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Abstract. Network Embedding is a process of learning low-dimensional
representation vectors of nodes by comprehensively utilizing network
characteristics. Besides structure properties, information networks also
contain rich external information, such as texts and labels. However,
most of the traditional learning methods do not consider this kind of
information comprehensively, which leads to the lack of semantics of
embeddings. In this paper, we propose a Semi-supervised Hierarchical
Attention Network Embedding method, named as SHANE, which can
incorporate external information in a semi-supervised manner. First, a
hierarchical attention network is used to learn the text-based embeddings
according to the content of nodes. Then, the text-based embeddings and
the structure-based embeddings are integrated in a closed interaction
way. After that, we further introduce the label information of nodes into
the embedding learning, which can promote the nodes with the same
label closed in the embedding space. Extensive experiments of link pre-
diction and node classification are conducted on two real-world datasets,
and the results demonstrate that our method outperforms other compar-
ison methods in all cases.
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1 Introduction

Information network is a data form with rich structure and semantic informa-
tion. With the prevalence of various social media, massive social networks have
attracted a lot of researchers’ attention. The applications of information net-
work include various aspects, such as node classification, community detection,
and content recommendation. Network representation learning is the foundation
of these network applications. Different from the one-hot vectors, network rep-
resentation can map each node into a low-dimensional, dense and real-valued
vector, thus avoiding the effect of sparsity.

Most of the studies on network representation are based on network struc-
ture information, such as the sequences generated by network nodes [5,14], the
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first-order and second-order proximities [18], and the adjacency matrix [4]. With
further research, the external information of nodes are considered to improve the
quality of embeddings, such as text information [9,17,19,22] and label informa-
tion [10,20]. The introduction of text feature can enrich the semantics of nodes
and improve the performance of representation learning. It is noteworthy that
people usually write sentences first, and then compose the whole document with
multiple sentences. However, when considering the text information of a net-
work, existing works usually obtain the text feature matrix of the nodes based
on words, which ignores the hierarchical structure. In order to incorporate the
document structure (document consists of sentences, sentences consist of words),
it is necessary to obtain document representations in a hierarchical way. Besides,
different words and sentences contain varying amounts of information, even the
same words in different sentences can play different roles. So how to make a
difference between different components of nodes’ content is a practical problem
which needs to be solved. In addition to the text information, label is another
important attribute of network nodes, and it is a kind of significant supervised
information on directing practical tasks such as classification. Making full use of
this supervised information will further enrich the network embeddings [10,20].
However, since the network is usually large-scale, there are still a lot of unlabeled
nodes, thus the rational use of labeled data and unlabeled data is important for
network representation learning.

In view of the above problems, we propose a hierarchical structure
based semi-supervised network representation learning method, Semi-supervised
Hierarchical Attention Network Embedding (SHANE), which can learn the hier-
archical relational network embeddings by integrating text and label features of
nodes. In SHANE, we adopt a hierarchical attention structure to extract text
features at different levels [23], which can model the hierarchical semantic infor-
mation of network. Meanwhile, label information is utilized in a semi-supervised
manner to make full use of both labeled data and unlabeled data. We apply
the proposed model to link prediction and node classification. The experiment
results show that the proposed model outperforms all the comparison methods.
Our contributions are summarized as follows:

– We propose a SHANE model, which can integrate structures, texts, and labels
of nodes together, and learn network embeddings in a semi-supervised man-
ner.

– We use hierarchical attention network to model the nodes’ text features, which
can capture the semantic features more granularly.

– We extensively evaluate our representations with multiple tasks on two real-
world citation networks. Experimental results prove the effectiveness of the
proposed model.

2 Model

The overall architecture of the proposed model is shown in Fig. 1. It consists of
Word Encoder, Sentence Encoder, and Node Encoder. Word Encoder and Sen-
tence Encoder constitute the text-based representation learning process, while
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Fig. 1. The illustration of SHANE model.

the Node Encoder combines structure-based embedding, text-based embedding,
and label information together. We describe the details of different components
in the following sections.

2.1 Problem Formulation

First of all, we introduce the related notions and define the problem formally.
Let G = (V,E, T, L) denotes a given information network, where V is the set of
nodes, E is the edge set that indicates the relation between nodes, T denotes
the text information of nodes and L is the label information of nodes. Each
edge eu,v ∈ E represents the relationship between two nodes (u, v). The text
information of node u is Du = (Su1, Su2, · · · , Suq), where Sui is the ith sentence
of u and q is the sentences number of u. Sui = (w1

ui, w
2
ui, · · · , wm

ui), where wj
ui is

the j th word of sentence Sui and m is the words number of sentence Sui. The
label information of u is lu.

