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Abstract. Relation classification is an important task in natural language pro-
cessing (NLP) fields. State-of-the-art methods are mainly based on deep neural
networks. This paper proposes a bi-channel tree convolution based neural net-
work model, BiTCNN, which combines syntactic tree features and other lexical
level features together in a deeper manner for relation classification. First, each
input sentence is parsed into a syntactic tree. Then, this tree is decomposed into
two sub-tree sequences with top-down decomposition strategy and bottom-up
decomposition strategy. Each sub-tree represents a suitable semantic fragment in
the input sentence and is converted into a real-valued vector. Then these vectors
are fed into a bi-channel convolutional neural network model and the convo-
lution operations re performed on them. Finally, the outputs of the bi-channel
convolution operations are combined together and fed into a series of linear
transformation operations to get the final relation classification result. Our
method integrates syntactic tree features and convolutional neural network
architecture together and elaborates their advantages fully. The proposed
method is evaluated on the SemEval 2010 data set. Extensive experiments show
that our method achieves better relation classification results compared with
other state-of-the-art methods.

Keywords: Relation classification + Syntactic parsing tree *+ Tree convolution
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1 Introduction

The aim of relation classification is that given a sentence in which two entities are
labeled, to select a proper relation type from a predefined set for these entities. For
example, given a sentence “The system as described above has its greatest application
in an arrayed <el> configuration </el> of antenna <e2> elements </e2>", a relation
classification system aims to identify that there is a “Component-Whole” relationship
from e2 to el. Obviously, accurate relation classification results would benefit lots of
NLP tasks, such as sentence interpretations, Q&A, knowledge graph construction,
ontology learning, and so on. Thus, lots of researchers have devoted to this research
field.
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For relation classification, early research mostly focused on features based methods.
Usually, these methods firstly select some syntactic and semantic features from the
given sentences. Then the selected features are fed into some classification models like
support vector machines, maximum entropy, etc. Recently, deep neural network
(DNN) based methods have been widely explored in relation classification and have
achieved state-of-the-art experimental results. The core of these methods is to embed
features into real-valued vectors, and then feed these vectors into DNN architectures.
Usually, deep convolutional neural networks (CNN) and deep recurrent neural net-
works (RNN) are two most widely used architectures for relation classification.

In most recent years, inspired by the broad consensus that syntactic tree structures
are of great help and the great success of DNN, more and more research attention is
being paid to the methods that integrate syntactic tree features into DNN models.
However, most of these existing methods used syntactic tree in a very shallow manner:
syntactic tree structure is often taken as an intermediate supporter from which a specific
kind of context can be extracted for CNN or RNN models. Obviously, such shallow
manner does not make full use of the rich semantic information carried by syntactic tree
structures.

It is worth noting that Socher et al. (2013a, b) introduced Compositional Vector
Grammar (CVG for short), which used a syntactically untied RNN model to learn a
syntactic-semantic compositional vector representation for the category nodes in a
syntactic tree. Inspired by their work, we propose a new relation classification method
that integrates syntactic tree structures into CNN model with a deeper manner.
Specifically, in our method, each input sentence is first parsed into a syntactic tree.
Then this tree is decomposed into two sub-tree sequences with bottom-up and top-
down decomposition methods respectively. Thirdly, each sub-tree is encoded into a
real-valued vector. Fourthly, the two sub-tree vector sequences are fed into a bi-channel
CNN model to generate final classification result. Experimental results show that our
method achieves better results compared with other baseline methods.

2 Related Work

Generally, there are three widely used DNN architectures for relation classification:
CNN, RNN, and their combination.

Zeng et al. (2014) proposed a CNN based approach for relation classification. In
their method, sentence level features are learned through a CNN model that takes word
embedding features and position embedding features as input. In parallel, lexical level
features are extracted from some context windows that are around the labeled entities.
Then sentence level features and lexical level features are concatenated into a single
vector. This vector is fed into a softmax classifier for relation prediction. Wang et al.
(2016) proposed a multi-level attention CNN model for relation classification. In their
method, two levels of attentions are used in order to better discern patterns in
heterogeneous contexts.

