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Abstract. In this paper, we address the problem of learning better
word representations for neural machine translation (NMT). We pro-
pose a novel approach to NMT model training based on coarse-to-fine
learning paradigm, which is able to infer better NMT model parameters
for a wide range of less-frequent words in the vocabulary. To this end,
our proposed method first groups source and target words into a set of
hierarchical clusters, then a sequence of NMT models are learned based
on it with growing cluster granularity. Each subsequent model inherits
model parameters from its previous one and refines them with finer-
grained word-cluster mapping. Experimental results on public data sets
demonstrate that our proposed method significantly outperforms base-
line attention-based NMT model on Chinese-English and English-French
translation tasks.
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1 Introduction

As a recently proposed novel approach to machine translation, and despite its
short history [2,7,14,29], neural machine translation (NMT) has been making
rapid progress from catching up with statistical machine translation (SMT) [3,6,
15] to outperforming it by significant margins on many language pairs [10,18,30,
31,34]. Aside from better translation performance, NMT also demonstrates other
appealing properties such as little requirements for human feature engineering or
prior domain knowledge, so it is also drawing attention from researchers working
on other NLP tasks [24,27,32].

Much recent work in the literature focuses on addressing the issue of
restricted vocabulary size in NMT systems. Popular NMT system implemen-
tations employ moderate-sized vocabularies typically containing most frequent
30K–80K words, and map all the other words to a single <unk> label. Luong
et al. [19] proposed a method which uses lexicon look-up to replace generated
<unk> labels in target translations. This method solves part of the problem,
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but the translation still cannot be well recovered when the unknown word rate
is high, due to the fact that too many words with distinct usages sharing a
single <unk> label leads to a substantial amount of ambiguities. Jean et al.
[13] tackled the small vocabulary size limit with an efficient softmax approxi-
mation algorithm, which enables to use very large vocabulary in NMT systems.
Although this method effectively reduces the unknown word rate and brings fur-
ther improvement to translation accuracy, we note that the inclusion of more
words in a larger vocabulary intensifies the challenge of learning accurate usage
for the less-frequent words, even if they are not viewed as unknown words. For
example, the Chinese word (alter), which appears near the tail of a 50K-
word vocabulary in terms of frequency, is such a long-tail less-frequent word. Due
to its small number of occurrences in the training data, the learnt representation
in a conventional NMT model is very likely to overfit to its specific usage in the
training corpus, and as a result usually left ignored in unseen contexts during
decoding. Figure 1 shows an incorrect translation example caused by this word.

Fig. 1. Example of incorrect translation of less-frequent word.

In this paper, we present a novel NMT training method based on coarse-to-
fine paradigm, which is able to learn better NMT model parameters for less-
frequent words that do not have sufficient usage coverage in the training data.
The presented method is inspired by a common linguistic observation that a
group of words belonging to the same syntactic/semantic class, for instance,
large, enormous, gigantic, mammoth, tend to share certain properties such as col-
locations and translations, and are expected to be close to each other in embed-
ding space. This gives the opportunity that if we can assign a less-frequent word
to an appropriate class whose representation can be more accurately learned, it
could benefit from inheriting part of the class’ representation which generalizes
better to unseen contexts. Our proposed method works as follows: at first, source
and target words are grouped into a set of hierarchical tree-structured clusters
based on bilingual data, then a sequence of NMT models are learned based on
sets of clusters at different levels of the clustering tree with finer and finer granu-
larity. When training each model, the training data is first transformed such that
all words are replaced with their corresponding clusters at the specified hierar-
chical level. Every cluster’s representation is initialized with its parent cluster’s
representation learned by the previous model, then the standard NMT training
process is performed to refine the model parameters.
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We conduct experiments on public Chinese-English and English-French
translation data sets. Experimental results demonstrate that our proposed
method significantly outperforms baseline attention-based NMT model on these
two translation tasks.

2 Neural Machine Translation

In this work, we concentrate on applying our coarse-to-fine learning method to
sequence-to-sequence NMT models. In particular, we follow the neural machine
translation architecture proposed by Bahdanau et al. [2].