Given an information network, the goal of our model is to learn a low-
dimensional vector u for each node u, that can integrate its structure, text and
label information.

2.2 Text-Based Representation Learning

As mentioned above, the text information of nodes usually has a natural hierar-
chical structure. That is, each document contains multiple sentences, and each
sentence contains multiple words. Empirically, each word and sentence are of
different importance in a document, and learning all sentences and words indis-
criminately will lose the focus of text content. So we use a hierarchical attention
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network [23] to learn the text-based embedding ut for each node u, and we
describe the learning process in details as follow.

Word Encoder. Assume that u contains q sentences, and each sentence con-
tains m words. We can get the word sequence of sentence Sui by table looking-up,
so the sentence can be expressed as Sui = (w1

ui,w
2
ui, · · · ,wm

ui), where wj
ui ∈ Rd

is a d-dimensional embedding vector. Then a bidirectional GRU [1] is applied to
encode the word sequences as:

−→
h wj

ui =
−−−→
GRU(wj

ui), j ∈ [1,m],
←−
h wj

ui =
←−−−
GRU(wj

ui), j ∈ [m, 1].
(1)

The word annotation hwj
ui of wj

ui should contain two directions of information,
which can be simply obtained by concatenating

−→
h wj

ui and
←−
h wj

ui . Considering
that words contribute differently to the sentence representation, the attention
mechanism is used to identify the importance of words, and the operations can
be expressed as follows:

gij = tanh
(
Wwh

wj
ui + bw

)
,

αwj
ui =

exp(gT
ijCw)∑

(exp(gT
ijCw))

,

sui =
∑
j

αwj
ui h

wj
ui ,

(2)

where sui is the embedding of the ith sentence of node u, Cw is the global word-
level context vector, and αij is a normalized importance weight used to fuse
word annotations to get the representation of sentence.

Sentence Encoder. Sentence encoder is similar to the word encoder except
that the objects are sentences, so we omit the equations due to lack of space.
Similar bidirectional GRU and attention layers are applied to the sentence encod-
ing process, and then we can get the text embedding uh

t encoded by hierarchical
attention network.

To avoid the deviation of the learned representation from the original text,
after getting the embedding from hierarchical attention network, we add it with
another vector ua

t , which is the mean of word embeddings of this node. Then,
we can get the text-based representation ut of node u.

ut = uh
t + ua

t . (3)

Overall, two layers of bidirectional GRUs extract the latent features of words
and sentences, in which the word-level attention is used to capture the lexical
features, and the sentence-level attention is used to capture the textual features.
Therefore, the hierarchical learning method can obtain text information with
different granularities.
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2.3 Structure-Based Representation Learning

In addition to the text-based embeddings discussed above, the structures of
nodes are also crucial information of the network. Structure features reflect the
connection characteristics of nodes. In general, two nodes with an edge between
them are similar in structure. Therefore, while getting the text-based embeddings
of nodes, we also learn a network structure based embedding us for each node.
In order to comprehensively learn the node representations, it is necessary to
consider the correlation between structure features, the relationship between
text features, and their interactions.

Following CANE [19], we set the log-likelihood functions of each part as
follows:

Lss(u) =
∑

eu,v∈E

wu,v log p(vu
s | uv

s),

Ltt(u) =
∑

eu,v∈E

wu,v log p(vt | ut),

Lst(u) =
∑

eu,v∈E

wu,v log p(vu
s | ut),

Lts(u) =
∑

eu,v∈E

wu,v log p(vt | uv
s),

(4)

where v is a node connected with u. wu,v is the weight of the edge between
node u and v. uv

s is the structure-based embedding of u when it connects with
v. The uses of symbols of v are analogous to u. Thus, we can comprehensively
model the interaction between u and v through Eq. 4. For each u ∈ {uv

s ,ut} and
v ∈ {vu

s ,vt}, the conditional probability of v generated by u is defined through
a softmax function:

p(v | u) =
exp(uT · v)∑
z∈V exp(uT · z) . (5)

The structure-based embeddings are free parameters to learn, and the text-
based embeddings are obtained through the method described in the previous
section. Note that the structure-based embeddings of u are different according
to the node it connects, and the motivation of this setting is that a node has
different connection characteristics when connected with different nodes. The
final structure-based embedding is the mean of them:

us =
1

|Eu|
∑

eu,v∈E

uv
s , (6)

where |Eu| is the edges number of u.