Socher et al. (2012) used RNN for relation classification. In their method, they
build recursive sentence representations based on syntactic parsing. Zhang and Wang
(2015) investigated a temporal structured RNN with only words as input. They used a
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bi-directional model with a pooling layer on top. Xu et al. (2015a, b) picked up
heterogeneous information along the left and right sub-path of the Shortest Dependent
Path (SDP) respectively, leveraging RNN with LSTM. In their method, the SDP retains
most relevant information to relation classification, while eliminating irrelevant words
in the sentence. And the multichannel LSTM networks allow effective information
integration from heterogeneous sources over the dependency paths. Meanwhile, a
customized dropout strategy regularizes the neural network to alleviate over-fitting.
Besides, there is also other similar work. For example, Hashimoto et al. (2013)
explicitly weighted phrases’ importance in RNNs. Ebrahimi and Dou (2015) rebuilt an
RNN on the dependency path between two labeled entities.

Some researchers combined CNN and RNN for relation classification. For example,
Vu et al. (2015) investigated CNN and RNN as well as their combination for relation
classification. They proposed extended middle context, a new context representation
for CNN architecture. The extended middle context uses all parts of the sentence (the
relation arguments, left/right and between of the relation arguments) and pays special
attention to the middle part. Meanwhile, they used a connectionist bi-directional RNN
model and a ranking loss function is introduced for the RNN model. Finally, CNN and
RNN were combined with a simple voting scheme. Cai et al. (2016) proposed a
bidirectional neural network BRCNN, which consists of two RCNNs that can learn
features along SDP inversely at the same time. Specifically, information of words and
dependency relations are used with a two-channel RNN model with LSTM units. The
features of dependency units in SDP are extracted by a convolution layer. Liu et al.
(2015) used a RNN to model the sub-trees, and a CNN to capture the most important
features on the SDP.

3 Our Model

Figure 1 demonstrates the architecture of our method. The network takes sentences as
input and extracts syntactic tree features and other useful features. These features are
converted into real-valued vector representations and then fed into a bi-channel CNN
model for relation type decision. From Fig. 1 we can see that there are six main
components in our method: tree decomposition, feature extraction, convolution trans-
formation, max-pooling operation, linear transformation and output.

3.1 Tree Decomposition

Each input sentence will firstly be parsed into a syntactic tree by the Stanford Parser.
Then this tree is decomposed into two sub-tree sequences with bottom-up decompo-
sition method and top-down decomposition method. These two kinds of decomposition
methods, whose algorithms are shown in Figs. 2 and 3 respectively, complement each
other and are expected to generate more meaningful and less ambiguous semantic
fragments than words.

For the top-down tree decomposition method, its generated sub-trees don’t contain
any word information. It is expected to extract the common syntactic sub-tree structures
for a specific kind of relationship type, and is also expected to alleviate the over-fitting
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Fig. 1. Architecture of our method

issue by using these abstract sub-tree structures as features. Taking the sentence in
Fig. 1 as an example, the sub-tree sequence generated by this method is: (S (NP) (VP)),
(NP ((DT) (1) (NN))), (VP (VBZ) (PP)), (PP (IN) (NP)), (NP (DT) (NN)).

As for the bottom-up method, it complements with the top-down method. In this
method, word information is taken into consideration. Taking the sentence in Fig. 1 as
an example, if the hyper parameters in Fig. 3 are set as: h =3, A = 3, and k = 3, the
sub-tree sequence generated by this method would be: (NP (DT A) (JJ misty) (NN
ridge))), (VP (VBZ uprises) (PP (IN from) (NP (DT the) (NN surge)))).
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Input: a syntactic tree 7

Output: a sub-tree sequence Set;(T)

Procedure:

1: Exit if all of the leaf nodes in T have been processed. Otherwise, go to step 2.

2: Take the root node and all of its son nodes as the first sub-tree and add this sub-tree
into Set;(T), move to the son layer of the root node.

3: Exit if the number of covered layers equals to the height of 7. Otherwise, go to
step 3.

4: Visit all of the non-leaf nodes in current layer by the depth-first strategy. Take an
unprocessed non-leaf node and all of its son nodes as a sub-tree candidate, if all of its
nodes in this sub-tree are non-leaf nodes, add it into Set;(7).

5: Move to the next layer and go to step 2.

Fig. 2. Algorithm of top-down tree decomposition

Input: a syntactic tree T
Output: a sub-tree sequence Set>(7)

Procedure:

1: Exit if all of the leaf nodes have been processed. Otherwise, go to step 2.

2: Take the left-most unprocessed leaf node /;.