Neural machine translation system is implemented as an encoder-decoder
framework with recurrent neural networks (RNN), which can be Gated Recurrent
Unit (GRU) [7] or Long Short-Term Memory (LSTM) [12] networks in practice.
The encoder reads in the source sentence X = (x1, x2, ... , xT ) and transforms
it into a sequence of hidden states h = (h1, h2, ... , hT ), using a bi-directional
recurrent neural network. The decoder uses another recurrent neural network to
generate a corresponding translation Y = (y1, y2, ... , yT ′) based on the encoded
sequence of hidden state h. At each time i, the conditional probability of each
word yi from a target vocabulary Vy is computed by

p(yi|y<i, h) = g(yi−1, zi, ci) (1)

where zi is the ith hidden state of the decoder and is calculated conditional
on the previous hidden state zi−1, previous word yi−1 and the source context
vector ci:

zi = RNN(zi−1, yi−1, ci) (2)

In attention-based NMT, the context vector ci is a weighted sum of the hidden
states (h1, h2, ... , hT ) with the coefficients α1, α2, ... , αT computed by

αt =
exp (a(ht, zi−1))∑
k exp (a(hk, zi−1))

(3)

where a is a feed-forward neural network with a single hidden layer.
The whole model is jointly trained to maximize the conditional log-

probability of the correct translation given a source sentence with respect to
the parameters θ of the model:

θ∗ = arg max
θ

N∑

n=1

|yn|∑

i=1

log p(yn
i |yn

<i, x
n) (4)

where (xn, yn) is the n-th training pair of sentences, and |yn| is the length of the
n-th target sentence yn.

Note that in this model, the dominant parts of the parameters θ are word
embedding matrices and weight matrix for the output layer. All of them are
closely related to representations of source and target words, therefore learning
accurate parameters for them plays a critical role in searching for good NMT
models.
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3 Coarse-To-Fine Learning for NMT

Conceptually there are two major steps in our coarse-to-fine learning method:
constructing a hierarchical cluster tree and learning a sequence of gradually
refined NMT models. Figure 2 shows the overview framework of our approach.
Based on bilingual data, a set of cluster hierarchies {H0, . . . , Hl} is formed with
increasing granularity and finally expands to the full vocabulary V . M0, . . . ,Ml

are NMT models which use H0, . . . , Hl as vocabularies at different level respec-
tively and trained by bilingual data. The following of this section details how
these two tasks are performed.

Fig. 2. The coarse-to-fine learning framework for neural machine translation.

3.1 Hierarchical Clustering

In this paper, we adopt the agglomerative hierarchical clustering algorithm to
build cluster hierarchies for a given set of words.

Agglomerative hierarchical clustering algorithm works in a bottom-up man-
ner. It starts with every word as a singleton cluster:

C0 = {a0 = {w0}, a1 = {w1}, ..., an = {wn}} (5)

where C0 is the set of initial clusters, ai stands for cluster i, wi denotes word
in V and n = |V | is the vocabulary size. Then the algorithm merges pairs of
clusters step by step, until all clusters have been merged into a single cluster
that contains all words. Specifically, at each step k, we have the set of clusters
Ck = {..., au, ..., av, ...}. We calculate the similarity for each pair of clusters in
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Ck and combine two closest clusters au, av to form a new cluster a′ = (au, av).
The new set of clusters Ck+1 can be represented as:

Ck+1 = (Ck \ {au, av}) ∪ {a′} (6)

It can be easily seen that each combination reduces the number of clusters by
one. So this clustering algorithm needs n steps to finish the entire procedure
in total, and we have |Ck| = n − k.

The similarity between two clusters is measured by the cosine metric of clus-
ter embeddings. At first, cluster embeddings in C0 are initialized with word
embeddings, which are trained from bilingual data with an improved skip-gram
model proposed by Luong et al. [17]. In the following steps, the embedding of a
new cluster is computed as the average of its two sub-clusters, so embedding of
every cluster can be computed in a bottom-up order.

Apparently, the clustering process described above generates too many clus-
ter sets, and it is not necessary to use all of them. Instead, before starting NMT
model training, a subset of the agglomerative hierarchical clustering results needs
to be selected for actual model refinement purpose.

Concretely, H0, . . . , Hl are selected in a way that the number of clusters will
grow at a geometric rate γ. Let n0 = |H0| be the size of initial cluster H0, Hi

can be determined by the following condition

Hi = Ck, n0γ
i = |Ck| (7)

For the last cluster set Hl, as a special case, we have Hl = C0 = V while
n0γ

l ≥ |C0|.
Note that the selected cluster sets H0, . . . , Hl remain to be a tree structure

with each cluster set Hi representing one hierarchy of the tree. For any cluster
cp ∈ Hj , there must be a parent cluster cq ∈ Hi satisfying cp ⊆ cq if j > i.

In NMT task, the above-mentioned process is extended to support to use
hierarchical clusters to refine vocabularies on both source and target side. First,
we build two cluster trees, S and T for source and target words respectively,
then each hierarchy of the final cluster tree is constructed by combining the
corresponding hierarchy of these two cluster trees: Hi = (Si, Ti).