2.4 Semi-supervised Hierarchical Attention Network Embedding

Label is another valuable external information of nodes. Nodes with the same
label may also be similar in representations. Thus in this section, we incorporate



242 J. Liu et al.

label information into the learning process. However, the label information of a
network in the real world is mostly incomplete, and only a subset of nodes have
the corresponding class labels. Therefore, we design our model under a semi-
supervised manner so that it can make full use of labeled and unlabeled nodes
simultaneously.

Firstly, for the unlabeled nodes, we only consider its structure and text fea-
tures. So we add the log-likelihood functions in Eq. 4 together to get the objective
function of unlabeled nodes:

Lunlabel(uu) = α · Lts(uu) + β · Ltt(uu) + θ · Lst(uu)
+ γ · Lts(uu),

(7)

where uu ∈ Lu and Lu represents the unlabeled node subset, and α, β, θ, γ
control the weights of each part.

For the label matching loss of the nodes, we map the node embeddings into
the label space by using a fully-connected layer. Then we can get the nodes’
predicted label distributions. The purpose of label matching loss is to minimize
the distance between predicted label distribution and ground truth distribution.

Lmatch(ul) = −lu log p(l̂u | ul) + Ω, (8)

where ul ∈ Ll, and Ll represents the node subset with label information. lu is
the ground truth and l̂u is the predicted label distribution. Ω is the regularizing
term for the parameters in Eq. 8. Then the objective function of labeled node ul

can be denoted as follow:

Llabel(ul) = α · Lts(ul) + β · Ltt(ul) + θ · Lst(ul)

+ γ · Lts(ul) − λLmatch(ul),
(9)

where λ is the weight of label matching loss. Therefore, the overall objective
function of SHANE can be defined as:

L =
∑
ul∈Ll

Llabel(ul) +
∑

uu∈Lu

Lunlabel(uu). (10)

2.5 Model Optimization

In order to maximize the objective function, we need to calculate the conditional
probabilities, which have an expensive computational cost. So we employ the
negative sampling technology [12] to reduce the calculation cost. For each u ∈
{uv

s ,ut} and v ∈ {vu
s ,vt}, the objective functions in Eq. 4 can be transformed

as follow:

log σ(uT · v) +
k∑

i=1

Ez∼P (v)[log σ(uT · z)], (11)

where k is the number of negative samples, and σ is the sigmoid function. We
set P (v) ∝ d

3/4
v as proposed in [12], where dv is the degree of node v. So in the

process of optimization, we replace the corresponding parts of Eq. 10 with the
form of Eq. 11. Then, we use Adam to optimize the whole objective function.
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3 Experiments

In this section, experiments are performed to verify the effectiveness of the pro-
posed method, including link prediction and node classification.

3.1 Dataset

We conduct our experiments on two citation networks that are commonly used
in network representation learning:

– Cora is a citation network. We adopt the version processed by CANE [19].
The network contains 2277 machine learning papers in 7 categories and there
are 5214 edges between them. The text features of nodes are the abstracts of
these papers.

– DBLP is a computer science bibliography. It contains 30422 nodes in 4
research areas with the same setting as that of [13], and the edge number
is 41206. Abstracts of these papers are treated as text information as well.

3.2 Baseline

To investigate the performance of the proposed model, we compare our model
with 7 state-of-the-art methods, including structure-only models, text-only mod-
els, structure-text models and structure-text-label models. The details of the
comparison methods are described as follow:

– DeepWalk [14] is a structure-only model that employs random walk and
Skip-Gram [12] to learn the embeddings of nodes.

– LINE [18] can learn nodes embeddings of large-scale networks by considering
the first-order and second-order proximities and it is a structure-only model.

– node2vec [5] is an improved method of DeepWalk with a biased random
walk procedure, which only considers the structure information of network.

– Doc2vec [8] learns the embeddings of documents by predicting the co-
occurrence probability of words, and it is a pure text representation learning
method.

– TADW [22] is a structure-text model, which learns the structure features
and text features of the network by matrix decomposition.

– CANE [19] can learn the content aware embeddings of nodes, and it intro-
duce text information into the learning process.

– TriDNR [13] is a network representation learning method that considers the
structure, text and label information of nodes simultaneously.