3: Move upward / layer from /; to find its ancestor node @; and extract the sub-tree ¢
that takes a; as root node. If all the out-degrees in ¢; are less than 4 and the height of ¢
is less than &, add ¢ into Set,(7), then go to step 2. Otherwise, go to step 4.

4: Leth=h—- 1 and go to step 3.

Fig. 3. Algorithm of bottom-up tree decomposition

3.2 Feature Extraction

There are three kinds of features used in our model: syntactic tree features, lexical level
features and entities level features. In Fig. 1, they are denoted as TFeas, LFeas and
EFeas respectively.

e Syntactic Tree Features

Syntactic tree structures can carry more semantic and syntactic information com-
pared with characters, words, or phrases. To make full use of such information, we
embed each sub-tree into a d”“°-dimensional real-valued vector. Just like a word
embedding vector can encode different meaning of the word into a vector, we hope that
a tree embedding vectors can also encode as much as possible semantic and syntactic
information for a tree structure. In our method, this kind of tree embedding vectors is
initialized with the method proposed by Socher et al. (2013a, b). Their method can
assign a vector representation for both the nodes in a parsing tree and the whole parsing
tree itself. But in our model, we don’t care the representations of any inner categories in
a parsing tree. Thus, our method assigns a vector representation for the whole tree
structure only.
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e [ exical Level Features

Lexical level features refer to the features that are related to words. Thus only the
sub-trees generated by the bottom-up decomposition method will involve this kind of
features. There are two kinds of lexical level features used in our method: word
embedding features and position features. The final lexical level features, LFeas, are
the concatenations of these two kinds of features.

1. Word Embedding Features

Word embedding is a kind of word representation method and is widely used in
DNN models. It converts a word into a real-valued vector representation to capture the
rich syntactic and semantic features possessed by this word. Generally, a word
embedding table is a d"*|V| real-valued matrix where each column corresponds to a
word representation. d" is the dimension of a embedding vector, and |V| is the
vocabulary size.

For a sub-tree #; that is generated by the bottom-up decomposition method, each of
its leaf nodes has a word embedding vector. If there are m leaf nodes in ¢;, its word
embedding features wf{t;) would be the arithmetic mean of its m words’ embeddings, as
shown in:

wf(t); = avg» wy, 1 <j<d” (1)
k=1

2. Position Features

Position features are used to specify which input items are the labeled entities in a
sentence or how close an input item is to the labeled entities. They have been proved to
be effective for relation classification (Dos et al. (2015); Zeng et al. (2014)). This kind
of features maps a distance value into a randomly initiated d**’-dimensional real-valued
vector.

For a sub-tree ¢; that is generated by the bottom-up decomposition method, each of
its leaf nodes has two kinds of position features that are related with e; and e,
respectively. Accordingly, there are two kinds of position features for ;.

If there are m leaf nodes in #;, its position features related with e;, denoted as pfie;),
would be the arithmetic mean of its m leaf nodes’ position features related with e;. The
computation process is shown in formula 2.

pf(er); = avgy py, 1 <j < a (2)
k=1

Similarly, the computation process for #;’s position features related with e,, denoted
as pfiey), is shown in formula 3.
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pf(es);, = avg Y py, 1 <j<d™ 3)

k=1

Finally, the position features for #; is the concatenation of pf{e;) and pfie,).
3. Entities Level Features

Previous research shows that words between the two labeled entities could provide
more useful cues for relation decision. So an attention scheme is used here to enhance
the features extracted from the words that are between the two labeled entities. The
enhanced feature is called entities level features and is denoted as EFeas in Fig. 1.

We first get the syntactic tree for the text that is from the first labeled entity to the
second labeled entity. Then the syntactic tree features and the lexical level features are
extracted with the same method introduced previously. Thirdly, these two kinds of
features are concatenated to form a new feature vector that is denoted as EntityF. The
final EFeas is generated with formula 4.

EFeas = tanh(M, * EntityF + b,) (4)

Where M; € R"* s a transformation matrix, &, is a hyper parameter that denotes
the transformed size, def is the dimension of vector EntityF, b, is a bias term.

From Fig. 1 we can see that EFeas would be concatenated with the linear trans-
formed max-pooling features. To maintain feature consistency, here we use the linear
transformed EntityF as EFeas.

3.3 Convolution Transformation

Convolution transformation is a kind of linear transformation and is expected to extract
more abstract features.

For the sub-tree sequence that is generated by the bottom-up method, each of its
sub-tree ¢; is represented by a vector concatenation of TFeas(i) and LFeas(i). The
convolution transformation process is written as formula 5.