3.2 NMT Model Refinement

When NMT model Mi−1 finishes training, model Mi will be learned based on the
selected cluster set Hi. The learning process mostly follows the standard training
procedure, but it differs from conventional NMT training in two aspects.

The first difference is the requirement for vocabulary mapping, because model
Mi is expected to be trained on the vocabulary defined by Hi instead of the origi-
nal vocabulary V . So a pre-processing step is needed to convert every word token
in the training data into its corresponding cluster. Let (xn, yn) and (cxn, cyn)
denote a word sentence pair and its cluster sentence pair respectively, and θi
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denote the model parameters of model Mi, the objective function of NMT model
training should be updated to be

θ∗
i = arg max

θi

N∑

n=1

|yn|∑

j=1

log p(cyn
j |cyn

<j , cx
n)

The second difference is related to the model parameter initialization. In a
conventional NMT model, all parameters are randomly initialized with some
heuristics [11]. But in the coarse-to-fine learning process, only the first model
M0 is initialized in this way. All the subsequent models inherit their parameters
from its previous model, that is, Mi+1’s parameters will be initialized with ones
of Mi.

Not all parameters in model Mi+1 can be inherited from Mi directly because
their parameter structures are not fully compatible. Mi+1 uses a larger vocab-
ulary and thus has more parameters. Extra parameters in Mi+1 belong to 3
categories: source word embedding, target word embedding, and weight matrix
of output layer.

Our solution to this problem is to leverage the inclusion relations between
clusters in Hi and Hi+1. The basic principle is that all sub-clusters in Hi+1

inherit parameters of the same category from their parent cluster in Hi. Sup-
pose E(Hi) and E(Hi+1) are embedding matrices of Mi and Mi+1, Wo(Hi) and
Wo(Hi+1) denote weight matrices of output layers of Mi and Mi+1, and cq is
parent cluster of {cp1 , cp2 , cp3}. Formally, for any cluster cp ∈ Hi+1, and its
parent cluster cq ∈ Hi, we have

E(Hi+1)[cp] = E(Hi)[cq] (8)

WT
o (Hi+1)[cp] = WT

o (Hi)[cq] (9)

Note that Eq. 8 works for both source and target clusters, while Eq. 9 is only
applied to target clusters.

We notice that changing vocabulary and migrating related parameters during
model transition could lead to temporary deviations in model prediction, but the
deviations will be automatically fixed by later training process.

We use a validation set D to determine when to transit model learning from
Mi to Mi+1. For each epoch during the training process, we check the perplexity
change ratio ΔPPL from the last epoch: if ΔPPL is smaller than a pre-specified
threshold α, the training for Mi finishes and Mi+1 is started in the next epoch.

Algorithm 1 shows the overall training procedure. Lines 2–6 perform model
initialization—except for the first model M0, every other model is initialized
with its previous model and parameter transformation function Γ defined in
Eqs. 8 and 9. Word-cluster mapping is done in line 7, and lines 8–15 handle
the learning of model Mi over training data T , in which α is the threshold for
minimum perplexity reduction.
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Algorithm 1. Coarse-To-Fine Training Algorithm for NMT
Input : Bilingual data T = {(xn, yn)};

Validation set D;
Cluster hierarchies H0, . . . , Hl;

Output: A sequence of NMT models M0, . . . , Ml;
1 for i ← 0 to l do
2 if i == 0 then
3 Initialize θ0 in M0 ;
4 else
5 θi = Γ (θi−1, Hi−1, Hi) ;
6 end
7 {(cxn, cyn)} = Map({(xn, yn)}, Hi);
8 for e ← 0 to max epoch do
9 θe

j = arg max
θj

∑
T log p(cyn|cxn) ;

10 pple = CalcPerpelxity(D, θe
j ) ;

11 ΔPPL = pple−1−pple

pple−1 ;

12 if ΔPPL < α then
13 break ;
14 end

15 end

16 end

4 Experiments

4.1 Setup

We evaluate our approach on two translation tasks: Chinese-English and English-
French. In all experiments, we use BLEU [20] as the automatic metric for trans-
lation quality evaluation.

Dataset. For Chinese-English translation, we select our training data from LDC
collection which consists of 5.2M sentence pairs with 102.1M Chinese words and
107.7M English words respectively. NIST OpenMT 2006 evaluation set is used
as validation set, and NIST 2003, NIST 2005, NIST 2008 datasets as test sets.