3.3 Link Prediction

Link prediction is an important applications of network representation learning.
The primary purpose of this task is to predict whether there is an edge between
two nodes in the network. In practical applications, it can be used for recommen-
dation tasks, such as book recommendation. We adopt AUC [6] to evaluate the
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performance of link prediction. When the AUC is higher than 0.5, it indicates
that the similarity of the connected nodes is higher than the unconnected nodes.
So higher AUC means better performance. It can be calculated as follows:

AUC =

∑
i∈positive ranki − M(1+M)

2

M × N
, (12)

where M and N are the numbers of the connected node pairs and the uncon-
nected node pairs, respectively. In the evaluation process, we calculate the sim-
ilarities of the node pairs and rank them. The ranki is the number of correct
orders and positive is the collection of connected node pairs in the test set.

In order to verify the effectiveness of each model on link prediction task,
the models are trained with different proportions of edges in the network. The
training proportion of edges ranges from 15% to 95%, and the experimental
results on the two datasets are shown in Tables 1 and 2. It is worth noting
that HANE is a simplified form of the model proposed in this paper, which
is designed to verify the effect of the introduction of label information. HANE
doesn’t consider the label information of nodes. Besides, since Doc2vec is a

Table 1. Link prediction performance on Cora.

Training edge 15% 25% 35% 45% 55% 65% 75% 85% 95%

DeepWalk 56.0 63.0 70.2 75.5 80.1 85.2 85.3 87.8 90.3

LINE 55.0 58.6 66.4 73.0 77.6 82.8 85.6 88.4 89.3

node2vec 55.9 62.4 66.1 75.0 78.7 81.6 85.9 87.3 88.2

TADW 86.6 88.2 90.2 90.8 90.0 93.0 91.0 93.4 92.7

CANE 86.8 91.5 92.2 93.9 94.6 94.9 95.6 96.6 97.7

TriDNR 83.7 84.7 85.2 85.5 85.8 85.9 86.3 87.2 87.7

HANE 93.0 94.1 94.8 95.0 95.5 95.8 96.2 97.5 98.3

SHANE 92.7 93.3 95.1 95.7 96.0 96.5 96.9 97.8 98.5

Table 2. Link prediction performance on DBLP.

Training edge 15% 25% 35% 45% 55% 65% 75% 85% 95%

DeepWalk 71.2 72.8 74.3 74.5 74.6 75.5 81.4 81.7 82.4

LINE 57.4 60.5 63.2 66.0 66.4 68.8 67.2 68.2 69.9

node2vec 67.0 79.2 84.4 88.1 90.0 91.8 93.2 94.1 95.4

TADW 72.0 78.5 88.5 86.0 87.9 89.2 90.5 91.3 93.4

CANE 91.0 92.2 94.5 94.6 94.8 94.9 95.2 95.7 96.2

TriDNR 86.2 86.0 86.6 86.7 87.2 87.8 88.4 88.6 90.7

HANE 92.4 93.6 95.3 95.6 96.3 96.5 96.7 97.0 97.4

SHANE 92.6 93.4 95.3 96.1 96.3 96.4 96.8 97.2 97.9
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text-only method, so we do not analyze it in this part of the experiment. From
Tables 1, 2, we have the following observations:

– Structure-text methods outperform structure-only methods, especially when
the reserving proportion of the edge is small. This phenomenon shows that the
introduction of text features can significantly improve the quality of embed-
dings and capture the internal relationship between nodes better.

– The performances of all methods increase with the training ratio of edges, but
the methods considering text information are relatively stable. It proves that
adequate structure information is conducive to the representation learning,
and it also shows that the introduction of text information can supplement
the lack of network structure information.

– Either HANE or SHANE performs better than other comparison methods on
Core and DBLP, which proves the effectiveness of the hierarchical structure
based method proposed in this paper, and our methods can be well adapted
to different scales of networks.

– According to the comparison between HANE and SHANE, the introduction of
label information achieves a slight improvement in link prediction. It shows
that the label information is not the primary factor in the nodes relation
learning on these datasets.

3.4 Node Classification

Node classification is also a typical application of network representation learn-
ing. While link prediction can evaluate the ability of models to learn the con-
nection characteristics, node classification can verify the ability to capture the
group characteristics of nodes. To reduce the influence of the differences between
classifiers, we adopt a standard linear SVM on the embeddings learned by all
the methods. We use the Macro-F1 score [11] as the evaluation metric, and
the higher Macro-F1 means the better performance of classification. In order to
study the performance of models under different label completeness, the classifi-
cation experiment is conducted under the condition of retaining different ratios
of labeled nodes. For the unsupervised models, the changes in the ratio of labeled
data are reflected in varying the amount of labeled data used for training clas-
sifiers. Experimental results on the two datasets are shown in Tables 3 and 4.
From these tables, we have following observations:

– Generally speaking, the performances of structure-text models are superior
to the text-only method, and both of them perform better than the structure-
only methods, which proves that the text information is critical when learning
the group characteristics of the nodes.