CMtrB; = M, « (TFeas(t;) ® LFeas(t;)) + b, Vi (5)

For the sub-tree sequence that is generated by the top-down method, each of its
sub-tree ¢; is represented by TFeas(i). The convolution process is written as formula 6.

CMtrT; = M5 * TFeas(t;) + b3 Vi (6)

In above formulas, M, € RI"27f and M 3 € R™ are two transformation matrices,
h; and hj; are the sizes of transformed hidden layers, d” and d" are the dimensions of
sub-tree vectors in the bottom-up and top-down tree sequences respectively. b, and b;
are bias terms. @ denotes the concatenation operation.
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3.4 Max-Pooling Operation

After convolution transformation, both CMtrB and CMtrT depend on the length of
input sequence. To apply subsequent standard affine operations, max-pooling operation
is used to capture the most useful and fixed size local features from the output of
convolution transformation. This process is written as formula 7 and 8.

poi = max,CMrB(i,n) 0 <i<h (7)

pi = max,CMurT(i, n) 0<i<h3 (8)

After max-pooling operation, p, and p, will have &, and h; elements respectively,
which are no longer related to the length of input.

3.5 Linear Transformation

After the max-pooling operation, p, and p, are concatenated together to form a new
vector p. Then p is fed into a linear transformation layer to perform affine transfor-
mation. This process is written as formula (9).

f = tanh(My * p + by) 9)

M, € R (h2+h3) i¢ the transformation matrix and hy is the size of hidden units in
this layer, and b, isa bias term.

3.6 Output

After linear transformations, vector f and vector EFeas are concatenated together to
form a new vector 0. Then o is fed into a linear output layer to compute the confidence
scores for each possible relationship type. A softmax classifier is further used to get the
probability distribution y over all relation labels as formula 10.

y = softmax(Ms * 0 + bs) (10)

Here M5 € R ™% and hs is the number of possible relation types. Softmax is
computed with formula 11.

yi= el (1)

m

3.7 Dropout Operation

Over-fitting is an issue that cannot be ignored in DNN models. Hinton et al.
(2012) proposed dropout method that has been proved to be effective for alleviating
over-fitting. This method randomly sets a proportion (called drop rate, a hyper-
parameter) of features to zero during training. It is expected to obtain less interdependent
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network units, thus over-fitting issue is expected to be alleviated. In our method, dropout
strategy is taken at feature extraction phase and linear transformation phase. Specially,
we take dropout operation on EntityF, TFeas, LFeas in formula 4 ~ 6 respectively, and
on p in formula 9. The drop rates for them are denoted as dp; - 4 respectively.

3.8 Training Procedure

All the parameters in our method can be denoted as 0 = (E*, E', EF, M;, M,, M3, M.,
Ms, by, by, bs, by, bs), where E”, E" and E” represent the embeddings of word, syntactic
tree and position respectively. E" is initialized by the pre-trained embeddings SENNA
(Collobert et al. 2011).Et is initialized with the method introduced by Socher et al.
(2013a, b). E”, transformation matrices, and bias terms are randomly initialized. All the
parameters are tuned using the back propagation method. Stochastic gradient descent
optimization technique is used for training. Formally, we try to maximize following
objective function.

J(0) =37 logyi (12)

where N is the total number of training samples. During training, each input sentence is
considered independently. And each parameter is updated by applying following
update rule, in which # is the learning rate.

0 = 0+ nx0logy/d0 (13)

4 Experiments and Analysis

4.1 Datasets

The SemEval-2010 Task 8 dataset is used to evaluate our method. In this dataset, there
are 8000 training sentences and 2717 test sentences. For each sentence, two entities that
are expected to be predicted a relation type are labeled. There are 9 relation types
whose directions need to be considered and an extra artificial relation “Other” which
does not need to consider the direction. Thus totally there are 19 relation types in this
dataset.