For English-French translation, we choose a subset of the WMT 2014 training
corpus used in Jean et al. [13]. This training corpus contains 12M sentence pairs
with 304M English words and 348M French words. The concatenation of news-
test 2012 and news-test 2013 is used as the validation set and news-test 2014 as
the test set.

For each language pair, both source and target words are grouped into a clus-
ter hierarchy respectively with agglomerative hierarchical clustering algorithm
based on word embeddings. We utilize improved skip-gram model proposed by
Luong et al. [17] to train word embedding on bilingual data.
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Training Setting. We limit the vocabulary to contain up to 80 K most frequent
words on both the source and target side, and convert remaining words into the
<unk> token. In practice, we note that some of the most frequent words such as
functional words, cannot gain benefit from the coarse-to-fine learning process, so
we keep the 5,000 most frequent words to be singleton clusters throughout model
refinement process, and all the hierarchical clustering and cluster set selection
tasks are only performed on the remaining part of the vocabulary.

We adopt the RNNSearch model proposed by Bahdanau et al. [2] as our
baseline, which uses a single layer GRU for encoder and decoder. The dimension
of word embedding (for both source and target words) is set to 512 and the size
of hidden layer is set to 1024. The matrix and vector parameters are initialized
using a normal distribution with a mean of 0 and a variance of

√
6/(drow + dcol),

where drow and dcol are the number of rows and columns in the structure [11].
Each NMT model is trained on a Tesla K40m GPU and optimized with the
Adadelta [35] algorithm with mini-batch size set to 80. At test time, beam
search is employed to find the best translation with beam size 12 and trans-
lation probabilities normalized by the length of the candidate translations. In
post-processing step, we follow the work of Luong et al. [19] to handle <unk>
replacement. Other hyper-parameters used in clustering and model refinement
set as α = 0.05, n0 = 100 and γ = 10. In addition, we define every 1M sentences
as an epoch in coarse-to-fine training process.

4.2 Results on Chinese-English Translation

Table 1 shows the evaluation results from different models on NIST datasets,
in which CTF-NMT represents our coarse-to-fine methods for NMT training.
In addition, we also compare our method with sub-word models - Byte Pair
Encoding (BPE) [26]1. All the results are reported based on case-insensitive
BLEU.

We can observe that CTF-NMT can bring significant improvement across
different test sets. These results demonstrate that coarse-to-fine training process
can learn better NMT model parameters for less-frequent words so that NMT

Table 1. Case-insensitive BLEU scores (%) on Chinese-English translation. The “Aver-
age” denotes the average results of all datasets.

System NIST2006 NIST2003 NIST2005 NIST2008 Average

RNNSearch 36.97 39.17 38.97 29.35 36.11

RNNSearch + BPE 37.58 39.73 39.87 30.48 36.92

CTF-NMT 39.14 41.69 41.02 32.66 38.63

CTF-NMT + BPE 39.72 42.20 42.24 32.90 39.26

1 We learn BPE models on pre-processed source and target sentences respectively with
78K merge operations.
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can yield higher quality translations. Besides, our approach achieves 1.71 points
BLEU improvement than RNNSearch+BPE on average. Since BPE method
splits up all words to sub-word units and expects to learn better representa-
tion for similar words that share some sub-word units, there still exist plenty
syntactic or semantic similar words that do not share any sub-word units, like
apple and orange. Our approach uses pre-trained word embedding to better
characterize relations between these words and leverage it in NMT training,
thus NMT can learn better representation for similar words. Actually, our app-
roach also can be complementary to BPE method. We apply this method in
the data preprocessed by BPE method, called CTF-NMT + BPE. In this way,
another 0.63 BLEU points improvement can be achieved, which adds up to 3.15
points BLEU improvement over baseline NMT model on average. This confirms
the effectiveness of combining our method with sub-word models.

4.3 Results on English-French Translation

For English-French translation task, in addition to the baseline RNNSearch sys-
tem, we also include results from other existing NMT systems. Experiment
results are shown in Table 2. In order to be comparable with other work, all
the results are reported based on case-sensitive BLEU.

First, we can see that the baseline NMT model with 80K vocabulary achieves
comparable results with Jean et al. [13], which use a larger vocabulary. Also, our
CTF-NMT significantly outperforms baseline NMT model with 1.34 points on
test set, while achieves 0.52 points improvement than RNNSearch+BPE. When
we combine our approach with BPE method, we obtain the best BLEU score
36.12 in Table 2. We believe our approach can get more improvements with deep
model in future experiments.

