicted POS tagging and pre-trained embedding as word representations in
ST-LSTM, but we only use pre-trained embedding as word representations in –POS.
As shown in Table 3, performance of model without POS tags is weaker than the basic
model in word segmentation and dependency parsing. In contrast, the basic model with
POS tags gives a 0.21% accuracy improvement in dependency parsing.

Final Results. Table 2 shows the final test results of our parser for Chinese word
segmentation, POS tagging and dependency parsing. Considering that the model
proposed can extract the information of children’s nodes, we only implement the
feature function of four features. We also include in the table results from the first joint
parser of Hatori [5], the using inter-word dependencies and intra-word dependencies
parser of Guo [7], the arc-eager model of Zhang [6], the feature based parser of Kurita
[8], and the n-gram bidirectional LSTM greedy model with four and eight features of
Kurita [8].

Overall, our parser substantially outperforms the four features n-gram bidirectional
LSTM model of Kurita [8], both in the full configuration and in the –POS conditions
we report. Moreover, we find that our model can learn better dependency tree repre-
sentations and achieve higher accuracies in each task than other composition function.
And we note that this is a significant improvement in dependency parsing only after

Table 1. Experimental results for different composition functions. S-LSTM, B-LSTM, and
RCNN denote Stack LSTM, bidirectional LSTM and recursive convolutional neural network
respectively. ST-LSTM denotes Stack-Tree LSTM.

Seg POS Dep

S-LSTM 97.71 93.36 79.21
B-LSTM 96.69 92.10 79.02
RCNN 98.03 93.35 79.58
ST-LSTM 97.78 93.51 79.66
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using predicted POS information in word representation. Our model performs slightly
worse than these joint models using large feature set, but we do not rely on feature
engineering.

6 Conclusion

In this paper, we introduced Stack-Tree LSTM, a novel composition function to encode
dependency subtrees from characters and words for Chinese word segmentation, POS
tagging and dependency parsing. Our model only relies on effectively feature function
and architecture design, and is able to automatically learn these useful features for
making decision. Through a series of experiments, we demonstrated that our approach
provides substantial improvement over the baseline methods, by capturing the subtree
nodes information and more dependency structures.

In the future, we will expand the scale of the experiment and further verify the
effectiveness of the proposed method. In addition, we further explore better way to
learning dependency trees representations.
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