Macro-averaged F1 score (excluding “Other”), the official evaluation metric, is
used here and the direction is considered. During experiments, all the syntactic trees are
generated by the Stanford Parser (Klein and Manning, 2003). We apply a cross-
validation procedure on the training data to select suitable hyper-parameters. Finally,
the best configurations obtained are: d*" = 75, n = 0.001, h; 4 are 250, 200, 200 and
300 respectively, dp; 4 are all set to 0.5. In Fig. 3, A, h and k are set to 3, 3 and 3
respectively. Other parameters, d" and d"*° are 50 and 25 respectively.
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4.2 Experimental Results and Analyses

In the first part of our experiment, we evaluate the contributions of different kinds of
features and different convolutional channels. To this end, we implement a CNN model
that is similar to the one described in Zeng et al. (2014). This CNN model is denoted as
baseline in which word embedding features and position features are used. Besides, we
implement two other CNN models: one is with the bottom-up tree convolution channel,
and the other is with the top-down tree convolution channel. Then we investigate how
the performance changes when different kinds of features are added. The experimental
results are reported in Table 1.

Table 1. Performance of our method with different features

Model F1
Baseline 824
Bottom-up tree convolution(without LFeas) 73.0

Bottom-up tree convolution + WordEmb feature | 74.6
Bottom-up tree convolution + Position feature |74.0

Bottom-up tree convolution + LFeas 76.3
Top-down tree convolution 65.5
Our model 84.8

We can see that our model is very effective and it outperforms the baseline system
greatly. Also we can see that different convolution channels have different classification
performance. Even without LFeas features, the bottom-up tree CNN model achieves
better performance than the top-down tree CNN model. We think the main reason is
that in the bottom-up model, word information is retained and this kind of information
would play positive role for relation classification. This can be further proved by the
experimental results: the performance improves when different kinds of lexical features
are added in the bottom-up tree CNN model.

In the second part of our experiment, we compare our method with several other
state-of-the-art DNN based methods. Because the datasets used are the same, we
directly copy the experimental results reported in Zeng et al. (2014). The comparison
results are shown in Table.

From Table 2 we can see that our method achieves better results compared with
other methods. It is also worth noting that our method is the ONLY ONE that does not
use any external language-dependent resources like WordNet. This shows the effec-
tiveness of embedding syntactic tree features into CNN architecture for relation
classification.

In the third part of our experiment, we compare the classification performance for
different types of relationships. The comparison results are reported in Table 3.

From the experimental results we can see that the performance of different types of
relationships is very different. Even excluding “Other” type, the best performance (for
example, “cause-effect” and “entity-destination”) is almost 10% higher than the worst
performance (for example, “product-producer” and “content-container”). Further
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Table 2. Comparisons with other methods

Method Features and extra resources used F1
CNN WordNet 82.7
SVM POS, prefixes, morphological, WordNet, dependency 82.2

parse, Levin classed, ProBank, FrameNet, NomLex-
Plus, Google n-gram, paraphrases, TextRunner

RNN - 74.8
POS, NER, WordNet 77.6
MVRNN |- 79.1
POS, NER, WordNet 82.4
Our parsing trees 84.8
model

Table 3. Classification results of different relationships

Relationship P R F
Cause-Effect 95.43% | 88.17% | 91.65%
Component-Whole | 80.45% | 81.76% | 81.10%
Content-Container | 84.38% | 77.14% | 80.60%
Entity-Destination |95.21% | 87.97% | 91.45%
Entity-Origin 89.15% | 85.82% | 87.45%
Instrument-Agency | 83.97% | 76.61% | 80.12%
Member-Collection | 91.85% | 76.70% | 83.59%
Message-Topic 88.51% | 74.76% | 81.05%
Product-Producer | 82.68% | 78.60% | 80.59%
Other 40.75% | 71.43% | 51.89%

investigation shows that for the relationships that model can classify better, there are
usually some clear indicating words in the original sentences. For example, words
“cause”, “caused”’, and “causes” are often in the sentences where a “cause-effect”
relationship holds. On the contrary, there are usually few of such kind of indicating
words for the relationships that model classifies worse. As a result, max-pooling
operation couldn’t work well in such cases.

5 Conclusions and Future Work

In this paper, we propose a new relation classification method. The main contributions
of our method are listed as follows.

First, our method uses syntactic tree structures in a deeper manner: the input
sentence is parsed into a syntactic tree. And this tree is further decomposed into two
sub-tree sequences and the convolution operations are performed on the sub-tree
embeddings directly.
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Second, we design two decomposition methods to guarantee the tree decomposition
process performed in a reasonable way, which means that each of the generated sub-
trees has a relatively complete structure and can express a complete meaning.

However, there are still some other issues needed to be further investigated. For
example, experimental results show that there are big performance gaps between dif-
ferent types of relationships, which should be further investigated in the future.
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