Table 2. Case-sensitive BLEU scores (%) on English-French translation. The
“PosUnk” denotes Luong et al. [19]’s technique of handling rare words. The “MRT”
denotes minimum risk training proposed in Shen et al. [28]. The “LAU” represents
Linear Associative Unit proposed in Wang et al. [33].

System Architecture Vocab Size Test

Sutskever et al. [29] LSTM with 4 layers 80K 30.59

Luong et al. [19] LSTM with 6 layers + PosUnk 40K 32.70

Shen et al. [28] Gated RNN with search + PosUnk + MRT 30K 34.23

Jean et al. [13] Gated RNN with search + PosUnk + LV 500K 34.60

Wang et al. [33] LAU with 4 layers 30k 35.10

Zhou et al. [37] LSTM with 16 layers + F-F connections 30k 35.90

RNNSearch Gated RNN with search + PosUnk 80K 34.33

RNNSearch + BPE Gated RNN with search + BPE 80K 35.15

CTF-NMT Gated RNN with search + PosUnk 80K 35.67

CTF-NMT + BPE Gated RNN with search + BPE 80K 36.12
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Figure 3 shows both perplexity and translation BLEU changes at different
stages of model training for two translation tasks. To make model training with
different cluster hierarchies comparable, we use word-level perplexity, which can
be computed by the assumption that the probability of all words in one cluster
is uniform. The BLEU is also computed at word level. We replace the generated
target cluster with a word which has highest unigram probability in the cluster.
From Fig. 3, it can be seen that the coarse-to-fine learning method performs con-
sistently better (for both perplexity and BLEU) than the baseline NMT model
throughout the model training process. Another observation is that, compared
with the baseline system, the coarse-to-fine method needs to learn from similar
amount of data (and similar training time) to achieve peak translation accuracy
on validation set.
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Fig. 3. The perplexity (PPL) and BLEU scores on Chinese-English and English-French
validation sets for RNNSearch and CTF-NMT as training progresses.

5 Related Work

This has been a long history that coarse-to-fine method is used in computer
vision research, such as face detection [9] and object recognition [21]. This
method has also been successfully applied to NLP tasks such as syntactic pars-
ing [22]. Charniak et al. [4] propose a multilevel coarse-to-fine PCFG parsing
algorithm, aiming at improving the efficiency of search for the best parse. Petrov
et al. [23] propose a coarse-to-fine approach to statistical machine translation.
They utilize an encoding-based language projection in conjunction with order-
based projections to achieve speed-ups in decoding.

As a new paradigm for MT, neural machine translation has drawn more
and more attention from a wide range of researchers. Resolving the OOV issue
in NMT system is one of the focuses. One line of efforts [13,19] concentrated
on rare words that do not exist in the system vocabulary. Jean et al. [13]
explore the way based on importance sampling to directly use large vocabulary.
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Luong et al. [19] propose replacement methods to handle rare words. In another
direction, Costajussa et al. [8] and Sennrich et al. [26] propose character-based
or subword-based neural machine translation to tackle the rare words problem.
The character-based or subword-based encoding, from certain perspective, per-
forms implicit clustering on words and affixes, and it is especially useful for
morphologically rich languages such as German and Russian.

Recently, Arthur et al. [1] propose to incorporate external resources into
NMT systems. Their approach employs external translation lexicons to rectify
the probability distribution of rare words in the output layer. Zhang et al. [36]
propose a method that leverages synthesized data to incorporate bilingual dictio-
naries in NMT systems, following previous work of exploiting large-scale mono-
lingual data [5,25]. Li et al. [16] propose another method for OOV translation in
NMT system: OOV words are replaced with similar in-vocabulary words during
training and decoding, and the replaced words are recovered based on align-
ment information in decoding. Theoretically, their method can be used in in-
vocabulary less-frequent words, but it is usually difficult to determine the set of
words to be replaced, and requirement for accurate similar words brings more
complexity to the training.

6 Conclusion

In this paper, we have presented a novel coarse-to-fine learning framework for
neural machine translation. With the help of hierarchical clusters of words, our
proposed method constructs a sequence of NMT models where each model refines
its previous one. The key step is that each subsequent model inherits its model
parameters according to cluster hierarchical relations, so that more precise rep-
resentations can be learnt for less-frequent words in the vocabulary. Empirical
evaluations are conducted in Chinese-English and English-French translation
tasks on public available data sets. Experimental results demonstrate that our
proposed method significantly outperforms baseline attention-based NMT model
on these tasks.

In the future work, we plan to extend our approach to other NLP tasks and
sequence-to-sequence models. Another direction we are interested in is to explore
the possibility to leverage the coarse-to-fine method in incremental NMT model
learning to speed-up the training process.
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