– Both TriDNR and SHANE introduce the label and text information into the
learning process, but the classification performances of SHANE are better
than TriDNR. It shows that the way of introducing external information can
also affect the performance of network representation learning.
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– The experimental results on two datasets show that the proposed model
exhibits consistent superior performance to other comparison methods, which
proves the effectiveness of the SHANE model. It can efficiently capture the
properties of nodes and improve the quality of the network embeddings.

Table 3. Node classification performance on Cora.

Ratio of labeled nodes 10% 30% 50% 70%

DeepWalk 0.446 0.635 0.697 0.733

LINE 0.259 0.299 0.331 0.353

node2vec 0.715 0.761 0.784 0.793

Doc2vec 0.530 0.617 0.654 0.670

TADW 0.413 0.781 0.838 0.852

CANE 0.825 0.861 0.863 0.871

TriDNR 0.655 0.677 0.714 0.744

SHANE 0.852 0.871 0.873 0.886

Table 4. Node classification performance on DBLP.

Ratio of labeled nodes 10% 30% 50% 70%

DeepWalk 0.379 0.454 0.459 0.461

LINE 0.328 0.362 0.371 0.372

node2vec 0.448 0.473 0.475 0.476

Doc2vec 0.574 0.598 0.604 0.605

TADW 0.660 0.687 0.697 0.699

CANE 0.801 0.810 0.817 0.822

TriDNR 0.724 0.742 0.747 0.748

SHANE 0.806 0.811 0.821 0.850

Figure 2 shows how the performances of the proposed methods change over
the proportion of labeled nodes on Cora. The training proportion of the labeled
data ranges from 10% to 70%. It can be seen from the figure that the perfor-
mances of the models are improved when the proportion of the labeled data
increases, but SHANE always performs better than HANE. This phenomenon
illustrates that the semi-supervised learning method proposed in this paper is
effective. The introduction of label information is beneficial to capture the char-
acteristics of nodes, thus improving the quality of network embeddings.
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Fig. 2. Performance variation on different training ratio of labeled data.

4 Related Work

Recently, more and more studies focus on how to learn effective network embed-
dings. The related methods can be divided into two main categories, including
the methods only considering network structure, and the methods introducing
external information. As a classic structure-only method, DeepWalk [14] learns
embeddings of network by performing truncated random walks over networks.
On the basis of DeepWalk, Grover et al. proposed node2vec [5] which extends
DeepWalk by modifying the random walk strategy. LINE [18] preserves both
the first-order proximity and the second-order proximity of the network. These
methods can capture the network structure features well, but there is a lack
of understanding the semantics of nodes. In order to enrich the semantics of
embeddings, many methods introduce external information into the process of
learning. PTE [17], CANE [19], and TADW [22] introduce the content of nodes
to enrich the network representations. In addition to text, there is also some
other external information that can be considered, such as MMDW [20] and
DDRW [10]. Although these methods use external information, they do not take
into account the hierarchical structure of node content which is an important
feature of nodes.

Text representations learning methods are needed when considering the text
information of the network. Traditional text representation learning methods,
such as LDA [3] and NMF [2], learn the representation of text from the perspec-
tive of topic distribution. In recent years, due to the rapid development of neural
network and deep learning, text representation learning methods based on the
neural network have made significant progress, such as CNNs [7] and LSTM [16]
to learn text representations. Recently, attention mechanism is widely used in
Natural Language Processing tasks, and Bahdanau et al. first introduced it to
NLP for machine translation task [1]. After that, attention mechanism has been
widely applied to various applications, such as syntactic parsing [21] and natural
language Q&A [15]. The hierarchical attention network [23] proposed by Yang
et al. takes into account the hierarchical structure of documents, and applies
two levels of attention mechanisms at the word and sentence-level, respectively,
which improves the performance of text classification.
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5 Conclusion

In this paper, we proposed a semi-supervised hierarchical attention network
embedding method, i.e. SHANE. It integrates rich external information into the
learning process. The proposed SHANE leverages hierarchical attention network
to learn the text-based embedding, which can effectively model the hierarchi-
cal structure of the text. Through a semi-supervised learning framework, the
embeddings of nodes can be learned by incorporating structure, text and label
information together. Extensive experiments conducted on two citation datasets
demonstrate the effectiveness and superiority of the proposed model.
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